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Abstract

In this paper, we introduce the concept of Shehu transform in g-calculus namely q-Shehu
transform and establish some properties. We also give some applications of g-Shehu transform
for solving some ordinary and partial differential equations with initial and boundary values
problems to show its effectiveness and performance of the proposed transform.
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Introduction

Researchers are actively involved in the overall transformation of theme development because
it is suitable for describing and analyzing physical systems [1-20]. Jackson [21] introduced
g-calculus. Now, the g-calculus has become very important in various fields of science and
technology. The concept of g-calculus can be used in fractions and control problems [22].
Some integral transformations have different q analogs. The research is carried out on the
g-calculus [23-25]. Maitama and Zhao [1] first established the Shehu transform to solve
partial differential equations in the time domain as a generalization of Sumudu and Laplace
transforms. So we motivate to introduce the concept g-Shehu transform to get the advantages
in g-calculus.
The Shehu transform [1] of the function f () is defined by

00
—Tw

S[f(@)] = R(t,0) = e ¢ f(w)dw.
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We introduce the concept of Shehu transform in g-calculus namely g-Shehu transform and
establish some properties. We also give some applications of q-Shehu transform for solving
some ordinary and partial differential equations with initial and boundary values problems
to show its effectiveness and performance of the proposed transform.

Preliminaries
We use literature’s [23,26-28] for our study.
The g-shifted factorials for g € (0, 1) and ¥ € C are defined as

n—1

(@) =1.0.qn=[]0—Kkg".n=12.
k=0

[e.¢]
(K5 @)oo = lim (k; q)n = [ ] —kg".

k=0
Also,
1—4" (g: @)n
], = ﬁ, (k14! = m, neN.
The g-derivatives D, f and D('I" of a function f, given by Kac and Cheung [22]
flo) = flgo) .
(D @) = 2= i o £ 0)
(I =g

and (D £)(0) = f'(0) exists.
If f is differentiable, then (D, f)(«) tends to f ’(a) as q tends to 1. For n € N, we have
1 1
D, =D, (D))" =D

The g-derivative of the product

Dy (f.8)(@) = g(a) Dy f(a) + f(qu)Dyg(a).
The g-Jackson integral from O to k and from 0 to co given by Jackson [21]

/0 f@dye = (1—q)a )y flag")q",

n=0

/0 f@dga=0—=q) Y flg"q",

n=—0oo

provided these sums converge absolutely.
A g-analogue of integration by parts formulae is given by the following relation:

8(@)Dy f(e)dya = f()g(@) — fk)g(k) — flga)Dyg(a)dya.

K K
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Gasper and Rahamen [27], Kac and Cheung [22] have given the following relation:

o nm—1) "
a ;;%q [, (=1 =q)z: 9) (M
P — P = ! S 2
“ E:Mh! «1—WMQMJ|A<1—q' @)

Il
=)

n
The above Egs. (1) and (2) satisfy the following equations:
qu;‘]’ = e[;, Dqu’ = Egp, and
PE=P — E—PoP —
egE, = E ey = 1.

Jackson [21] has introduced the following concept and many researchers [22,26,28] have
given important results on it,

o0
re) = Otﬂ_le_adqoz by
0
(45 9)oo 91
;) =—"-10-¢g)"", 0#£0,-1,-2.. .
! @ e 7

If satisfies the following conditions

r,@+1) = [0, @), [,(1) =1, and

lirrll Iry@) =rIr@), Re®)>0.
q—>1"

The function I'; has the following q -integral representations

1 [ee)
l—gq l—g
r,y = 9 VE; " dyo = 97V E 1 dt.

0 0

The g-integral representation I is defined in [23,29] as follows:
For all y, ¥ > 0, we have

o0
l—¢q
Iy (y) = Ky4(s) oty*]eq’“dqa, and

0

o0

_ (—ag" )
By (0. y) = Ky(9) B R

0
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where,
(=9, —1;9)0
K, (%) = .
1 (=97, —q""; @)oo
log(1 —
f M € 7., we obtain
log(q)
o0
I—g¢q
Iy(y) = Kq(y) o’ e Ydya
0
l—gq

Main results

Definition 3.1 A be a function defined by R, +, we defined the g-Shehu transform of a
function A as

—Tw

Sq (M) (@) = §4[A(z, ))(@) = eg ¢ Aw)dyom. 3

(I—¢q)
0

Property 3.2 (Linearity property) Let the functions M A(zw') and N p(@) be in set A, then
[MA(w) + Np(w)] € A, where M and N are non-zero arbitrary constants, and

SqIMA(@) + Np(w)] = MSy[A(@)] + NSy[p(@)].

