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Abstract
The present work aims to investigate the approximate solution to a general form of higher-
order boundary value problem of both linear and nonlinear types. A novel Genocchi
polynomial-based method is adapted for solving the model through a matrix collocation-
based method. The considered model is investigated using the presented technique which
mainly converts the equation into a system of algebraic equations. This system is then solved
using a new algorithm. The method is tested on several examples and the acquired results
prove that the method is accurate compared to other techniques from the literature. The
method is straightforward and fast in terms of computational effort and is considered a
promising technique for solving similar problems.

Keywords Genocchi polynomials · Nonlinear higher-order · Collocation method · Error
analysis

Mathematics Subject Classification Primary 65L10; Secondary 65L60

Introduction

Higher-order boundary value problems are considered as one of the most important models
to be dealing with while modelling both linear and nonlinear phenomena in real life. These
models have been used for simulating several natural phenomena in science and engineering
including thermodynamics, fluid mechanics, astronomy and astrophysics, and many other
similar models. They have been used to simulate the action of heated fluid with the action of
rotation [1, 2].

Also, the torsional vibration of some uniform beams ismodelled by higher-order boundary
value problems (BVP) in [3]. In addition, it has been used in modeling the viscoelastic or
inelastic flows and studying the effect on the deformation on beams which can be simulated
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using a fourth-order BVP [4]. Many other models are simulated using these higher-order
versions of the BVP and the reader can refer to [5–8] and their references.

The study of the higher-order boundary value problem (HBVP) has gotten the immense
attention of researchers’s community for the last few decades. This was the reason that
many researchers tried to investigate the solution to these problems using different tech-
niques. These techniques are based onmany different approaches and each has its advantages
and disadvantages. For example, the reproducing kernel space method [9], sinc-Galerkin
method [10], differential transform [11], homotopy perturbation method [12–14], quintic
spline [15], Adomian decompositionmethod [16, 17], B-splinemethod [18], non-polynomial
spline functions [19], Chebychev polynomial solutions [20], Euler matrix method [21],
Galerkin residual technique with Bernstein and Legendre polynomials [22], variational iter-
ation method [23], homotopy perturbation [24], Legendre-homotopy method [25], Haar
wavelets [26], Legendre-Galerkin method [27], wavelet based hybrid method [28], Laplace
series decomposition method [29], Quintic B-spline collocation method [30] and Spectral
monic chebyshev approximation [31]. In addition, the fractional-order models of this class
of equations gain sand increasing interest with the rise of the fractional calculus due to their
applications and ability to simulate complex phenomenons. Ganji et. al use a fractional-order
model to simulate the brain tumor and their behaviors [32]. Also, Ganji et. al in [33] investi-
gated a fractional population model including the prey-predator and logistic models. A novel
numerical approach in [34] was presented to find the solution of a fractional optimal control
problem with the Mittag–Lefler kernel. A collocation method based on shifted Chebyshev
polynomials of the third kind was introduced in [35] by Polat et. al to solve the multi-term
fractional model of fractional order. Further models and methods were proposed for solving
real-life phenomenon like the wave equation [36], Bagely–Torvik equation [37, 38], ODE
with Gomez–Atangana–Caputo derivative [39], fractional KdV and KdV-Burgers [40], time-
fractional Fisher’s model [41], time-fractional Klein-Gordon equations [42], fractional order
diffusion equation [43] and mathematical model of atmospheric dynamics of CO2 gas [44].

In this paper, we are concerned with the study of the HBVP in the form

u(2r)(x) +
2r−1∑

m=0

σmu
(m)(x) = ξ(x, u(x)), 0 ≤ x ≤ 1, r = 2, 3, 4, . . . (1.1)

with boundary conditions

u(i)|x=0 = αi , u(i)|x=1 = βi , i = 0, 1, 2, . . . , r − 1, (1.2)

where ξ(x, u(x)) and u(x) are both continuous functions defined on the interval 0 ≤ x ≤ 1
and σm is a constant.

