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Abstract

The concepts of multiresolution analysis(MRA), wavelets, and biorthogonal wavelets in
Sobolev space over local fields of positive characteristic (H*(K)) are developed by Pathak
and Singh [8,9]. In this paper, we constructed biorthogonal wavelet packets in Sobolev space
H* (K) and derived their biorthogonality at each level by means of Fourier transform.
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Introduction

In recent years, local fields have attracted attention of many mathematicians. Benedetto and
Benedetto gave wavelet theory on local fields and related group(s). Their approach are not
based on MRA. The definition of MRA on local fields of positive characteristic is given
by Jiang et al. [5]. They developed a theory for constructing orthonormal wavelets on local
fields K. Their concepts have been extended by Behra and Jahan in different setups. Recently
Pathak, Singh, and Kumar[8—10] modified the concept of MRA on Sobolev space over local
fields K and constructed orthonormal wavelets from the MRA. They developed a theory of
biorthogonal wavelets on Sobolev space over local fields [9]. Also, they constructed multilevel
wavelet packets on Sobolev space over local fields K.

In this article, we developed a theory for constructing biorthogonal wavelet packets asso-
ciated with dual MRA on Sobolev space over local fields K.

This article is divided in following sections. In Sect. 1, we discuss some properties of
local fields and Sobolev space over K. In Sect. 2, We recall dual MRA on H*(K) and Sect.
3 contains biorthogonal wavelet packets corresponding to these MRAs and in its subsection,
we have proved their orthogonality at j/* level.

Throughout the paper K denotes the local field of positive characteristic, s is a fixed
character on K™, p be a fixed prime element in K used for dilation, and v(k) € K, k € Ny =
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{0, 1, 2, 3, ...} is used for translation. The Sobolev space H* (K), s € R, consists of all those
f € 9'(K) (space of continuous linear functional on 9 (K) and O(K) is the space of all finite
linear combinations of characteristic functions of balls of K) such that )7% f ) e L2(K),
which satisfy:

1 By = /K P OIF@PdE, where 7°(¢) = (max(1, £]))’,

the corresponding inner product is defined by

(8 e = /K 20 F(©FQ)de.

where

fo)= /Kf(x)%g(x)dx, ¢ eK.

For more detail, refer to [5,8,13].

Dual Multiresolution Analysis on H*(KK)

Pathak and Singh modified the classical multiresolution analysis on L2(K) and defined MRA
and dual MRA on H* (K)(see [8,9]). Now, we recall the theory of dual MRA in Sobolev space
over K.

Definition 1 Two families of functions {¢ : k € No} and {@r : k € Ny} in HS(K) are said
to be biorthogonal if

(@r, @) = 8 o forevery k, k' € Ny.
If pair of scaling functions ¢/, (/) € H*(K) are biorthogonal, then
(00,6 ( = v(k)) = Sox. k € No. (M
~(i i . T ~(j Loy i
Theorem 1 Let ), o) HS (K) and j € Z, then the distributions (p](JIZ =q2¢WD(pIx—
v(k)); k € Nog and (pj(j,g = q%go(j)(p’jx — v(k)) are biorthogonal in H* (K) if and only if

Y P T C + 0@V (@ + vV Fuk) =1 ae. (&)
keNy

Moreover, we also have
Jim ¢ (/P (pI0) < 7). 3
Dual multiresolution analysis of H*(K) are defined as follows
Vi C Vjyr, Vj - VjJrl.
Correspondingly, since /) € Vi CVigrs o9 e \2/ C V/+1, we have

i) _ 0 G+D . =) _ () ~G+1D)
oV =3 nl el a0 =Y e @)
keNy keNy
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Taking Fourier transform of the equation (4), we get
$9 @) =mi T p)gU T p0); 0 (0) = i p)e D (p0). )

Associated wavelets w,gj ) and g}r(/ ) (0 <r < g — 1) are given as follows :
(07 ) = m TV I OgU D (i ) and 9 (T £) = g T (0L pUHD (pH L),

For more detail (see [9]).
Biorthogonal Wavelet Packets on Sobolev Space over Local Fields

For construction of biorthogonal wavelet packets the following splitting lemma is required.

Lemma 1 Let {q%go(j)(p’j —v(@m)) : m € Np}, {q%gﬁ(j)(p’j —v(m)) :m € No} are

biorthogonal system in H*(K) and V; = span{qztp(l)(p J.—v(m)) :m e Ny}, V o=

span{g @ (p=i. — v(m)) :m € No. Let 7 (2) = mI™D (pe)pU+V o), wﬁ”(c) =
AT OB (pr), 0 < r < g — L Then (¢, ()1 0 = r < g - Lim € No,

r,jJ,m

{wr(J])m() :0<r <gq —1,m € No} are biorthogonal if and only if

MM @) =1, (©6)

where MU (2) = [m] (p¢ + po2)? ) g and MYD (@) = (s (p¢ + poea)I? )
forae ¢ €®.