Proof
* —Tw
1
S IMA@) + Np@)]l = ¢y © (MA@)+ Np(@)) dyor
0
* —Tw
1
=00 ey & MA@)) dyo
0
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—Tw
1
ST ¢ Wp@) dyw
—Tw
M 0
= d—a ey A(w) dyoo
—Tw
e o) de

— MS,A@] + NSylo()]

Property 3.3 (Change of the scale property) Let the function A(M (zo)) be in a set A, where

M is an arbitrary constant, then
0 T
S, [AMar)] = —R(—, )
[ A(Mw)] w0
Proof We obtain

—Tw

S AMw)] = ¢ AMw)d,w.

77
Substitutin =Mw 5w =—andd;o = -1
gn = M M

12
1 Il
Sy AMw)] = M(lq)/ eg M A dyn
0

Therefore,

o0
TWw
0 _QM
= A @) dy
M1 —q)
0
o T
- (0
"\

@ Springer



19 Page60f19 Int. J. Appl. Comput. Math (2022) 819

Property 3.4 g-Shehu transform shoes the following:
() If A(ew) = 1 be in set A, then

o
S;(1) = ——.
g () (1-q)t

Proof Using the concept (3), we obtain

o0
T
1 o
S,(1) = ) ey dy@
0
Tw
“amarle L
(1—gl 0
_ %
I-gr
2)If A(w) = @w in aset A, then
2
4
S =—.
=T
Proof Using the concept (3), we obtain
oo
Tw
| _
Sq(@) = wey @ dyw
(I—=q)
0
o
Tw
1 o B ]
Tt @
0
L e
-

n

G)If A(w) = w—‘ . n=0,1,2.inaset A, then
n!

S‘f[%n] =(1 iq) (%)Hl'

Proof Using the concept (3), we obtain

@ Springer



Int. J. Appl. Comput. Math (2022) 8:19 Page 7 of 19

19

o0
Tw
:Qizn(n—l) o' %e, © dw
(1= .
0
o
Tw
; -
4 -3 Q
= mn(ﬂ —D(n—2) " ey dyw
0
o
Tw
. v
Q —4 0
= mn(ﬂ —D(n—-2)(n —-3) " e, dyw
0
o
Tw
= Qisn(n—l)(n—Z)(n—3)(n—4) a5, ¢ dw
(1 - oo
0
n! 0 n+1
) <?) '
@) If A(w) = ™™ in set A, then
1 4
o] = L2
L (1-¢) (r = Mo)
Proof Using the concept (3), we obtain
o
((T - MQ)ZU)
. _
M o
Sq[e((l ZD')] = ﬁ Eq dqw'
0
_((r - MQ)w)
! @ [e 4 ]00
(1—g)t— Mol 0
1 e

T (I—¢q) (t—Mo)

O If A(w) = we,(]Mw) in set A, then

M Q
Sy [we; w)] =
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Proof Using the concept (3), we obtain

* (('L’ —MQ)ZU)
Sq[weMw] = ! w e ¢ d,w
a (1-q ! !
0
(= MQ)W)
1 0 o0
:_<1—q)r—Mg[m‘f I
(t—Mo)w
—}—7] @ e( Q >d o
(1-g)t—Mo ! !
0
T—Mo)w
1 o’ 7(%) =
T 0-q) @ My [eq ]O
1 92
T l—gq (- Mo
(6) If A(w) = sing (M@ ) in set A, then
MQ2

Sy [sinq(Mw)] =

12— 12 + M202 — M20%q

Proof Using the concept (3), we obtain

Sy [singMw)] = —— e, © sing(Mw)d,w

ey cosy (M) dygor

1 Mo [ o e

0

1 M2 2
T 2 eg @ sing(Mw) dyo
g
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1 Mo? 1 M2%o?
= g — 2@ ey @ sing (M) dyo.
(l—¢q) t (1-¢qg) =

0

2 2.2
=5 [sinq(Mw)] = a iq) Nig - MIZQ Sy [sinq(Mzzr)]
= 8, [sing(Mz)] + MG ¢ Lsing (M) = — M

2 T (1—¢q) 72
N Sq[sinq(Mw)][l 4 M2Q2] _ 1 Mgz
2 (1-q) 2
MQ2

12— 12 + M202 — M20%q

=8 [sinq(Mw)] =

(N If A(w) = cos; (M) in set A, then

ot
12— 12 + M20? — gM20%’

