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Abstract
The present investigation incorporates a detailed study of unsteady MHD flow and heat
transfer of a second grade fluid between two infinitely long porous plates. With the aid of
implicit finite difference scheme the pertinent partial differential equations are transformed
and framed as system of algebraic equations. The resulting equations are solved numerically
by the help of damped-Newton method, thereafter coded using MATLAB. The impact of
variations in dimensionless parameters such as m2, α, Re for constant acceleration (n = 1)
and variable acceleration (n = 0.5) on velocity and temperature is illustrated. It is noted
that the magnetic parameter and Reynolds number have significantly opposite effect on the
temperature and velocity profiles for both the instances. Increasing values of Ec and m2

plays a key role in enhancing the temperature at any point of the fluid whereas higher values
of Re and α has a pronounced effect on the velocity profile of the fluid.

Keywords Second grade fluid · Magnetohydrodynamics flow · Heat transfer · Finite
difference method · Damped-Newton method
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ρ Density
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Re Reynold’s number
α Second grade viscoelastic parameter
m2 Magnetic parameter
B0 Magnetic field Strength
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A Constant having dimension LT−1

c Specific heat
θ Temperature at any point
k Thermal conductivity of the liquid
σ Electrical conductivity of the medium
Ec Eckert number
Pr Prandtl number

Introduction

The study of incompressible homogeneous fluid of grade two is of remarkable importance
because of its recognition as a special subclass among fluids of differential type and its
significance in industries and applications in technology. Therefore, the flow characteristics
of second order fluids has been an area of interest for researchers like Ariel [1,2], Rajagopal
et al. [3], C.L Roux [16] who deliberated the existence and uniqueness of the flow of second
grade fluids with slip boundary conditions, Teipel [21] studied the flow behaviour of second
order fluid, the authors in [6,7,20] studied some properties of unsteady unidirectional flows
of a fluid of second grade. Hayat et al [10] pondered the steady flow of a second grade fluid
in a porous channel.

VeeraKrishna and Reddy [23] derived a solution using Laplace transform technique to the
hydromagnetic convective flow of second grade fluid through a porous medium in a rotating
parallel plate channel with temperature dependent source. A similar study was performed in
[25] where they deduced that the hydromagnetic flow and heat transfer is majorly influenced
by four different factors. Veerakrishna et al. [24] adopted the pertubation technique to study
the heat andmass transfer on oscillatory flowofMHDsecond grade fluid via a porousmedium
bounded by a pair of vertical plates taking into account the influence of two vital factors. A
similar flow model was examined in [22] to study the effects of radiation and hall current.

Parida et al. [13] reviewed the magnetohydrodynamic flow of a second grade fluid with
porous channel, solved numerically using Runge Kutta fourth order method in association
with quasi linear shooting technique. Sahoo and Labropulu [17] analysed the steady Homann
flow and heat transfer of an electrically conducting second grade fluid and deduced from
the graphs that non-Newtonian parameter and magnetic parameter have opposite effects on
momentum and thermal boundary layers. Raftari et al. [14] made an analysis of different fluid
parameters of second grade like magnetic strength, viscosity, viscoelasticity on velocity and
temperature profiles by obtaining numerical solution through Homotopy analysis method.

Das and Sahoo [5] studied the flow and heat transfer of a second grade fluid between
two strechable coaxially rotating disks. They have used Homotopy Analysis Method to
obtain a solution. Ghadikolaei [9] discussed the analytical and numerical solutions of non-
Newtonian second grade fluid flow on a stretching sheet. The homotopy perturbation method
was employed to solve the differential equations and the comparisons made validated its high
precision in solving non linear differential equation. Effects of changes in the viscoelastic
parameter on velocity profile and Prandtl number on temperature profile was analysed . Khan
et al. [12] implemented the shooting method to study the effects of both activation energy
and thermal radiation in modified second grade fluid flow with the aid of nanoparticles and
deduced important results. Waqas et al. [26] also examined the effects of the two important
factors as [12] for a second grade nanofluid over a moving Riga plate.
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The main aim of this study is to present a convergent, simple and yet more general
numerical solution to the considered flow problem which finds its application in general in
MHD generators, in designing the liquid metal cooling system, flow meters and petroleum
industries mainly for the tapping and purification of underground oil which flows through
porous rocks, where there is natural magnetic field and also in blood flow through arteries
where the boundaries are porous. The porous channel flow, structurally, is quite similar
to unsteady squeeze film flow having a separable extensional effect which has immense
application in lubrication, viscometry and polymer technology. The used scheme in the
present work is flexible for solving strong non linear complex problem without transforming
it to simpler form. A strong point of the implemented scheme is that its well founded for
small as well as large non dimensional parametric values plus the monotonous calculation
for slightest to considerable change of boundary conditions can be avoided and hence the
implementation of this method is beneficial and worthwhile.

