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Abstract

We developed a novel technique called the Hermite wavelet collocation method (HWM) in the
current work. Here, the variation of nonlinear temperature in a permeable moving fin of the
rectangular domain is studied by the Hermite wavelet method and the Differential transfor-
mation method (DTM). Darcy’s model is used to formulate the foremost heat transfer highly
nonlinear ordinary differential equation (ODE). Numerical outcomes of the proposed method
are compared with the exact and DTM. Comparison between calculated solutions showed
that the Hermite wavelet collocation method is more suitable and correct than the Differen-
tial transformation method. The desire for exceptional flow constraints on the temperature
distribution feature is concluded truthfully through graphs and tables. Graphic summaries
are offered for the temperature distribution of various physical parameters in the present
problem. The works are in extraordinary evidence for highly nonlinear ordinary differential
equations in engineering applications.

Keywords Hermite wavelet method - Differential transformation method - Nonlinear ODE
problems

Introduction

The majority of the engineering problems are expressed in terms of highly nonlinear dif-
ferential equations. Obtaining accurate results for these types of engineering problems is
relatively unhurt. However, in current years, numerical techniques have significantly been
developed for highly nonlinear ODEs. Different numerical and analytical methods are applied
to solve some problems. Practically all arithmetical modeling involves linear or nonlinear
DEs. To determine those equations impeccably, approximately, or mathematically a few spe-
cialists employ various excellent scientific, semi-analytic plans alongside lasting labels of
convergence. Various arithmetical techniques to find the solution of such highly nonlinear
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differential equations; nevertheless, a few critical information, including circular happen-
ing purpose, vanishes throughout finding the solution. Hence, analytical methods include
emerged to find the solution of highly nonlinear ODEs such as the homotopy perturbation
method and Collocation method [1], spectral element method [2], spectral homotopy anal-
ysis method [3], optimal homotopy analysis method [4], variational iteration method [5],
differential transform method and finite difference method [6].

A growing number of engineering applications are concerned with energy transport by
requiring the rapid movement of heat. To increase the heat transfer rate on a surface, fin
assembly is commonly used. The heat transfer mechanism of the fin is to conduct heat from
the heat source to the fin surface by its thermal conduction and then dissipate heat to the air
by the effect of thermal convection. These extended surfaces are extensively used in various
industrial applications. Conventional packages of warmth control in porous media consist
of sun collectors, reactor cooling, warmness exchangers [7]. The idea of warmth control
through permeable fins was delivered via Kiwan and Al-Nimr [8]. The warmth control ver-
sion system through porous media changed into stepped forward using Darcy’s version [9,
10]. Subsequently the paintings of kiwan and Al-nimr, several research have been accom-
plished to recognize the idea of warmth switch via porous fins. The thermal evaluation of
finite length permeable fins through the insulated tip and established the force of governing
physical parameters on nonlinear temperature distribution is studied by Patel and Meher [11].
It was concluded that permeable fins are more competent in dissipating heat to the ambient
fluid than solid fins [12, 13]. Some analytical methods are applied to optimize permeable fins
with various forecast models available by Kundu and Bhanja [14]. Taklifi et al. [15] studied
rectangular permeable fin with magnetohydrodynamic (MHD) effects, explained the MHD
effects near the fin tip and also heat-transfer rate in the permeable fin decreases. This type
of application has been solved by some scientists applying various analytical and numer-
ical methods [1-6]. Recently, various types of MHD thermal boundary layer of a Casson
fluid flow problems have been analyzed [16, 17]. Nisar et al. [18] analyzed the steady free
convective incompressible electrically conducting Jeffry fluid flow over a stretching surface.
Ramzan et al. [19] are examined the role of modified Fourier law in the flow of an MHD
Micropolar nano liquid flow with dust particles over a stretched surface. The MHD laminar
flow, containing hybrid nanoparticles, with heat transfer phenomenon over a stretching sheet
immersed in a porous medium, is investigated by Ali et al. [20]. New soliton solutions for
generalized nonlinear differential equations using an effective analytical method explained
by Ghanbari et al. [21].