Sqlcosq(Mw)] =

Proof Using the concept (3), we obtain

Sq [cosq (Mw)] = — ey cosq Mw) dyo

oo

0

ey sing (M@ ) dy

T

|:eq e sing (Mw)]

o0

_ 1 o 1 Mg?
-t (—gq) 72

oo

0

Tw

1 M2Q2 0
_(l o ey cosg (M) dy

1 o 1 M?o? . ©
l-¢)t (1—q) 12 !

cosy Mw) d;w

@ Springer



19 Page100f19 Int. J. Appl. Comput. Math (2022) 819

= ! - = o [ ( )]
= Sy lcos, (Mw)].
1-qg)r 2 7 a

= Sylcos;(M@)] = .

ot
2 12g f M202 — gM2g?’
Theorem 3.5 If the Shehu transform of a function A(w) exists, then

™

S;[A(@ — M)H(@w — M) =e¢, ¢ S,[A@@ — M)],
where H (o) is Heaviside unit step function defined by H(wwo — M) = 1, when n > M and
H(w — M) =0whenn < M.
Proof We have by definition,

Tw

ey Q A — M)

Sy [A@ = M) H@ — M) = 57—

0
H(w — M) d;ow

M
Tw
! 3
= =) ey A(w — M) d;w,
0
w > M.
By putting A = o — M
oo
—T(A+ M)
! 0
S;[A(m — M)] = e A(A)d; A
! (1-q ! !
0
o
™ TA
I o o
= T eq ey A(A) dyA

™

=e, © S,(AA).

Theorem 3.6 If the Shehu transform of the A(w) exists where A(w) is a periodic function
of periods A (Thatis A(w + A) = A(w), V), then

_‘L’M 0
—1 Tw
Q =
[1 ~ G ] 0
ey A(w) dyo.
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Proof
o0
@
o
S, [A(w)] = e Aw) d,o
q (1 _q) q q
0
A
Tw
= e w w
(1—q) 7 !
0
o0
Tw
- e A(@) d
e w w.
(1—¢q) 1 1
A

Setting @ = A + M in the second integral, we have

A
Tw
SilA@)] = 7 ey ¢ Aw)d,w
0
o0
T(A+ M)
1 A+ M
T e © AA+ M)A
0
A (974 o0
@ o A
1 o eq ° 0
=00 e, ¢ Aw)do+ = eg © A(A)d,A
0 0
A
Tw ™
- ! e, ¢ A@)dyo+e, © S, {A@)).
(]_q) q q q q
0
M 00
0 —1 _rw
l—e,
=>Sq{A(zzr)}:|:(l_q)] eg ¢ Aw)dyw.
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Theorem 3.7 (q - Shehu Convolution product) The Convolution of two functions A(w) and
p (@) is denoted by (A x p)(w) and defined as

w

(A% p)(@) = A(@ — N) p(N) dyN.

1
(I—q)

Convolution theorem
Statement. Let A (e) and A> () be a positive scalar functions of @ and let p; (=) and
p2 (@) be their g- Shehu transforms, then

Sl (@) * Axy(@)} = p1 (). 02(),

| o]
A —N N)d;N.
(1_q)£ (@ ) p(N) dy

where A (w) * Ar(w) =

Proof We have

1
Sy{A1(@) ¥ Ax(w)) = Sq[m A(@ = N) p(N) dy N]
0
1
=G es © A(@w — N) p(N) dyN dyw.
0 0
Letw —N=M=d;o =d,;M.
= = —t(N + M)
1

LS @) s M) = s e ©  AMDP(NY,NdM

N=0 N=w
= p1(@). p2(@).

Applications

Application 4.1 We take the first order ODE
dg A(w)

+ A(w) =0, )
dyw

with A(0) = 1.
Applying the concept of g-Shehu transform to the Eq. (4), we obtain

gsqu, 0) — S,{AO)} + S, (z. 0) = 0.
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By applying initial condition, we get