A recapitulation of the work is presented as follows. Section 2 recounts our concerned
problem. A solution to the momentum and energy equation is obtained in Sect. 3. Section 4
comprises of the graphical results. Section 5 highlights some noteworthy findings of the
study.

Description of the Problem

The constituents of velocity u
′
and v

′
in the domain of flow is denoted as

u
′ = u

′
(y

′
, t

′
) , v

′ = V . (1)

Following the stress strain rate relation the stress component is given as

Px ′ y′ = −p + μ1

(
∂u

′

∂ y ′

)
+ μ2

[
V

∂2u
′

∂ y ′2 + ∂2u
′

∂ y ′
∂t ′

]
(2)

Since the motion is due to shearing action of the fluid layers

∂ p

∂ y′ = 0 (3)

Based on the information provided in [8,15], we directly write the governing momentum and
energy equations including viscous dissipation φ using the above identities

ρ

(
∂u

′

∂t ′
+ V

∂u
′

∂ y ′

)
= μ1

∂2u
′

∂ y ′2 + μ2

[
V

∂3u
′

∂ y ′3 + ∂3u
′

∂ y ′2∂t ′

]
− σβ2

0u
′
. (4)

ρc

(
∂θ

′

∂t ′
+ V

∂θ
′

∂ y ′

)
= k

∂2θ
′

∂ y ′2 + μ1

(∂u
′

∂ y ′
)2

+μ2

(
V

∂2u
′

∂ y ′2
∂u

′

∂ y ′ + ∂2u
′

∂ y ′
∂t ′

∂u
′

∂ y ′

)
− σβ2

0u
′2.

(5)

The boundary condition associated with equation (4) are⎧⎪⎨
⎪⎩
t
′ = 0 : u

′ = 0, ∀ y
′{

t
′
> 0 : u

′ = Atn f or y
′ = 0

t
′
> 0 : u

′ = 0, f or y
′ = L

(6)
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Fig. 1 Geometry of the flow problem

The boundary condition to which equation (5) is subjected to are⎧⎪⎪⎨
⎪⎪⎩

t
′ = 0 : θ

′ = 0, ∀ y
′⎧⎨

⎩
t
′
> 0 : ∂θ

′

∂ y′ = 0 f or y
′ = 0

t
′
> 0 : θ

′ = θL , f or y
′ = L

(7)

The fact ∂θ
′

∂ y′ = 0 when y
′ = 0 implies that the lower wall is a non conducting one (Fig. 1).

The magnetic Reynolds number is assumed to be very small as a result of which the induced
magnetic field is negligible in comparison to the intensity of the imposed magnetic field and
hence its impact is neglected [19].

Introducing the dimensionless variables and parameters as shown below

y = y
′

√
ν1T

t = t
′

T
, Re = V

√
T√

ν1
,= α = − μ2

μ1T
, m2 = σβ2

0T

ρ
,

u = u
′

A
, Pr = ν1ρc

k
, Ec = A2

cθL
, θ = θ

′ − θL

θL
.