As per our narrative review, we have not seen any research article on this model through
wavelets. This impels us to propose the HWM for considered fin flow problem, and profi-
ciency of the current technique is revealed through tables and graph simulation. Wavelet is a
function, more precisely, is an arithmetical function applied to split a given function signal
into various scale components. In the 1980s, they applied the French word “ondelette,” which
means “small wave.” Later, it was transferred to English by translating “onde” into “wave,”
charitable “wavelet.” Wavelet theory is developing tremendously due to arithmetical anal-
ysis by Stromberg, Grossmann, Morlet, Meyer, and Daubechies. Due to its unique features
like compactly supported, orthogonality, and multiresolution analysis. Many mathematicians
are applying wavelets in the field of numerical analysis; as a result presently, we have seen
many diverse techniques on differential equations such as An investigation with the Hermite
wavelets for accurate solutions for heat transfer problems [22, 23], high mass transfer via
wavelet frames [24], Laguerre wavelet method [25].

To the best of our understanding, no study was performed temperature distribution in
a rectangular moving porous fin using DTM and HWM. Moreover, we generated the new
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Hermite wavelet operational matrix method and DTM to re-examine the above model. The
highly nonlinear ordinary differential equation was tackled using DTM and HWM. The results
are presented through tables and graphical plots for different known physical parameters.
Subsequently, the obtained solutions compare with DTM and HWM and the exact solution
of the highly nonlinear ODE. Comparison between resulting solutions showed that HWM
is more suitable and correct than DTM. Furthermore, the essential physical quantities of
real advantage and the control of unique physical known parameters on the temperature
distribution’s allotment were also incorporated in the present study.

Formulation

The highly nonlinear ODE, which described heat-transfer in a rectangular moving porous
fin, can be summarized as introduced by Joneidi et al. [26] and Ndlovu and Moitsheki [5]:

d d d
E{“ +B(y — ya)]ﬁ} — Ne(y — ya)™ = Np(y — ya)* = Nr(y* — y}) - Peﬁ =0
2.1
DO _ o and y1y=1 2.2)
dx

where 0 < x < 1. The important dimensionless parameters are introduced in Eq. (2.1).

Parameter Notation
Temperature y
Ambient temperature Ya
Thermal conductivity gradient B

Peclet number Pe
convection-conduction parameter Nc
radiation conduction parameter Nr
porosity parameter Np

Basic Idea of Hermite Wavelet Method and Differential Transformation
Method

In this paper, we apply the Hermite wavelet method and Differential transformation method
to the discussed problem.

Hermite Wavelet Method
The Hermite wavelet and function approximation are studied in detail [27-32]. To extract

the functional matrix, here we use the following procedure. Consider a few Hermite wavelet
basis at k = 1 as follows:
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Table 1 The results of the numerical solution, HWM, and DTM of y(x)