We are concerned in this work with the application of a novel collocation method based on
Genocchi polynomials for solving Eq. (1.1). Genocchi collocation (GC) techniques have been
playing an increasing role in solving different types of application problems.Researchers have
been trying to expand the use of this technique for solving application problems in different
areas of science and engineering. For example, Genocchi polynomials have been used for
solving fractional partial differential equations using the definitions of Atangana-Baleanu
derivative [45]. Also, a fractional model of the SEIR epidemic has been investigated in [46]
with the aid of the same polynomials. Othermodels including nonlinear fractional differential
equations [47], integral and integrodifferential equations [48], and delay differential equations
[49]. As far as we knew, this is the first attempt to solve HBVP using the Genocchi collocation
technique.
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The novelty of the proposed technique can be summarized in the following few points:

• A novel numerical technique based on the Genocchi polynomials is presented.
• This technique is applied for the linear and nonlinear case and the nonlinear system

especially is solved using a new iterative technique.
• The method is tested on five different examples to ensure that the method is effective and

accurate.

The organization of the paper is as follows: Sect. 2 provides some preliminaries regarding
the proposed technique. Section 3, presents the function approximation, fundamental rela-
tions, Genocchi operationalmatrix, GC scheme, and a few related theorems. The upper bound
for the proposed method is illustrated in Sect. 4 in details. Section 5 describes the results and
discussions. Conclusions and future research guidance are listed in the last section.

Basic Definitions

In this section, some basics regarding the Genocchi numbers and polynomials shall be
presented. Genocchi polynomials have been widely used in multiple areas of mathemat-
ics including the complex analytic number and other relative branches. We can define the
Genocchi polynomials and Genocchi numbers by the generating functions [49–51]:

Q(x, t) = 2text

et + 1
=

∞∑

n=0

Gn(x)
tn

n! , (|t | < π) (2.1)

Q(t) = 2t

et + 1
=

∞∑

n=0

Gn
tn

n! , (|t | < π) (2.2)

where Gn(x) are the Genocchi polynomials of degree n and are defined on interval [0, 1] as

Gn(x) =
n∑

k=0

(
n

k

)
Gkx

n−k, (2.3)

where Gk is the Genocchi numbers.
These polynomials have many interesting properties and the most important among them

is the differential property which can be generated by differentiating both sides of Eq. (2.3)
concerning x , then we have

dGn(x)

dx
= nGn−1(x). n ≥ 1 (2.4)

If we differentiate (2.3) k times then we have

dkGn(x)

dxk
=

{
0, n ≤ k

k!(nk
)
Gn−k(x). n > k,

k, n ∈ N ∪ {0} (2.5)

Gn(1) + Gn(0) = 0. n > 1 (2.6)

Next, we will use the differential property to generate the Genocchi operational matrix of
differentiation which will be used later for solving Eq. (1.1).
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Genocchi DifferentiationMatrices

First, we express the approximate solution in Eq. (1.1) in the following form

uN (x) =
N∑

n=1

cnGn(x) = G(x)C, (N ≥ 2r) (2.7)

where C are the unknown Genocchi coefficients and G(x) are the Genocchi polynomials of
the first kind, then they are given by

CT = [
c1 c2 . . . cN

]
, G(x) = [

G1(x) G2(x) . . . GN (x)
]
.

The kth derivative of uN (x) can be expressed by

u(k)
N (x) =

N∑

n=1

cnG
(k)
n (x) = Gk(x)C = G(x)MkC, k = 1, 2, . . . , 2r (2.8)

where M is N × N operational matrix of derivative, and can be defined as

M =

⎡

⎢⎢⎢⎢⎢⎣

0 2 0 · · · 0
0 0 3 · · · 0
...

...
... · · · ...

0 0 0 · · · N
0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎦
. (2.9)

Using collocation points defined by

xi = i − 1

N − 1
, i = 1, 2, . . . , N

to approximate the Genocchi polynomials, we reach the following

G =

⎡

⎢⎢⎢⎣

G1(x1) G2(x1) . . . GN (x1)
G1(x2) G2(x2) . . . GN (x2)

...
...

. . .
...

G1(xN ) G2(xN ) . . . GN (xN )

⎤

⎥⎥⎥⎦ .

In the next section, we shall demonstrate themain steps for applying the collocation technique
based on Genocchi polynomials.