The elastic coefficient μ2 is assumed to be negative. The value of L is considered as 1.
Employing the above notations in equation (4) and (5), we get

∂u

∂t
+ Re

∂u

∂ y
− ∂2u

∂ y2
+ Re α

∂3u

∂ y3
+ α

∂3u

∂ y2∂t
+ m2u = 0. (8)

with the following stated condition⎧⎪⎨
⎪⎩
t = 0 : u = 0, ∀ y{
t > 0 : u = tn f or y = 0

t > 0 : u = 0, f or y = 1

(9)

Pr
∂θ

∂t
+ Pr Re

∂θ

∂ y
− ∂2θ

∂ y2
+ α Ec Pr

(
Re

∂2u

∂ y2
∂u

∂ y
+ ∂u

∂ y

∂2u

∂ y∂t

)

−Pr Ec

(
∂u

∂ y

)2

+ m2 Ec Pr u2 = 0 (10)
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⎧⎪⎨
⎪⎩
t = 0 : θ = 0, ∀ y{
t > 0 : ∂θ

∂ y = 0 f or y = 0

t > 0 : θ = 0, f or y = 1

(11)

The dimensionless shear stress τxy can be expressed as

τxy = ∂u

∂ y
− α

(
Re

∂2u

∂ y2
+ ∂2u

∂ y∂t

)
(12)

Solution Strategy

We choose to take up the following solution strategy to solve the above equation (8). We
implement the implicit finite difference scheme of crank-Nickolson type for discretisation
in space as well as in time with a uniform mesh of space step h and time step k. The used
scheme is unconditionally stable and suffices the second order convergence in time as well
as in space.

The derivatives at the nodes (ih, j�t), i = 0, 1, . . . , N + 1 and j = 0, 1, . . . , M − 1 are
reckoned as

∂u

∂t
≈ u j+1

i − u j
i

�t
.

∂u

∂ y
≈ 1

4h
((u j+1

i+1 − u j+1
i−1 ) + (u j

i+1 − u j
i−1)).

∂2u

∂ y2
≈ 1

2h2
((u j+1

i+1 − 2u j+1
i + u j+1

i−1 ) + (u j
i+1 − 2u j

i + u j
i−1))

∂3u

∂ y2∂t
≈ 1

h2�t
((u j+1

i+1 − 2u j+1
i + u j+1

i−1 ) − (u j
i+1 − 2u j

i + u j
i−1))

∂2u

∂ y∂t
≈ 1

2h�t
((u j+1

i+1 − u j+1
i ) − (u j

i+1 − u j
i ))

∂3u

∂ y3
≈ 1

2h3

(
(−u j+1

i−2 + 2u j+1
i−1 − 2u j+1

i+1 + u j+1
i+2 )

+ (−u j
i−2 + 2u j

i−1 − 2u j
i+1 + u j

i+2)

)
, i �= 1, N .

At point (1, j�t),
∂3u

∂ y3
≈ 1

2h3

(
(−3u j+1

i−1 + 10u j+1
i −12u j+1

i+1 +6u j+1
i+2 − u j+1

i+3 )

+ (−3u j
i−1 + 10u j

i − 12u j
i+1 + 6u j

i+2 − u j
i+3)

)

At point (N , j�t),
∂3u

∂ y3
≈ 1

2h3

(
(u j+1

i−3 − 6u j+1
i−2 + 12u j+1

i−1 −10u j+1
i +3u j+1

i+1 )

+ (u j
i−3 − 6u j

i−2 + 12u j
i−1 − 10u j

i + 3u j
i+1)

)

(13)
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Solution for Velocity Field

Using the above differences, we frame the governing velocity equation and its boundary
condition as

u j+1
i − u j

i

�t
+ R

4h
((u j+1

i+1 − u j+1
i−1 ) + (u j

i+1 − u j
i−1))

− 1

2h2
((u j+1

i+1 − 2u j+1
i + u j+1

i−1 ) + (u j
i+1 − 2u j

i + u j
i−1))

+ Rα

2h3
((−u j+1

i−2 + 2u j+1
i−1 − 2u j+1

i+1 + u j+1
i+2 ) + (−u j

i−2 + 2u j
i−1 − 2u j

i+1 + u j
i+2))