X

B=0, Ne=025,Np=Nr=Pe=y,=m=0

Exact [26] HWM DTM AE by AE by DTM
HWM

0.00  0.886818883970074  0.886818883970073  0.8868188841  7.77¢~ 16 1.2992¢~10
0.05  0.887096029305517  0.887096029305516  0.8870960292  7.77¢~'6  1.0551¢~ 10
0.10  0.887927638536700  0.887927638536700  0.8879276383  7.77¢~ !0 2.3670¢10
0.15  0.889314231446466  0.889314231446466  0.8893142310  6.66e~ !0 4.4646¢10
020  0.891256674700520  0.891256674700520  0.8912566748  5.55¢7 10 9.9480¢ !
025  0.893756182389128  0.893756182389128  0.8937561827  5.55¢71¢  3.1087¢10
030  0.896814316785961  0.896814316785961  0.8968143173  5.55¢716 5140310
035 0.900432989324568  0.900432989324568  0.9004329897  4.44e716  3.7543,~10
040  0.904614461793083  0.904614461793083  0.9046144623  5.55¢71¢  5.0691¢~10
045  0.909361347747918  0.909361347747917  0.9093613475  4.44e=16 2479110
050  0.914676614147318  0.914676614147317 09146766135  4.44e=16  6.4731¢710
0.55  0.920563583205809  0.920563583205809  0.9205635842  2.22¢716 9941910
0.60  0.927025934470691  0.927025934470691  0.9270259345  3.33¢716 2930911
0.65  0.934067707121872  0.934067707121872  0.9340677074  3.33¢716 27812710
070 0.941693302496487  0.941693302496487  0.9416933025  1.11e71¢  3.5130¢!2
075 0.949907486839880  0.949907486839880  0.9499074872 0 3.6012¢710
0.80  0.958715394284659  0.958715394284659  0.9587153946  3.33¢710  3.1534¢~10
0.85  0.968122530059700  0.968122530059700  0.9681225298  1.11e71¢  2.5970¢~10
090  0.978134773931091  0.978134773931091  0.9781347745  1.11e71¢  5.6890¢~10
0.95  0.988758383877176  0.988758383877176  0.9887583840 0 1.2282¢—10
1 1.000000000000000  1.000000000000000  1.0000000000 0 0

¢1.0(x) =
¢1,1(x) =
¢12(x) =
$1,3(x) =

¢1,4(x) =

2

NG
1

7

1 2
—=(32x% = 32x +4)
T

1 3 2
—=(128x% — 192x? +48x + 8)

N

1 4 3 2
—=(512x" — 1024x~ + 384x~ + 128x — 40)

N

1
$1.5(x) = —(2048x° — 5120x* +2560x> + 1280x% — 800x + 16)
T

N
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Table 2 The results of the exact solution, HWM, and DTM for y(x)

X

B=0, Ne=1,Np=Nr=Pe=y,=m=0

Exact [26] HWM DTM AE by AE by DTM
HWM

0.00  0.648054273663885  0.648054273662149  0.6480542737  1.7¢712 3.6115¢711
0.05  0.648864510284163  0.648864510282524  0.6488645100  1.63¢~!2  2.8416¢10
0.10  0.651297246158581  0.651297246157072  0.6512972462  1.50e"'2  4.1419¢— 11
0.15  0.655358564393981  0.655358564392577  0.6553585647  1.40e=12  3.0601¢~ 10
020  0.661058620401396  0.661058620400088  0.6610586207  1.30e~!2  2.9860¢10
025  0.668411667289873  0.668411667288660  0.6684116668  1.21e712  4.8987¢~10
030  0.677436091506664  0.677436091505546  0.6774360915  1.11e712  6.6640¢ 12
035  0.688154458812923  0.688154458811896  0.6881544588  1.02¢7 12  1.2923,~ 11
040  0.700593570709864  0.700593570708924  0.7005935709  9.39¢=13  1.9013.~10
0.45  0.714784531456473  0.714784531455619  0.7147845318  8.54e™ 13 3.4352¢~10
0.50  0.730762825846359  0.730762825845589  0.7307628258  7.70e"13  4.6359¢~ 11
0.55  0.748568407938217  0.748568407937529  0.7485684079  6.88¢ 13 3.8217¢ 11
0.60  0.768245800961792  0.768245800961184  0.7682458015  6.08¢~13  5.3820¢~10
0.65  0.789844208649138  0.789844208648607  0.7898442081  5.31e~13 54913, 10
070  0.813417638269582  0.813417638269129  0.8134176386  4.53¢~13  3.3041¢~10
0.75  0.839025035676026  0.839025035675650  0.8390250359  3.75¢~13  2.2397¢~10
0.80  0.866730432700284  0.866730432699982  0.8667304332  3.0le™ 13  4.9971¢~10
0.85  0.896603107266012  0.896603107265780  0.8966031067  2.32¢~13  5.6601¢~10
0.90  0.928717756619608  0.928717756619452  0.9287177570  1.56e=13  3.8039¢~10
0.95  0.963154684112229  0.963154684112173  0.9631546839  5.52¢~14  2.1222¢~10
1 1.000000000000000  1.000000000000000  1.0000000001 0 le10