Proof Let MV (£)(M)*(¢) = I. Then, we have
) 7 ()
(O B AN ®))
f @0 0 0 0 gD 0 0 (b D)
/ Z S @ O € + v(l))wr”(;“ +v(1) 5 (§) 260 (£)dS
leNy

/ 3P @+ v0)m Y (g + pud))

1eNy

x W‘(pc +po0)ad ™ (¢ + pu() G (9 + pu(D) 3am (£) 56, (0)d

/ ZZM =g + pogl + ))mfV (pc + pu(gl + 1))

i=0leNy

< m (e + po(gl + i) ¢ (¢ + pugl + D) (9 + pulgl +0)))
X %m(g)%n(g)dg

/ {Z S0+ po@)ing T (¢ + po))) 3 (02 (0)dg

_ / 811 12 m (0) 35 ()
)

= ‘Srl,rzfsm,n-
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Therefore, {g3 v (p~7/. — v(m)) : 0 <r < g —1,m € No} and {g3 3% (p=7 . — v(m)) :
0 <r < g —1,m € Ny} are biorthogonal. The converse part can be proved easily. O

Like orthogonal wavelet packets [11], Biorthogonal wavelet packets corresponding to
oD, @) are given by

w =0, 5 =¢D, W =y and 0 =g (1 <n<qg-1),
where
i@ =mI TV w0 o), 9@ = m TP p)e Ut (pe) (1<t <q - 1).

In general, let w(J ) and w(J ) are defined for every integer n > 0 by

j+1 ji+1) ,  —j—
w0 =g 5 3 B e — v(m)),

meNy

~ 1 i+1) ~(j+1 i

0,070 = ¢ 3 IRV (I x — w(m)). for0<r <g 1.
mENO

Taking the Fourier transform, we get

D, ©) = mI T poyd T (o),

D@ = m ey (o).

We can also define w,(,j ) , w,(,] ) for every integer n > 0 by its Fourier transform as (here [x]

denotes greatest integer less than or equal to x)

o (@) = mI ™V (pg) “’*”(pc)

2 (i - 2 (
59@) = m V(o) ’“(p@)

where r is given by
n
r=n-— 61[*]. (N
Definition 2 The set of functions {w(’) n > 0}, {w(]) n > 0} are defined as above are said
to be biorthogonal wavelet packets with respect to dual MRA {V} ¢z, {V }jez of H*(K).

Definition 3 For every n € Ny and 0 < r < g — 1, the biorthogonal wavelet packet spaces
at j'" level are given by

Wi = spanigbu 57T — vk) 1k € 2y 0 HY (K,

~[”] i

W, = span{q 1, (p7T. — v(k))  k € Z) N HY(K),
where r is given by (7).

Definition 4 Suppose wn] )(x) w(J )(x) be biorthogonal wavelet packets corresponding to
the scaling functions ¢/ (x), ¢/)(x). Then the translates and dilates form of biorthogonal
wavelet packet functions for integer j and k € Ny are defined as

W)@ = qFu (T x —v(k)); @®)
D) ) = g2l (p T x — v(k). ©)
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Lemma?2 Forj € Z, letw,(jH) lb(j+1) e H*(K), thenthedlstrzbutlons{qlT [H_l)(p/Jrl
v(k) - k € No), (g3 ; Dpi+lx —v(k)) : k € No} are biorthogonal in H*(K) if and
only if g

2P O @ vy @ ok =1
keNy

Proof Let
ATTR@) = 327 07 + vty @+ )iy @+ o),
keNy
Since w(j H), ﬁ)f,j + € H*(K), then the above series converges almost everywhere and

belongs to LLOC(D).
Moreover, for every [ € Ny, we have

/@ AU za(0)a(0)dg = / SO Oy @by @@ @)ds
- / @O0 Tl e Ome M 00T
“’] @t de
= @ e = v, g Bl e = v

=1ifl=kand AUTD() =1.

Now, we will derive the biorthogonality of these wavelet packets.