Genocchi Collocation Technique

In this section, we shall investigate the adaptation of our proposed technique for solving
a linear and nonlinear form of the HBVP. First, we begin with the linear form in the next
subsection.
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Case I: Linear Case

We first begin by letting ξ(x, u) = f (x) into the main equation which may lead us to

d2r u(x)

dx2r
+

2r−1∑

m=0

σm
dmu(x)

dxm
= f (x). 0 ≤ x ≤ 1, r = 2, 3, . . . (3.1)

The approximate solution for u(x) can be represented by

u(x) ≈ uN (x) =
N∑

n=1

cnGn(x) = G(x)C, (3.2)

where the Genocchi coefficients vector C and the Genocchi polynomials vector G(x) are
given by

CT = [
c1 c2 . . . cN

]
, G(x) = [

G1(x) G2(x) . . . GN (x)
]
,

and the kth derivative of uN (x) can be expressed in the form

u(k)
N (x) =

N∑

n=1

cnG
(k)
n (x) = G(x)MkC. k = 1, 2, . . . , 2r (3.3)

After substituting the approximate solution represented in Eq. (3.2) and its derivatives from
Eq. (3.3), we reach the following theorem.

Theorem 3.1 If the assumed approximate solution for the problem (3.1) in Eq. (3.2), then the
discrete Genocchi system for determining the unknown coefficients can be represented in the
form

N∑

n=1

cn G
(2r)
n (xi ) +

2r−1∑

m=0

N∑

n=1

cn σm G(m)
n (xi ) =

N∑

i=1

f (xi ). (3.4)

Proof Ifwe replace the approximate solutiondefined inEqs. (3.2), (3.3) into themain equation
in (3.1) and then by applying the collocation points x = xi defined as

xi = i − 1

N − 1
, i = 1, 2, . . . , N

we reach the following matrix form for the Genocchi system as

�C = � (3.5)

where

� =
[
M2r +

2r−1∑

m=0

σmMm

]
G

and

σm =

⎡

⎢⎢⎢⎣

σm 0 . . . 0
0 σm . . . 0
...

...
. . .

...

0 0 . . . σm

⎤

⎥⎥⎥⎦ , � =

⎡

⎢⎢⎢⎣

f (x1)
f (x2)

...

f (xN )

⎤

⎥⎥⎥⎦ .

Also, the boundary conditions can be described in the form

G(0)MiC = [αi ], G(1)MiC = [βi ]. i = 0, 1, . . . , r − 1
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Finally, replacing the first and last r rows of the augmented matrix [�,�] with boundary
conditions, then the new augmented matrix becomes

�̄C = �̄,

which gives a N×N systemof linear algebraic equations. By solving this system the unknown
coefficients C can be evaluated. �	
Next, we will investigate the application of Genocchi collocation method for solving the
nonlinear form of Eq. (1.1).

Case II: Nonlinear Case

In this subsection, we assign the value of ξ(x, u) = f (x) − q(x)(u(x))v in Eq. (1.1). Thus,
we reach the following equation

d2r u(x)

dx2r
+

2r−1∑

m=0

σm
dmu(x)

dxm
+ q(x) (u(x))v = f (x). 0 ≤ x ≤ 1, r = 2, 3, . . . (3.6)

The nonlinear term in Eq. (3.6) after substituting collocation points x = xi is needed to be
evaluated and to do this we need the following theorem.

Theorem 3.2 [52] The nonlinear term of the function uv(xi ), i = 1, 2, . . . , N can be
expressed as in the following form

⎡

⎢⎢⎢⎣

uv(x1)
uv(x2)

...

uv(xN )

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

u(x1) 0 . . . 0
0 u(x2) . . . 0
...

...
. . .

...

0 0 . . . u(xN )

⎤

⎥⎥⎥⎦

v−1 ⎡

⎢⎢⎢⎣

u(x1)
u(x2)

...

y(xN )

⎤

⎥⎥⎥⎦

= ¯(U)
v−1

U

= ( ¯GC̄)v−1GC

where

Ḡ =

⎡

⎢⎢⎢⎣

G(x1) 0 . . . 0
0 G(x2) . . . 0
...