1
d1.7(x) = —=(32768x" — 114688x° +86016x> +71680x* — 89600x> + 5376x% + 10304x
T

P19(x) =

¢1,10(x) =

N

7

+57344x3 + 164864x% — 29696x — 3296)

1
N

+1978368x> — 534528x% — 118656x +21440)

1

T

—928)

1
b1.8(x) = —=(131072x8 — 524288x" + 458752x° + 458752x> — 716800x*
s

(524288x° — 2359296x3 + 2359296x” + 2752512x° — 5160960x° + 516096x*

(2097152x'0 — 10485760x° + 11796480x® + 15728640x7 — 34406400x°
4

+4128768x° + 19783680x* — 7127040x> — 2373120x2 + 857600x + 16448)
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] HWM at n=9
Exact solution

O HWM solution
*  DTM solution

0.98

0.96

= 0.94

0.92

0.9

Fig. 1 Comparison of the solutions via exact solution, HWM, and DTM for y(x) when 8 = 0, N¢ = 0.25,
Np=Nr=Pe=y,=m=0

1
JT
+30277632x° + 174096384x> — 78397440x* — 34805760x> + 18867200x>
+723712x — 461696)

P1.11(x) = —=(8388608x"! — 46137344x'0 + 57671680x° + 86507520x% — 216268800x”

1
¢1.12(x) = T(33554432x12 —201326592x ! +276824064x 10 + 461373440x°
s

—1297612800x% +207618048x7 + 1392771072x% — 752615424x°
—417669120x* + 301875200x> + 17369088x% — 22161408x + 561536)

where, o(x) = [p1,0(x), P1,1(x), 1,2(x), $1.3(x), P1.4(X), B1,5(x), P1,6(x), P1,7(x), p1.3(x)]7.
At this time, integrate above first 9 basis regarding x limit from 0 to x, subsequently
articulate as a linear-combination of Hermite-wavelet basis as,

/¢1,o(x)=[l 10000000]o(x)
0
/¢1,1(x)=[_710%000000]@()6)
0
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HWM at n=9
1 T T T T T T T %l
0.95 F Exact solut?on |
O HWM solution
DTM solution
0.9 d
0.85 a
x
S
0.8 d
0.75 .
0.7 d
0.65@
1

Fig. 2 Comparison of the results via exact solution, HWM, and DTM for y(x) when 8 = 0, Nc = 1,
Np=Nr=Pe=y,=m=0

fd)l,z(x):[%loo500000]4)9@)
0

/¢1,3(x)=[gooorgoooo]¢9(x)
0

/¢1,4(x):[%2oooozioooo]@(x)
/dn,s(x):[—Tﬁooooofgoo]m(x)
/¢1,6(x)=[#ooooooio]qbg(x)

/¢>1,7(x)=[%0000000;7]¢9(x)
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Table 3 The results of the exact solution, HWM, and DTM for y(x)