92
Sq(t,0) = — . (5)
O T IS oator
By applying inverse on Eq. (5), we get
2
- Q
Alm) =S 1[—]
T Ld-p+or
_ Q -1 Q
) gt
L -gr L= +o
=1-¢].
Application 4.2 Consider the following second order ODE
2
dy A(w) n dy A(w) _ ©)
do? dyo
dys A(@ (0
with A(0) = 0, m -
dyo
Applying the concept of g-Shehu transform to the Eq. (6), we obtain
© (0 — SS,1AO) — 5,4/ O] + T8,(2. ) — $,(AO) ¢
—S,(t,0) — — — —8,(t,0) — = =
021 0 0 q 01 e q —q) 1
T to o
= [7]5 (t.0) = g.
I-g)r
By applying initial conditions, we get
3
0
= R(t,0) =
0= T @ +onr
Q3
= R(t,0) = ——F—F—~.
N e )
Taking the inverse q-Shehu transform, we get
A@) =S, ‘[ ]
(1- q)rz(t +0)
-5t ot gl -l
a q)r T+4o0
%' mimg ] S‘l[—gz ]
2 -pl 1 i+l -9
_ [ 4
w5 |
T Lll-9r (A-g)t+o)
=w—1-¢/"
Application 4.3 Consider the following second non-homogeneous order ODE
d> Ao d, A
A7) 344 A@) | ) = ey G %)

dw? dyo
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ds A0)
dyo N
Applying the concept of g-Shehu transform to the Eq. (7), we obtain

with A(0) =1, 0.

Tz— T ’ T— —
A S8 AO) = 5,14/ 0) = 3( A 0~ 5,140))) + 24(z. 0)

_ e
1—g)(x-30)°
72 T — 1 30 0
— —3-+2|A(r.0) - =
:>[Q2 a+] I Pl e Yo 7o)
4 4 —= _ 4 3 1
=[G -2¢ -nfac.o - -9t 30 (-or 1-4
= A(r,0) = o - 3o
= (I-g)(t=30)(t=20)(t—0) (A—=gq)t(t—20)(t—0)
2
Q
9t -200 -0
2 2
- _ 4 1 B 1 _ 30 1 B 1
:A(T’Q)_(l—q)(t—3g)|:t—2,g ‘L’—Q] (l—q)t[t—ZQ ‘r—g]
0 1 1
+1—q[r—29_t—g]
2 2 2
_ o Q 30
A(r, = — _
S A= T T 3020 (-9G-30G-0 (-07@-20
30? 0 0
TT-pre-0 (-9G-2 (0-9G—0
—_ % o o o
A N = —_— —
=A== T T (-9t -20 20-0G-30 20—t -0
~ 30 30 _ 30 n 30
2(0-g)t—20) 2(-gq)t (U-g7  (-q)z—0)
o o

T pc-20 (-9t-0

Taking the inverse q-Shehu transform, then

@A(w):Sql[m]_Sql[m]+sql[wg(‘[—g)]

' a—ga—al =% o a]
3

_ 1 3
= A@) = -7 — 227 + 5

_ _ w
2% T 3% q

5
Ee
Application 4.4 A semi-infinite solid n > 0 is initially at temperature zero. At time @ > 0,
a constant temperature Ry > 0 is applied and maintained at the face » = 0. Find the
temperature at any point of the solid at any time @ > 0.

Here the temperature o (1, @) at any point of the solid at any time & > 0 is governed by
one dimensional heat equation

9 3
8 _ 228 (5 0,m > 0), ®)
0@ gn
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with the initial and boundary conditions
0(0, @) = Ro, ¢(n,0) =0.
Applying the concept of q-Shehu transform to the Eq. (8), we obtain

Zo(1, @) — Sylo(n, 0)) 28
—o(. @) — Sgfe(.0)} = C*—=
o 1 dq772
d’o T
5= —5e=0
q o
The solution is
T T
_ Vo2 “Voc?"
o=Ae)% +Be, ' . ©9)

Since g is finite, when n — oo.

.. 01s also finite, when n — oo.

.. A =0, otherwise p — coasn — oo.

Taking the g-Shehu transform of the both sides, then we get

0(0, @) = Ro.
Therefore, 0 = ROL.
(I—-g)t
.. From (9), we have p = B = ROL.
(I-gr
T
o2
Hence o= ROL ey e .
(I-qx

Taking the inverse g-Shehu transform, then

T
0 VoC? "]

— _ o1
o, w) =35, I:R()i(l—q)t eq
T/Qn
_ R V2
et

T
(I—g)-—t
0

=Ry erfcq<2cnﬁ).

Application 4.5 Find the solution of the equation

d0 33@

= (10)
oy 3zn?
which tends to zero as n — oo and which satisfies the conditions ¢ = f (@) when n = 0,
@ >0and o =0whenn >0, =0.
Applying the concept of g-Shehu transform to the Eq. (10), we obtain
djo dje ¢

= ————p0=0.