...
. . .

...

0 0 . . . G(xN )

⎤

⎥⎥⎥⎦ , C̄ =

⎡

⎢⎢⎢⎣

C 0 . . . 0
0 C . . . 0
...

...
. . .

...

0 0 . . . C

⎤

⎥⎥⎥⎦ .

Substituting this into Eq. (3.6), we conclude to the next theorem.

Theorem 3.3 If the approximate solution of the discrete Genocchi system of Eq. (3.6) after
expanding the nonlinear term using Theorem 3.2, then the system can be expressed in the
form

d2r u(xi )

dx2r
+

2r−1∑

m=0

σm
dmu(xi )

dxm
+q(xi ) (u(xi ))

v = f (xi ). 0 ≤ x ≤ 1, r = 2, 3, . . . (3.7)

By the sameway presented in Sect. 3.1 andwith the aid of the previous theorem, theGenocchi
matrix system can be written in matrix form

�̃C = �
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where

�̃ =
([

M2r +
2r−1∑

m=0

σmMm

]
+ Q(ḠC̄)v−1

)
G,

and

em =

⎡

⎢⎢⎢⎣

σm 0 . . . 0
0 σm(x2) . . . 0
...

...
. . .

...

0 0 . . . σm(xN )

⎤

⎥⎥⎥⎦ , Q =

⎡

⎢⎢⎢⎣

q(x1) 0 . . . 0
0 q(x2) . . . 0
...

...
. . .

...

0 0 . . . q(xN )

⎤

⎥⎥⎥⎦ ,

� =

⎡

⎢⎢⎢⎣

f (x1)
f (x2)

...

f (xN )

⎤

⎥⎥⎥⎦ .

It is worth mentioning that the nonlinear part in Eq. (3.6) may take the form ξ(x, u) =
f (x) − q(x)uv(x)u(r)(x) or ξ(x, u) = f (x) − q(x)u(v)(x)u(r)(x), then the approximation
for this part shall take the form

uv(x)u(r)(x) = (Ū)vU(r)

= (ḠC̄)vGMrC

and ⎡

⎢⎢⎢⎣

u(v)(x1)u(r)(x1)
u(v)(x2)u(r)(x2)

...

u(v)(xN )u(r)(xN )

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

u(v)(x1) 0 . . . 0
0 u(v)(x2) . . . 0
...

...
. . .

...

0 0 . . . u(v)(xN )

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

u(r)(x1)
u(r)(x2)

...

u(r)(xN )

⎤

⎥⎥⎥⎦

= (Ū)(v)U(r)

= (Ḡ(M̄)
v
C̄)GMrC

where

M̄ =

⎡

⎢⎢⎢⎣

M 0 . . . 0
0 M . . . 0
...

...
. . .

...

0 0 . . . M

⎤

⎥⎥⎥⎦ .

Replacing the first r and last r rows of the augmented matrix with boundary conditions
matrices then the augmented matrix becomes as

�̆C = �̄.

Solving this (N × N ) linear system to obtain N unknown coefficients using the algorithm in
[52]. In the next section, we acquire the upper bound of error for the proposed method.

Error Analysis

In this section, we shall provide the error bound for the approximated function f (x).
First, suppose that the function f (x) be an arbitrary element of H = L2[0, 1] and
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U = span{G1(x),G2(x), . . . ,GN (x)} ⊂ H where {Gn(x)}Nn=1 is the set of Genocchi
polynomials. Let f (x) has a unique best approximation in the space U , that we can say that
f ∗(x) such that ∀u(x) ∈ U and ‖ f (x) − f ∗(x)‖2 ≤ ‖ f (x) − u(x)‖2. Since, f ∗(x) ∈ U ,
there exist a unique coefficient in the form {cn}Nn=1 such that

f (x) ∼= f ∗(x) =
N∑

n=1

cnGn(x) = CG(x),

where C = [c1, c2, c3, . . . , cN ], G(x) = [G1(x),G2(x), . . . ,GN (x)]T . In order to obtain
the values of the coefficients, we need the following lemmas.