X

B=04, Ne=1,Np=Nr=Pe=y,=m=0

Exact [26] HWM DTM AE by HWM AE by DTM
0.00 0.716046471814 0.716046471834 0.7160464622 2.00e-11 9.6140¢~°
0.05 0.716742314035 0.716742314054 0.7167422747 1.90e-11 3.9335¢8
0.10 0.718830179624 0.718830179662 0.7188301611 3.80e-11 1.8524¢8
0.15 0.722311474600 0.722311474632 0.7223114651 3.20e-11 9.5000e~°
0.20 0.727188432514 0.727188432508 0.7271884199 6.00e-12 1.2613¢8
0.25 0.733464148787 0.733464148754 0.7334641375 3.30e-11 1.1287¢8
0.30 0.741142604274 0.741142604262 0.7411425952 1.20e-11 9.0739¢
0.35 0.750228627163 0.750228627154 0.7502286174 9.00e-12 9.7629¢
0.40 0.760727863879 0.760727863809 0.7607278540 7.00e-11 9.8790e~°
0.45 0.772646763905 0.772646763914 0.7726467558 9.00e-12 8.1050e
0.50 0.785992554268 0.785992554247 0.7859925453 2.10e-11 8.9680e
0.55 0.800773195331 0.800773195343 0.8007731867 1.20e-11 8.6310e™?
0.60 0.816997356422 0.816997356413 0.8169973500 9.00e-12 6.4220e~°
0.65 0.834674381348 0.834674381309 0.8346743754 3.90e-11 5.9479¢ =9
0.70 0.853814240004 0.853814240021 0.8538142337 1.70e-11 6.3039¢ 7
0.75 0.874427488293 0.874427488245 0.8744274849 4.80e-11 3.3929¢ 9
0.80 0.896525236609 0.896525236616 0.8965252359 7.00e-12 7.0899¢10
0.85 0.920119098778 0.920119098734 0.9201190955 4.40e-11 3.2779¢
0.90 0.945221123165 0.945221123125 0.9452211304 4.00e-11 7.2350e~°
0.95 0.971843786481 0.971843786431 0.9718438178 5.00e-11 3.1318¢8
1 1.000000000000 1.000000000000 0.9999999996 0 4.0000e~10

X
f¢1,g<x> =[=28200000000]po(x)+ %m(x).
0
Hence,
X
f ¢(x)dx = Hoxo ¢o(x) + po(x)
0

where,
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Table 4 The results of the numerical solution, HWM, and DTM for y(x)

X

B=02, Ne=025,Np=Nr=Pe=y,=m=0

NS [26] HWM DTM AE by HWM AE by DTM
0.00 0.90344718163 0.90344718123 0.9034471796 4.00e-10 2.0300e~?
0.05 0.90368630795 0.90368630746 0.9036863060 4.90e-10 1.9500e =7
0.10 0.90440375553 0.90440375542 0.9044037536 1.10e-10 1.9299¢7
0.15 0.90559972961 0.90559972995 0.9055997276 3.40e-10 2.0100e~?
0.20 0.90727457224 0.90727457234 0.9072745703 1.00e-10 1.9399¢ 7
0.25 0.90942876198 0.90942876112 0.9094287601 8.60e-10 1.8800e =7
0.30 0.91206291354 0.91206291367 0.9120629117 1.30e-10 1.8400e =7
0.35 091517777735 091517777721 0.9151777756 1.40e-10 1.7500e~?
0.40 091877423912 0.91877423943 0.9187742374 3.10e-10 1.7200e~?
0.45 0.92285331912 0.92285331954 0.9228533176 4.20e-10 1.5200e =7
0.50 0.92741617157 0.92741617146 0.9274161700 1.10e-10 1.5700e =7
0.55 0.93246408382 0.93246408373 0.9324640824 9.00e-11 1.4200e =7
0.60 0.93799847545 0.93799847590 0.9379984741 4.50e-10 1.3500e =7
0.65 0.94402089730 0.94402089721 0.9440208963 9.00e-11 1.0000e 2
0.70 0.95053303043 0.95053303082 0.9505330293 3.90e-10 1.1299¢~?
0.75 0.95753668492 0.95753668431 0.9575366840 6.10e-10 9.1999¢ 10
0.80 0.96503379868 0.96503379898 0.9650337981 3.00e-10 5.8000e 10
0.85 0.97302643605 0.97302643663 0.9730264355 5.80e-10 5.5000e 10
0.90 0.98151678645 0.98151678625 0.9815167860 2.00e-10 4.4999¢~10
0.95 0.99050716283 0.99050716241 0.9905071626 4.20e-10 2.2999¢~10
1 0.99999999999 1.000000000000 0.9999999996 1.00e-11 3.9000e 10
- - - .
I 10000000 0
=1 1
ZF 0l000000 0
=1 1
F 00500000 0
5 1
2 000%0000 0
Hyxo=1| 2 000 0400 0 | dox)= 0
=23 1
200000400 0
116 1
8 000000 5% 0 0
103 1
1% 0000000 4% 0
=28000 00000 A d1.0(x)
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) HWM at n=9

numerical solution
*  HWM solution
0.95 r O DTM solution

0.9 r i

0.85 1

0.8 r

0.75

1 1 1

0'7 1 1 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Fig. 3 Comparison of the results via Numerical solution, HWM, and DTM for y(x) when g = 0.4, Nc = 1,
Np=Nr=Pe=y,=m=0