T
—o(m, @) — Sg{le(n, 0)} = K
0 ! dgn* " dgn* Ko

@ Springer



19 Page160f19 Int. J. Appl. Comput. Math (2022) 819

T T
[——n S el

K K
0=Ag¢ e + B ey Q.

c.0—> 0asn— oo.

The solution is

Since o — 0 as n — oo.

From which it follows that A = 0.

Therefore,
: n
0=Be ke, (11)

oo —Tw
Again when = 0, o = ﬁ e ¢ Aw) dyw =Ap).
. From (11), we have

A(p) = B.

T
-z

Hence, 0 = A(p) eg
If we take A(@w) = M (constant),
where, constant may be real or complex.

- Q
then A(p) = -.
_ OEDE:
Taking the inverse q-Shehu transform, we get
r/@}7
.M o "V k2
A XA
Q(n w) q (1 _q) T eq
n
= Merfc ( )
Jeq 2« K

Application 4.6 An infinite long string having one end n = 0 is initially at rest on the n-axis.
The end n = 0 undergoes a periodic transverse displacement given by Ag sin pw, @ > 0,
find the displacement of any point of string at @ > 0.

Here the displacement of any point of any point of the string is governed by the equation

2 2
T
5 =K 5 (12)
0y gn

with the boundary and initial conditions
00, w) = Agsinpw, @w > 0,
0(1,0) =0, 0 (n,0) =0, n>0

and the displacement is finite.
Applying the concept of g-Shehu transform to the Eq. (12), we obtain

U S,{0(1.0)} — S, oy = k248 | 4R
?Q(n, @) —184{0(, 0)} — Sg{om (0, 0)} = dqnz'idqnz_gzl(zg_

0. (13)

@ Springer



Int. J. Appl. Comput. Math (2022) 819 Page170f19 19

po?

2 —12q+p*0* — p’0q

Also 0(0, @) = AoS,{sin pw} = Ag and o(n, @) is finite for
T

n > 0.
Now solution of (13) is given by

T T
- N =
G=Ael% +Be,

Since ¢(n, @) is finite .". A= 0, otherwise o(n, ) becomes infinite when n — oo.

T
=1
_ K
son,m)=Be, e,
po*
Now 0(0, w) = B = Ay .
T2 —12q + p20* — pPo’q
Hence,
T
2 ——n
_ pe Ko
Q(TL ZD_) = AO e .
2 —12q + p?0? — p*0*q ’
f(”/K) -
o 1 o
= Ape e sing (pw) d,
q (1 _ q) q q q
0
o0
(@ +n/K)
Ag—" . @ ing(pw) d
= Ag e sing(pw) d,@
(1-q) ! ! !

0
= 8, (sing (e = n/K) H(pew = n/K)).
Taking the inverse g-Shehu transform, then

o(n. @) = sing(pw — n/K) whenp @ > n/K
=O0whenp w < n/K.

Discussion

Maitama and Zhao [1] have introduced a new integral transform named Shehu transform
to generalize Sumudu and Laplace transform for solving differential equations in the time
domain. Quantum calculus is a calculus without limits. So we have applied quantum calculus
in Shehu transform to explore the quantum concept in the application of Shehu transform.
This is the nobility of the proposed transform.

The g-Shehu transform may be applied to solve heat and transport equations, Volterra
integral equations of the first kind, Bessel’s functions, and cryptography in the quantum
calculus.

The proposed method is an analytic method that gives the solution of ordinary and partial
differential equation with initial and boundary conditions when we compare with the model
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introduced by Hadid et al. [13], which optimizes the bounded interval using the fraction
entropy while Zhang et al. [30] established the existence of solution type solutions for a
class of fractional Choquard equations. In Zhang et al. [30], the technique was based on
constrained minimization of arguments, whereas in our proposed method as Knill [31] has
given advantages of quantum calculus that in the calculus, the differential form and geometric
objects are treated in the same way and also it allows to do calculus on continuous functions
which do not need to be smooth. So by the features mentioned above, the proposed method
is more effective and high performs for solving real-life problems in differential equations.

Conclusion

We introduced the concept of Shehu transform in g-calculus namely g-Shehu transform
and established some properties. We applied q-Shehu transform for solving some ordinary
and partial differential equations with initial and boundary values problems to show its
effectiveness and performance of the proposed transform.

Open Problems

(1) As Alfageih and Misirli [3] have introduced the concept of double Shehu transform and
its properties with applications. Is this concept is applicable in g-calculus?
(2) Does the above study also applicable for the other transform or fractional operator?
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