+ α

h2�t
((u j+1

i+1 − 2u j+1
i + u j+1

i−1 ) − (u j
i+1 − 2u j

i + u j
i−1)) + m2u = 0 (14)

⎧⎪⎨
⎪⎩
u0i = 0, f or i = 0, 1, 2, . . . , N + 1{
u j
0 = ( j�t)n and

u j
N+1 = 0, f or j = 1, 2, . . . , M

(15)

Using the above system of equations we compute the residues(x)

R1 ≡ (u j+1
1 − u j

1) + Re�t

4h
((u j+1

2 − u j+1
0 ) + (u j

2 − u j
0))

− �t

2h2
((u j+1

2 − 2u j+1
1 + u j+1

0 ) + (u j
2 − 2u j

1 + u j
0))

+ α

h2
((u j+1

2 − 2u j+1
1 + u j+1

0 ) − (u j
2 − 2u j

1 + u j
0))

+ Re α�t

2h3
((−3u j+1

0 + 10u j+1
1 − 12u j+1

2 + 6u j+1
3 − u j+1

4 )

+(−3u j
0 + 10u j

1 − 12u j
2 + 6u j

3 − u j
4)) + m2

(u j+1
1 + u j

1

2

)
�t . (A1)

R2 ≡ (u j+1
2 − u j

2) + Re�t

4h
((u j+1

3 − u j+1
1 ) + (u j

3 − u j
1))

− �t

2h2
((u j+1

3 − 2u j+1
2 + u j+1

1 ) + (u j
3 − 2u j

2 + u j
1))

+ α

h2
((u j+1

3 − 2u j+1
2 + u j+1

1 ) − (u j
3 − 2u j

2 + u j
1))

+ Re α�t

2h3
((−3u j+1

1 + 10u j+1
0 − 12u j+1

1 + 6u j+1
2 − u j+1

3 )

+(−3u j
1 + 10u j

0 − 12u j
1 + 6u j

2 − u j
3)) + m2

(u j+1
2 + u j

2

2

)
�t . (A2)

Ri ≡ (u j+1
i − u j

i ) + Re�t

4h
((u j+1

i+1 − u j+1
i−1 ) + (u j

i+1 − u j
i−1))

− �t

2h2
((u j+1

i+1 − 2u j+1
i + u j+1

i−1 ) + (u j
i+1 − 2u j

i + u j
i−1))

+ α

h2
((u j+1

i+11 − 2u j+1
i + u j+1

i−1 ) − (u j
i+1 − 2u j

i + u j
i−1))

+ Re α�t

2h3
((−u j+1

i−2 + 2u j+1
i−1 − 2u j+1

i+1 + u j+1
i+2 )

+(−u j
i−2 + 2u j

i−1 − 2u j
i+1 + u j

i+2))
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+m2
(u j+1

i + u j
i

2

)
�t . (A3)

RN ≡ (u j+1
N − u j

N ) + Re�t

4h
(−u j+1

N−1 − u j
N−1) − �t

2h2
(−2u j+1

N + u j+1
N−1 − 2u j

N + u j
N−1)

+ α

h2
(−2u j+1

N + u j+1
N−1 + 2u j

N − u j
N−1)

+ Re α�t

2h3
((u j+1

N−3 − 6u j+1
N−2 + 12u j+1

N−1 − 10u j+1
N + 3u j+1

N+1)

+(u j
N−3 − 6u j

N−2 + 12u j
N−1 − 10u j

N + 3u j
N+1)) + m2

(u j+1
N + u j

N

2

)
�t . (A4)

The elements constituting the Jacobian matrix for i, j = 1, 2, . . . N is represented as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂R1

∂u j+1
1

∂R1

∂u j+1
2

. . . ∂R1

∂u j+1
N

∂R2

∂u j+1
1

∂R2

∂u j+1
2

. . . ∂R2

∂u j+1
N

...
. . . . . .

...

∂Ri
∂u j+1

1

∂Ri
∂u j+1

2

. . .
∂Ri

∂u j+1
N

...
. . . . . .

...