Subsequently, two times integration of above 9 basis we get
//qbl o@)dxdx =[ & £ 35000000]¢o(x)

//d)ll(x)dxdx—[% 7205:00000]po(x)

/qul 2x)dxdx =[5 7100 35 000 0] do(x)

0

//¢1,3(x)dxdx =[2 3000 35 000]¢o(x)

/¢1,4(x)dxdx =[7 730000 45 00]po(x)

XO\XO

//qs] s()dxdx =[ =22 5200000 g 0] do(x)

0
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HWM at n=9

0.99 Numerical solution i

*  HWM solution

0.98 O DTM solution |

0.97

0.96

0.95

0.94

0.93

0.92

0.91

Fig. 4 Comparison of the results via Numerical solution, HWM, and DTM for y(x) when 8 = 0.2, N¢ = 0.25,
Np=Nr=Pe=y,=m=0

f/¢1,6(x)dxdx =[8 2000000 g |pox)

0 0

//¢L7(x)dxdx =[12150000000]¢o(x)+ 1152¢1 o(x)
0

//¢1 g(x)dxdx =[ =23 =819°000000 0] po(x)+ 1440¢1 10(x).
0

Hence,

/ / $() dxdx = Hy o do(x) + Po(x)
0 0

where,
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Solution at n=9

0.4

HWM solution at 3 = 0.25
HWM solution at 3 =5
HWM solution at 3 =10
HWM solution at 3 = 20

0.1

0.2

Fig. 5 The effect of B on y(x)

Hy, 9 =

w‘_
)

(=)

O‘_
s

(=)

(=)

(=)

9|

0.4 0.5 0.6 0.7 0.8 0.9 1

X
000 0]
00 0 0
00 0 0
3;0000
0 725 0 0
0 0 g5 0
0 0 0 g
00 0 0
00 0 0|

, dz(x) = 0
0

0

1
1152¢1,9(x)

1
_m¢1,10(x)_

For instance, the modeled equation is of second order. So, we created 9*9 matrices up to
the second order-functional matrix of integration.
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] Solution at n=9

0.8 HWM solution at y, = 0.1 7
HWM solution aty, = 0.5
HWM solution at y, = 0.9

Y(x)

0.6 g

05 ]

04 1 1 1 1 1 | 1 1 1

Fig. 6 The effect of y, on y(x)

Basics of Differential Transformation Method

We assume y(x) to be an analytic function in a domain €2 and x = x; signify some point in €2.
The solution y(x) is subsequently assumed by one power-series whose center is positioned
at x = x;. The Taylor-series development solution of y(x) is of the outline [26]

oo

o = x)tTdk v
)’(X) = ;k'[ Ak j|XXi Vx e Q

In particular, x; = 0 then above equation becomes

41 ik
y(x)zzx[dy(x)] Vi eQ
x=0

I k
= k!'| dx

As given in [26], the differential transformation of the solution y(x) is written as:

oo

M* [[d¥ y(x)
o = ST

k=0

where novel solution y(x) and transformed solution Y (k). The differential spectrum of Y (k)
is restricted inside the distance x € [0, M] and as well as M is some constant. The differential
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Solution at n=9

04

HWM solution at Pe =0
HWM solution at Pe =1
0.3 HWM solution at Pe = 5
HWM solution at Pe = 10

0.2

0.1

Fig. 7 The effect of Pe on y(x)

inverse transform of Y (k) is defined as follows:
oo X k
= — ) Y(k
y() ,; (5) Y@

The solution y(x) is articulated by a finite power series, and the above equation can also
be expressed as:

Y = i (%)km«).

k=0

The basic operations of DTM are given in below table.