Lemma 4.1 Assume that f ∈ H = L2[0, 1] , is an arbitrary function that can be approxi-
mated by the Genocchi series

∑N
n=1 cnGn(x), then the unknown coefficients {cn}Nn=1 can be

evaluated from the following form

cn = 1

2n!
(
f (n−1)(1) + f (n−1)(0)

)
.

Proof For proof, please refer to [49]. �	
Lemma 4.2 Suppose that f (x) ∈ C (n+1)[0, 1] and U = span{G1(x),G2(x), . . . ,GN (x)}
where CT G is the best approximation of the function f (x) out of U, then

‖ξN ( f )‖ ≤ h
2n+3
2 W

(n + 1)!√2n + 3
, x ∈ [xi , xi+1] ⊆ [0, 1]

where ‖ξN ( f )‖ = ∥∥ f (x) − CTG
∥∥ and W = max

x∈[0,1] | f
(n+1)(x)| and h = xi+1 − xi .

Proof For proof, please refer to [47]. �	
With the aid of the previous two lemmas, we reach the following theorem.

Theorem 4.1 Suppose that the function u(x) be an enough smooth function and that uN (x)
be the truncated Genocchi series solution of u(x). Then the error bound can be in the form

‖u(x) − uN (x)‖∞ ≤ ℵ W

(n + 1)!√2n + 3
,

where ℵ = 2n+3
2

1−�M and W = max
x∈[0,1] | f

(n+1)(x)|.

Proof The operator form of Eq. (1.1) can be in the following form

Lu = u(2r) = f (x) + M(x, u(x)), (4.1)

where the differential operator L can be defined by

L = d2r

dx2r
, (4.2)

and the inverse of the operator L−1 is considered as the 2r fold integral operator of the
differential operator L and can take the form

L−1 =
∫ x

0
. . .

∫ x

0
(.)

︸ ︷︷ ︸
(2r)times

dx︸︷︷︸
(2r)times

. (4.3)
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Then, by applying the inverse operator L−1 defined before on Eq. (1.1) we get

u(x) = L−1 f (x) + L−1M(x, u(x))

=
∫ x

0
. . .

∫ x

0
f (x)

︸ ︷︷ ︸
(2r)times

dx︸︷︷︸
(2r)times

+
∫ x

0
. . .

∫ x

0
M(x, u(x))

︸ ︷︷ ︸
(2r)times

dx︸︷︷︸
(2r)times

= F(x) + H(x, u(x)).

(4.4)

Next, ifwe approximate both the functions f (x) andu(x)using the truncation of theGenocchi
polynomials as χ(x) and H(x, uN (x)), respectively, then the approximation for uN (x) can
be defined in the form

uN (x) = χ(x) + H(x, uN (x)). (4.5)

Therefore, by subtracting the last two equations we conclude that

‖u(x) − uN (x)‖∞ = ‖F(x) − χ(x) + H(x, u(x)) − H(x, uN (x))‖∞
= ‖F(x) − χ(x))‖ + ‖H(x, u(x)) − H(x, uN (x))‖∞
≤ ‖F(x) − χ(x)‖ + �M ‖u(x) − uN (x)‖∞ ,

(4.6)

where �M defined as the Lipschitz constant for the function M(x, uN (x)), then

‖u(x) − uN (x)‖∞ ≤ 1

1 − �M
‖F(x) − χ(x)‖∞

≤ 1

1 − �M
‖F(x) − ξN ( f (x))‖∞

. (4.7)

Finally, with the aid of Lemma (4.2) we reach the following

‖u(x) − uN (x)‖∞ ≤ 1

1 − �M
h

2n+3
2 W

(n + 1)!√2n + 3

≤ ℵ h
2n+3
2 W

(n + 1)!√2n + 3
,

(4.8)

where ℵ = 1
1−�m

.
From Eq. (4.8) we can conclude that the theorem gives the error for uN (x) which shall

give the solution when using sufficient values of n. �	

Residual Error Function

In this subsection, we can easily check the accuracy of the suggested method in terms of the
residual error function. Since the truncated Genocchi series in Eq. (2.7) is considered as an
approximate solution of Eq. (1.1), then by substituting the approximate solution uN (x) and
its derivatives into Eq. (1.1), the resulting equation must be satisfied and when substituting
the collocation points defined as

x = xi ∈ [0, 1], i = 1, 2, . . . , N .