∂RN

∂u j+1
1

∂RN

∂u j+1
2

. . .
∂RN

∂u j+1
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Knowing the velocity field in the discretised form (accurate to the order O(h2 + (�t)2)) the
shearing stress τ0 and τ1 at y = 0 and y = 1 i.e at the lower wall and upper wall respectively
are

τ0 = τxy]y=0 = −3u j
0 + 4u j

1 − u j
2

2h
− α

[
Re

h2
(2u j

0 − 5u j
1 + 4u j

2 − u j
3)

+ 1

2h�t
(−3u j+1

0 + 4u j+1
1 − u j+1

2 + 3u j
0 − 4u j

1 + u j
2

]
(16)

τ1 = τxy]y=1 = u j
N−1 − 4u j

N + 3u j
N+1

2h
− α

[
Re

h2
(2u j

N+1 − 5u j
N + 4u j

N−1 − u j
N−2)

+ 1

2h�t
(u j+1

N−1 − 4u j+1
1 + 3u j+1

N+1 − u j
N−1 + 4u j

N − 3u j
N+1

]
(17)

Solution for Temperature Field

Using the above differences, we frame the governing energy equation and its boundary
condition as
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θ
j+1
i − θ

j
i + Re�t

4h

(
(θ

j+1
i+1 − θ

j+1
i−1 ) + (θ

j
i+1 − θ

j
i−1)

)

− �t

2h2Pr

(
(θ

j+1
i+1 − 2θ j+1

i + θ
j+1
i−1 )

+ (θ
j
i+1 − 2θ j

i + θ
j
i−1)

)
+ α Ec

( Re�t

8h3
[(u j+1

i+1 − 2u j+1
i

+ u j+1
i−1 ) + (u j

i+1 − 2u j
i + u j

i−1)][(u j+1
i+1 − u j+1

i−1 )

+ (u j
i+1 − u j

i−1)] + 1

8h2
[((u j+1

i+1 − u j+1
i−1 )

+ (u j
i+1 − u j

i−1)][(u j+1
i+1 − u j+1

i ) − (u j
i+1 − u j

i )]
)

− Ec�t

16h2

(
(u j+1

i+1 − u j+1
i−1 ) + (u j

i+1 − u j
i−1)

)2 + m2 Ec �t
(u j+1

i + u j
i

2

)2 = A(say).

(18)

Arranging in tridiagonal form, we get

( Re�t

4h
− �t

2h2

)
θ
j+1
i+1 +

(
1 + �t

h2Pr

)
θ
j+1
i +

(−Re�t

4h
− �t

2h2Pr

)
θ
j+1
i−1

= A +
(

− Re�t

4h
+ �t

2h2Pr

)
θ
j
i+1

+
(
1 − �t

Prh2

)
θ
j
i +

( Re�t

4hPr
+ �t

2h2Pr

)
θ
j
i−1 = b (19)⎧⎪⎪⎨

⎪⎪⎩
θ0i = 0, f or i = 0, 1, 2, . . . N + 1{

θ
j
0 = 4θ j

1 −θ
j
2

3 f or j = 1, 2, . . . , M

θ
j
N+1 = 0

(20)

The system of equations (14) along with (15) is solved by using damped-Newton method
which converges quadratically .

An approximate value of M is chosen in accordance with the algorithm stated in [11].
The iterations are repeated till the absolute difference of the successive solutions obtained at
nodes ((N + 1)h, j�t) and ((N + 2)h, j�t) becomes less than ε.

A suitable value of initial velocity is preferred and (14) is framed in a tridiagonal manner.
The parameters α and m2 are equated to zero to obtain a solution with the help of gaussian
elimination.