New function Transformed function
y(x) = ay1(x) £ by (x) Y(k) = aY(k) £bY2(k)
y(x) = ) Y(k) = (k+1) Yi(k+1)
2 Y(k)=(k+1)(k+2) Y1(k+2
y(x)=d5}c(zx) (k)= (k+1)(k+2) Yi(k+2)
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New function Transformed function

y(x)=y1(x)y2(x) k
R Y (k)= Y Ok - 1)
=0

y(x)=x"
Y(k)= s(k—r =)0 "7k
1 r=k

) — r k
o) =Dl YR =Y"loeork =Y Y lOyk-1
=0

Method of Solutions
Solutions with HWM

Now, assume that
y (x) = ATp(x) (4.1)

where AT = [Cio....Clm=1.C20, ... Cop—1, ... Cop=1 gy .. Copmt yy_1 ], p(x) =
T
(01,00 PLM=1. 62,0, - D2 M—1+ - Pop1 gs - Pkt 1] -

Integrate Eq. (4.1) integrating x form 0 to x and using second initial condition y’(0) = 0,
we get,

Y () = AT[Hp(x) +¢(0)]. 4.2)
Integrate (4.2) with reverence to x form 0 to x,we get
¥ =)+ AT[H'(0 +3 ()] *3)
putx = 1in (4.3)
YO =1-AT[How+3 ]| (4.4)
substitute (4.4) in (4.3)
¥ = 1+ AT[H 9@+ 0] - AT[H s +F ]| _ (45)

_Fit (4.1), (4.3), and (4.5) in (2.1), and collocate using the following grid points x; =
22’;,1 ,i =1,2,3,..., N. Solve these equations using the Newton’s-Raphson method that
yields unknown coefficients. Then substitute these coefficients in (4.5) that contribute us the

numerical solution of (2.1).

Solution with DTM

Now considering M = 1, m = 0 and be valid DTM into Eq. (2.1). Now applying the
differential transform of Eq. (2.1) with respect to x we get:

Bi(k+ 1)(k+2)Y(k +2) — NcY (k) +B2Y (k) — Pe(k + )Y (k + 1) + B3
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Solution at n=9

1 T I I T T T T T
HWM solution at Nc = 0.25
HWM solution at Nc = 5
1 HWM solution at Nc = 10 ]
0.9 HWM solution at Nc = 20
0.8 i
< B i
= 0.7
0.6 i
0.5 i
04 1 1 1 1 1 1 1 1 1
0 04 02 03 04 05 06 07 08 09 1
X
Fig. 8 The effect of Nc on y(x)
k
+BY Mk —i+ D)k —i+YOY(k—i+2)+({+ Dk —i+DYG+ DYk —i+1)]
i=0
k k
—NpY Y)Y (k—i)=Nry Y*OY(k—i)=0 (4.6)

i=0 i=0

with By = 1 — BY,, B, = 2NpY,, B3 = NcY, — NpY? + NrY}.
The boundary-condition in Eq. (2.2), with the intention of we have exerting transformation

Y(1)=0 4.7)
The other boundary conditions are considered as follow:
YO0 =b»b (4.8)

where b is the constant, and we will find it with allowing for an additional boundary condition
in Eq. (2.2) in point x = 1. Our motivation has:

—By +b(—B3+ Nc+bNp +b*Nr)
(B2 +bp)2!