The residual error function for the approximate solution can be calculated in the from

| �N (xi ) |=| u(2r)(x) +
2r−1∑

m=0

σmu
(m)(x) − ξ(x, u) |∼= 0, (4.9)
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or
�N (xi ) ≤ 10−τi ,

where�N (xi ) are the residual error function defined at the collocation points xi and τi is any
positive integer that can be pre-described and can be defined as the tolerance for reaching
the desired error. Then, the value of the number of iterations N is increased until the residual
error �N (xi ) at each of the points become smaller than the prescribed tolerance 10τi which
shall prove that the method converge to the desired solution as the residual error approaches
zero. Also, we can calculate the error function at each of the collocation points to prove the
efficiency of the proposed technique that can be described as

�N (xi ) = u(2r)
N (x) +

2r−1∑

m=0

σmu
(m)
N (x) − ξ(x, uN (x)).

Then, if uN (x) → 0 , as N has sufficiently enough value, then the residual error decreases
and this proves that the proposed method converge correctly.

Numerical Simulation

In this section, we are interested to show the efficiency of our proposed method for solving
the class of HOBVP through different forms of linear and nonlinear examples. The method
is tested and compared to other relevant methods form the literature including [23, 26, 27,
31, 52–62]. The results presented are being acquired with the aid of Matlab 2015. Also,
the performance will be checked through calculating the maximum absolute error from the
following equation

‖eN (x)‖ = max(u(x) − uN (x))

Example 5.1 [52–55] In our first example, we consider a linear form of the BVPwith variable
c in the form

d4u

dx4
= (1 + c)

d2u

dx2
− cu + 1

2
cx2 − 1, 0 ≤ x ≤ 1,

with boundary conditions

u(0) = u′(0) = 1, u(1) = sinh(1) + 3

2
, u′(1) = cosh(1) + 1,

and exact solution

u(x) = 1 + 1

2
x2 + sinh(x).

We need first to find the approximate solution uN (x) in terms of Genocchi series for N = 6
in the form

u(x) = c1G1(x) + c2G2(x) + · · · + c6G6(x).

Then

M2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 6 0 0 0
0 0 0 12 0 0
0 0 0 0 20 0
0 0 0 0 0 30
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,M4 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 120 0
0 0 0 0 0 360
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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Using collocation points xi = i−1
5 , i = 1, 2, . . . , 6, then the augmented matrix can be

acquired in the form

[�,�] =

⎡

⎢⎢⎢⎢⎢⎢⎣

10 −10 −66 142 120 −720 , −1
10 −6 −70.8 87.12 234.88 −501.5808 , −0.8
10 −2 −73.2 29.36 293.28 −178.9056 , −0.2
10 2 −73.2 −29.36 293.28 178.9056 , 0.8
10 6 −70.8 −87.12 234.88 501.5808 , 2.2
10 10 −66 −142 120 720 , 4

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Also, the augmented matrix for the boundary conditions can take the forms

[θ1;α0] = [
1 −1 0 1 0 −3 , 1

]
,

[θ1;α1] = [
0 2 −3 0 5 0 , 1

]
,

[�3, β0] = [
1 1 0 −1 0 3 , 2.6752

]
,

[�4, β1] = [
0 2 3 0 −5 0 , 2.5341

]
.

Replacing the first two and last two rows with the previous representation of the boundary
conditions, the new augmented matrix takes the form

[�̄, �̄] =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −1 0 1 0 −3 , 1
0 2 −3 0 5 0 , 1
10 −2 −73.2 29.36 293.28 −178.9056 , −0.2
10 2 −73.2 −29.36 293.28 178.9056 , 0.8
1 1 0 −1 0 3 , 2.6752
0 2 3 0 −5 0 , 2.5341

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Then, by solving the above system the Genocchi coefficients can be found as

C =

⎡

⎢⎢⎢⎢⎢⎢⎣

1.8376
0.8858
0.2645
0.0529
0.0044
0.0016

⎤

⎥⎥⎥⎥⎥⎥⎦
,

and the approximate solution is

u6(x) = 1 + x + 0.4997x2 + 0.1678x3 − 0.0017x4 + 0.0094x5.