The residuals(Ri , i = 0, 1, . . . , N ) and jacobians
((

∂Ri
∂u j

)
�= 0, i = 1, . . . , N and j =

1, . . . , M
)
are computed to carry through the damped-Newtonmethod.We consider our next

approximation to be xk+1 =
(
xk + h

2i

)
. The value of i is considered in a manner such that

i = min

(
j : 0 ≤ j ≤ jmax | ‖ residue

(
xk + h

2 j

)
‖
2

< ‖ residue(xk) ‖2
)

thus validating the error reduction in every iteration and convergence of the method as given
in [4] precisely to five decimal places.
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α t Re n = 1(τ0) α t Re n = 1(τ1)

0.5 0.05 0.00 −0.08128 0.5 0.05 0.00 −0.03486
0.05 −0.05702 0.05 −0.05702
0.10 −0.03642 0.10 −0.07468

0.10 0.00 −0.17231 0.10 0.00 −0.07947
0.05 −0.14566 0.05 −0.10414
0.10 −0.12264 0.10 −0.12261

0.15 0.00 −0.26900 0.15 0.00 −0.12974
0.05 −0.24132 0.05 −0.15827
0.10 −0.21664 0.10 −0.17839

5.0 0.05 0.00 −0.02288 5.0 0.05 0.00 −0.09327
0.05 −0.05848 0.05 −0.05848
0.10 −0.08007 0.10 −0.02319

0.10 0.00 −0.05550 0.10 0.00 −0.29628
0.05 −0.13283 0.05 −0.23040
0.10 −0.18725 0.10 −0.18725

0.15 0.00 −0.09379 0.15 0.00 −0.50496
0.05 −0.26798 0.05 −0.46310
0.10 −0.37638 0.10 −0.40863

The tables represents value of shear stress τ0 at the lower plate and the value of shear
stress τ1 at the upper plate.

Results and Discussion

The unsteady MHD flow characteristic of the reckoned fluid advancing through unbounded
porous channel is investigated and depicted using the subsequent figures.

Fig. 2 and 3 depicts second grade fluid velocity profile when m2 = 3, Re = 4, Pr =
0.3, Ec = 0.5, for increasing values of second grade elastic parameters with 0 < α < 6.
An increasing behaviour is noticed for both constant acceleration (n = 1) and variable
acceleration (n = 0.5).

Keeping other parameters fixed, the Reynolds number is increased to 8 and a crossover
phenomena for velocity is observed for the case of constant acceleration where the velocity

Fig. 2 Influence of varying values
of α on velocity when n = 1
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Fig. 3 Influence of varying values
of α on velocity when n = 0.5

initially increases until the point of crossover afterwhich it decreases as in Fig. 4.Adecreasing
behaviour in velocity can be noticed for the case of variable accelerationwhich is insignificant
near the plate but becomes more prominent towards the middle region of plate depicted in
Fig. 5.

The value of Re is further increased to 10 keeping other parameters constant, and it
is noticed that the velocity profile decreases for constant acceleration as well as variable
acceleration as portrayed in Figs. 6 and 7.

Figures 8, 9, 10 and 11 shows effect of increasing α values (α ≥ 6) on velocity as well as
temperature profile. An opposite behaviour between velocity and temperature is observed for
the parametric values m2 = 11, Re = 9, Pr = 0.3, Ec = 0.5, where the former increases
and the latter decreases.

Figures 12, 13, 14 and 15 depicts the behaviour of increasing m2 on both velocity and
temperature of the fluid for n = 1 and n = 0.5. The velocity decreases due to increase in the
resistive forces as a consequence of increase in the lorentz forces. As a result of increasing
friction a good amount of heat is generated which results in rise in temperature.

Influence of varying values of Re on both velocity and temperature of the fluid is shown
in Figs. 16, 17, 18 and 19. The velocity profile increases and temperature profile decreases
for both constant and variable acceleration for α = 6, m2 = 9, Ec = 0.5, Pr = 0.3.

Figures 20 and 21 portrays the fall and rise in temperature profiles for Re values 5 and 1
respectively with increasing value of Pr .

The influence of increasing Eckert number is shown in Fig. 22 for balanced inertial forces
and viscous forces. An increasing behaviour in temperature is observed when the Reynolds
number is increased for Ec = 1, 1.5, 2 as shown in Fig. 23.