Lemma 3 Suppose that w(] ), ~s(j ) e H (K) be biorthogonal wavelets corresponding to a

pair of biorthogonal scaling functions o), 9. Then we have

S mi P e+ pomd T (r + pu(i) = 8y 0<rm<g—1.  (10)
i=0

Proof For0 <ry,r, < g — 1, we have

S = P 7+ 0D (€ + vk, (€ + v(k))

keNo

=Y PO + om0z + pv()$U D (07 + pu(k))
kENO

xmé*“(p@ + puk)P (L + pu(k))

= Z 3P0 @€ + vigk + D)mil P (0g + po(gk + i)

i=0 keNy

x@UHD oz + pu(gk + )i (92 + pulgk + D))P(pE + po(gk + 1))
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Zm£f+”(pc +po@)md ™ (o + pu(i))

X Y P07 €+ v(gk + )GV (pg + pu(gk +1)P(pE + pugk + i)
kENo

Zmy“)(p; + @i (¢ + po(i)).

Biorthogonality of Wavelet Packets at j level

In the following theorems , we obtain the biorthogonality at j'” level.
Theorem2 Let j € Z and k,l,n € Ny. Then

() ~(J) )

<wj’k’,,y

Proof We have

) ~(J) )

<wj,k,n’ wj,l,n

= (g @I — v k). g 0 I — v (1))
=g/ / POD (0 )z (p Oy (9T )54 (p) )

= /K P 06 @B () () @)dE

= /K P e omdpo) “’*”(pc) Y (pe) ~“*”(pc)
X (&) (8)dE
/ > 707 € vnm o + o) e + v

}’LENO

x i (@ ) winy (@ + v (@) (@)dg

f Z 3" P07 @+ vign + im0 + v(gn + i)

i=0 neNy

A(1+1)

X ) (p(C +vign + NI (0 + vign + 1))

~(/+])(p(§ 4+ vign + 1)) (8)»(2)dE

qg—1

=f 220 PO+ pu@) 0y + puG) + v()

i=0 neNy

x w%*"(p; +po@) + vm)m T (pr + po(i))

x I (pe + pu(@) 3 (0) 2 (0)de
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= f@ > m Ve + punmd ™ (g + poi) 7 (§)sa (s
i=0

_ f 54(0)5a(©)dE = 8.
53}

Theorem3 Letn € Nygand 1 <t < g — 1. Then, we have

() = (/)
<wj,k,qn’ wj,l,tJrqn> =0.
Proof With the help of change of variable trick, we have
() ~(J)

jkian WL iqn)

— 3w DT — o). ai oD T — v
={g2wgn (p 7. —v(k), g2 Wy, (0. —v(D)))

_ g /K P OB @ D, (0 ) (91 054 (9 )

(w

= /K P (0T O (i, ()33 (0)dE

= fK 7@ Om oy D0y 00y (00) 502 ()

= /K 7@ iy e (om0 (0050 ()

r
q

= / 3P0+ vm)biht Y (e + )
D q

nENO

x b (& + ve)mg @ + v e +vm)

X 2 ($)#($)de

q—1 ]
= /@ 22 P v+ DN 6@ + vign + i)

i=0 neNy

x w6+ vign +)mg " @ + vign + )

< I (p(2 + v(gn + D)) 5 (0) 2 (0)dE

q—1 )
= /@ 22 P RE vl + pe@ipy (07 + v + pr())

i=0 neNy

< iighy 02 + v+ po@)mg g 4+ v(m) + po(i))

< i (pe + vn) + po(@)) 34 ()34 (0)de
g-1 i
= f@ S m{ Vg + po@nmd T (g + po))a(©)sa©)de
i=0

=0.

[m}

@ Springer



4 Page8of9 Int. J. Appl. Comput. Math (2022) 8:4

Construction of Biorthogonal Wavelet Packets

Using the theory of convolution of Fourier transform, we construct biorthogonal wavelet
packets in H*(K) at j" level in the other form.

Proposition 1 Consider the functions {w, : n > 0} and {w, : n > 0} are biorthogonal
wavelet packets corresponding to the dual MRA {V; : j € Z} and {V; : j € Z} in L2(K).
Then

(W kms Wjtn) 12k = Om,n0k,1s (11)
where w; n () = g 2w, (p~ . —v(k)), ;4 n() = g2, (p~I. —v(k)), k € Nyand j € .

Theorem 4 Let p(.) = y_% ()and wj (), W;jkn(.) as in above proposition. Then

()

~ (j)
(W3 s WSV HS () = Sk1

where wﬁ.{i‘n(.) =pQ) *xwjra(), ﬁ)ﬁ{z’n(.) = p(.) * Wj  »(.) and * denotes convolution
of two functions.

Proof By using convolution theorem and (11), we have
W e B ) 1) = /K PP k()P )10 ()
= [ psn im0
K

=/ij,k,n(X)ﬁJj,z,n(X)dx
= 8k-

m}
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