Our method is tested in this example and the results are shown in Table 1 for the maximum
absolute error for c = 10 and different values of N and compared with Bernoulli method in
[52] besides the maximum residual error. Also, Table 2 compare the maximum absolute error
for the differential transform method [53], reproductive Kernel method [54], Haar wavelet
method [55] and Genocchi method for different values of c at N = 18 . It can be noticed
from these tables that our method perform better than the other mentioned methods and this
can be also witness from Fig. 1 in which the exact and approximate solution are drawn at
N = 18 and c = 10.

Example 5.2 [26, 27, 56] Next, we consider our next example of the sixth-order BVP in the
special form with a variable coefficient c in the form

d6u

dx6
= (1 + c)

d4u

dx4
− c

d2u

dx2
+ cx, 0 ≤ x ≤ 1
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Table 1 Maximum absolute error
and residual error comparison for
Example 5.1

N ‖eN (x)‖ Bernoulli method [52] | �N |
10 1.2368E−10 2.1840E−09 7.7350E−06

12 1.7941E−13 5.4013E−11 2.4193E−08

14 4.4409E−16 1.3922E−12 4.3056E−11

16 8.8818E−16 3.5083E−14 3.0127E−12

Table 2 Maximum error comparison for Example 5.1

‖eN (x)‖ c = 10 c = 100 c = 1000

Genocchi method, N = 18 6.6613E−16 4.4409E−16 4.4409E−16

Differential transform method [53] 1.60E−08 8.10E−10 5.10E−10

Reproductive Kernel method [54] 1.70E−09 x x

Haar wavelet method [55] 1.7725E−07 x x

Fig. 1 Solution profiles for
Example 5.1

with conditions in the form

u(0) = u′(0) = 1, u′′(0) = 0,

u(1) = sinh(1) + 7

6
, u′(1) = cosh(1) + 1

2
, u′′(1) = sinh(1) + 1,

with exact solution

u(x) = 1 + 1

6
x3 + sinh(x).

Table 3 shows the maximum absolute error comparison at N = 18 for different values of
(c = 10, 100, 1000)withmaximum residual error (6.4429E−11, 6.4429E−11, 6.4429E−
11) between Genocchi method, Variational decomposition method [56], Legendre Galerkin
method [27] and wavelet method [26]. In addition, Fig. 2 illustrates the behavior of exact and
approximate solution at N = 18.
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Table 3 Comparison of maximum absolute error for Example 5.2

‖eN (x)‖ c = 10 c = 100 c = 1000

Genocchi technique N = 18 4.4409E−16 4.4409E−16 4.4409E−16

Haar wavelet [26] 1.6584E−09 9.0835E−10 2.3478E−10

Legendre Galerkin [27] 3.3300E−15 1.7760E−15 2.4420E−15

Variational decomposition [56] 1.1000E−05 1.1000E−03 1.0000E−01

Fig. 2 Comparison between
exact and approximate Genocchi
solution for Example 5.2

Example 5.3 [31] Next, we consider another form of the linear sixth-order BVP defined on
an extended interval of [−1, 1] in the form

d6u

dx6
+ u = 6[2x cos(x) + 5 sin(x)], −1 < x < 1

with boundary conditions

u(−1) = u(1) = 0,

u′(−1) = u′(1) = 2 sin(1),

u′′(−1) = −u′′(1) = 4 cos(1) + 2 sin(1),

the exact solution of this problem is

u(x) = (
x2 − 1

)
sin(x).

In this example, we have done the same steps for solving the linear system only with
changing the interval of the Genocchi polynomials to [−1, 1]. Maximum absolute errors for
(N = 20, 24) obtained by our method are compared with results obtained by spectral monic
Chebyshev approximation [31] and represented in Table 4.