Fig. 24 depicts a transient increase in velocity profile of the second grade fluid. In the
absence of the second grade viscoelastic parameter, the behaviour of flow velocity is similar
to the solution of viscous fluid obtained by [18] as depicted in Fig. 25 and 26. The precedent
tables 1 and 2 represents skin friction values τ0 ( for lower plate) and τ1 (for upper plate) for
various parametric values of Re, α, and t when the bottom plate suddenly starts moving with
velocity Atn and constant acceleration(n=1). It can be noticed that τ0 increases with increase
in the the value of Re at any instant of time for particular value of α i.e 0.5. A decreasing
behaviour is perceived when α = 5
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Fig. 4 Influence of varying values
of α on velocity when n = 1

Fig. 5 Influence of varying values
of α on velocity when n = 0.5

Fig. 6 Influence of varying values
of α on velocity when n = 1
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Fig. 7 Influence of varying values
of α on velocity when n = 0.5

Fig. 8 Influence of varying values
of α on velocity when n = 1

Fig. 9 Influence of varying values
of α on velocity when n = 0.5
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Fig. 10 Influence of varying
values of α on temperature when
n = 1

Fig. 11 Influence of varying
values of α on temperature when
n = 0.5

Fig. 12 Influence of varying
values of m2 on velocity when n
= 1
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Fig. 13 Influence of varying
values of m2 on velocity when n
= 0.5

Fig. 14 Influence of varying
values of m2 on temperature
when n = 1
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Fig. 15 Influence of varying
values of m2 on temperature
when n = 0.5
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Fig. 16 Influence of varying
values of Re on velocity when n
= 1
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Fig. 17 Influence of varying
values of Re on velocity when n
= 0.5
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Fig. 18 Influence of varying
values of Re on temperature
when n =1
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Fig. 19 Influence of varying
values of Re on temperature
when n = 0.5
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Fig. 20 Influence of varying
values of Pr on temperature
when n = 1

Fig. 21 Influence of varying
values of Pr on temperature
when n = 1
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Fig. 22 Influence of varying
values of Ec on temperature
when n = 1

Fig. 23 Influence of varying
values of Ec on temperature
when n = 1

Fig. 24 Transient velocity profile

123



255 Page 18 of 20 Int. J. Appl. Comput. Math (2021) 7 :255

Fig. 25 Influence of varying
values of m2 on velocity as
compared to [18]

Fig. 26 Influence of varying
values of time on velocity as
compared to [18]

An opposite behaviour is observed from Table 2. The shear stress τ1 at the upper wall
decreases with increase in the the value of Re when the values of t are taken as 0.05, 0.10,
0.15 for particular value of α i.e 0.5, contrary to the behaviour observed for that particular
values of t when α = 5.

Conclusion

The principal aim of this paper is to investigate the influence of dimensionless parameters on
velocity as well as temperature field by solving the momentum equation by using suitable
finite difference approximations followed by damped-Newtonmethod and solving the energy
equation by arranging in tridiagonal form. The noteworthy findings is stated as below.

• For α < 6, velocity decreases with increasing Re, for other parameters kept constant.
• For comparatively larger values of m2, when Re > 8 and α ≥ 6, an inverse relation

holds between velocity and temperature profiles.
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• The magnetic parameter and Reynolds number have significantly opposite effect on the
temperature and velocity profiles of a second grade fluid for both constant and variable
acceleration.

• For balanced inertial and viscous forces the temperature increases for increasing values
of Pr and Ec.

• With increasing values of Pr , the temperature profile decreases and increases respectively
for decreasing values of reynolds number.

• The variations in Re also has a prominent effect on the shear stress in lower and upper
plate. The shear stress in the lower plate increases with increase in Re whereas the shear
stress in the upper plate decreases with increase in Re for α = 0.5 but a contrasting effect
is observed for α = 5 at any instant of time.

• Increase in the value of Ec encourages entropy generation rate as a consequence of excess
heat production within the channel due to increased viscous heating.

• Increasing values of Ec and m2 plays a key role in enhancing the temperature at any
point of the fluid.

• Larger values of Re andα have a pronounced effect on the velocity profile of the fluid. The
considered flow problem finds its application generally in MHD generators, in designing
the liquid metal cooling system, flow meters and petroleum industries, viscometry and
polymer technology.
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