_ Y(Q)Pe

- 3B2+bp)

Y(2) =

Y(3)
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Solution at n=9

09 r

08

HWM solution at Nr =0
0.7 HWM solution at Nr = 3

3 HWM solution at Nr=5

> HWM solution at Nr = 10
0.6 ]
0.5 ]
04 8
03 1 1 1 1 1 1 1 1 1

Fig. 9 The effect of Nr on y(x)

Y(2)(—B3 + Nc +2bNp + b>Nr — 68Y(2) + bNrY?(2)) + 3PeY(3)

Y(4) =
12(B, + bf)
16) Y(3)[~B3+ Nc+2bNp +b>Nr — 20BY (2) + bNrY>(3)] + 4PeY (4)
- 20(B, + bp)
(=B3 + No)Y(4) + Np(Yz(Z) + 2by(4)) — 158 (Y2(3) + 2Y(2)Y(4)) +Nr (Y4(2) +03Y(4) + by3(4>) +5PeY(5)
Y©)= 30(B, + bB)

The above procedure is incessant. Substituting the values of Y (0)to Y (n) into the most
important equation based on DTM, it can be obtained that the series solution in powers of x:

YX)=Y(0) +Y(Dx +YQxZ+ YR  + Y@)x* + Y5> + Y(6)xC + - - . (4.9)

To find the numerical value of b, we alternative the boundary-condition from Eq. (2.2)
into Eq. (4.9) in point x = 1. Then

y(1) = 1. (4.10)

Solving Eq. (4.10) gives the constant value of b. By substituting the calculated value of b
addicted to Eq. (4.9), we can obtain the polynomial expressions of y(x).
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Solution at n=9

T T T T T

1 x

HWM solution at Np = 0
HWM solution at Np = 3

0.9 HWM solution at Np = 5 i

HWM solution at Np = 20

0.3 4

0-1 1 1 1 1 1 1 1 1 1

Fig. 10 The effect of Np on y(x)

Results and Discussions

The HWM and DTM are applied to resolve the highly nonlinear differential equation arising
in the heat transfer fin problem, the disadvantages and advantages of HWM are discussed.
In the absence of thermal-conductivity gradient (8 = 0), solutions of the current problem
are tabulated vs. the analytical solution [26] in Tables 1 and 2. An enormously good-looking
agreement between the solutions is obtained, which concludes the strength of HWM and
DTM. Subsequently, in Figs. 1 and 2, the assessment of the results between exact solution,
HWM, and DTM is shown. The presence of thermal-conductivity gradient (8 # 0), for
B = 0.4 (Table 3), 8 = 0.2(Table4), numerical solution calculated by 4th-order Runge—Kutta
of the current problem are given in Tables 3 and 4. In this case, an extremely motivating
concurrence connecting the solutions is observed too, which confirms the outstanding strength
of the HWM and DTM. After that, in Figs. 3 and 4, the numerical solutions, HWM, and DTM
results are compared. Evaluation of the absolute errors of two techniques revealed in Tables 1,
2, 3, 4 exhibit the higher accuracy of HWM than DTM. For this motivation, HWM has been
applied to re-examine the unique properties of the governing parameters of the fin problem.

The effect of governing parameters 8, y,, Pe, Nc, Nr,and N p on temperature distribution
as a function of x is established in Figs. 5, 6, 7, 8, 9, and 10, respectively. The results exhibited
in these figures are for § = y, = Nc = Np = 0.25, m =2, Nr = 4 and Pe = 3 except the
varying parameter in any concerned figure. Figures 5 and 6 show the respective effects of 8
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and y,, on the temperature distribution y(x). It is easy to see that y(x) increases as 8 and y,,
increases progressively. Figures 7, 8, 9, 10 give the opposite performance of the temperature
distribution y(x) under the influence of Pe, Nc, Nr, and Np, respectively.

Conclusion

In the present article, the natural convection fin flow problem is resolved using HWM and
DTM. The flow contains the nonlinear temperature distribution in a rectangular moving
permeable fin. We resolved a highly nonlinear ODE by using DTM and HWM. The outcome
process of HWM and DTM show the competence for solving highly nonlinear ODE, which
is exposed in the table and figures. Comparison between calculated solutions showed that
HWM is more suitable and correct than DTM. Moreover, the HWM is more proficient than
numerical methods to solve this type of coupled highly nonlinear ODEs.
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