Example 5.4 [59] Consider the nonlinear tenth-order BVP of the form

d10u

dx10
= e−xu2, 0 < x < 1
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Table 4 Maximum absolute error
for Example 5.3

N ‖eN (x)‖ Ref [31]

20 1.3878e−16 3.330e−16

24 3.8858e−16 6.106e−16

Table 5 Maximum absolute error
for Example 5.4

N ‖eN (x)‖
10 2.2605E−05

12 5.0673E−07

14 3.7127E−09

16 2.2860E−10

Table 6 Error comparison for
Example 5.4

x eN (x) Ref [59]

0.0 6.6613E−16 0.0000

0.2 2.1980E−09 7.8100E−09

0.4 3.5565E−09 1.2700E−08

0.6 3.5572E−09 1.2700E−08

0.8 2.1990E−09 7.8500E−09

1.0 8.8818E−16 2.0000E−09

with boundary conditions

u(2i)(0) = 1, u(2i)(1) = e, i = 0, 1, 2, 3, 4

the exact solution of this problem is
u(x) = ex .

The values of the maximum absolute error for different values of N with tol = 10−7

are tabulated in Table 5. Also, a comparison is presented for absolute error obtained by
Genocchi method with thr new iterative method (NIM) [59] for N = 14 in Table 6 .The exact
and approximate solution in Fig. 3.

Example 5.5 [23, 61] Consider the following nonlinear twelfth order BVP

d12u

dx12
− d3u

dx3
− 2exu2 = 0, 0 ≤ x ≤ 1

with boundary conditions

u(0) = u′′(0) = u(4)(0) = u(6)(0) = u(8)(0) = u(10)(0) = 1,

u(1) = u′′(1) = u(4)(1) = u(6)(1) = u(8)(1) = u(10)(1) = 1

e
,

the exact solution of the problem is

u(x) = e−x .

Table 7 represents approximate solution compared with the exact solution, and the abso-
lute error obtained by our method with N = 16 and tol = 10−10 compared with absolute
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Fig. 3 Comparison between
exact and Genocchi solution for
Example 5.4

Table 7 Comparison of absolute error for Example 5.5

x Exact Approximate ‖eN (x)‖ OHAM [61] Variational method [23]

0.0 1.00000000 1.00000000 4.4409E−16 0.00000 0.00000

0.1 0.90483742 0.90483751 4.7631E−11 2.6E−07 1.61E−7

0.2 0.81873075 0.81873093 9.0599E−11 5.0E−07 3.07E−7

0.3 0.74081822 0.74081847 1.2470E−10 6.9E−07 4.22E−7

0.4 0.67032005 0.67032034 1.4659E−10 8.1E−07 4.97E−7

0.5 0.60653066 0.60653097 1.5413E−10 8.5E−07 5.22E−7

0.6 0.54881164 0.54881193 1.4658E−10 8.1E−07 4.97E−7

0.7 0.49658530 0.49658555 1.2469E−10 6.9E−07 4.22E−7

0.8 0.44932896 0.44932915 9.0590E−11 5.0E−07 3.07E−7

0.9 0.40656966 0.40656976 4.7625E−11 2.6E−07 1.61E−7

1.0 0.36787944 0.36787944 5.5511E−17 1.9E−14 2.00E−10

Fig. 4 Comparison between
exact and Genocchi solution for
Example 5.5
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error obtained byOptimal HomotopyAsymptoticMethod (OHAM) [61] andVariational iter-
ation method [23]. Figure 4 expresses the relation between exact and approximate Genocchi
solution.

Conclusion

In this paper, we have developed a collocation technique based on the Genocchi polynomials
for solving a wide class of linear and nonlinear higher-order BVP. The method is analyzed
and the basic definitions for the Genocchi polynomials are introduced and then has been
used to solve a general form of the problem. The nonlinear form of the presented equation is
investigated using this technique and the resulting nonlinear system of algebraic equations
is then solved using a novel iterative algorithm that produces the unknown coefficients with
less computational effort. To verify the technique, several linear and nonlinear examples of
different order are presented and the acquired results are provided throughout some tables
and figures. The results show the superiority of the proposed technique to other techniques
from the literate especially for the nonlinear examples with the new iterative algorithm. The
behavior of the solution can be witnessed from the figures and this supports the claim that
the method is fast and effective for providing accurate results. It will be interesting to see in
the future how this method will work in solving the nonlinear higher-order delay differential
equations.
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