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Abstract
Finding the eigenvalues of non-self-adjoint boundary value problems is a very difficult
task, especially when the problems are of higher-order or when high-index eigenvalues are
required. In fact, the lack of oscillation theorems of non-self-adjoint problems as well as
the distribution and scatteration of the eigenvalues in the complex plane, makes the com-
putational process of the eigenvalues a strong and difficult challenge. In this paper, we
propose a fast and accurate numerical technique based on the Chebyshev spectral collocation
method for approximating the eigenvalues of fourth-order non-self-adjoint Sturm–Liouville
boundary value problems. This technique transforms the non-self-adjoint problem into a
generalized eigenvalue problem by employing the spectral differentiation matrices to deter-
mine the derivatives of Chebyshev polynomials at the Chebyshev–Gauss–Lobatto nodes.
The excellent performance of the suggested technique is investigated by considering three
numerical examples among which singular ones. The numerical results and comparison with
other methods indicate that this technique is easy to implement, considerably accurate and
requires less computational costs even when high-index eigenvalues are required.

Keywords Fourth-order non-self-adjoint Sturm–Liouville problems · Spectral collocation
method · Chebyshev differentiation matrix · Eigenvalues

Mathematics Subject Classification 65N35 · 34B24 · 47A45 · 34L16

Introduction

Fourth-order non-self-adjoint Sturm–Liouville problems arise in many important scientific
and engineering applications. For example, the problems arise in the stability of hydrody-
namic and magnetohydrodynamics, lasers, electromagnetic scattering and inverse scattering
problems in lossy media, and photonic crystal bres can be modelled mathematically by
non-self-adjoint problems [1–4]. When studying this type of problems, the eigenvalues are
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having particular importance. In fact, the eigenvalues and corresponding eigenfunctions
often give a perfect description of the problem and indicate many exceptional behaviors.
To illustrate, in scattering theory, eigenvalues can be used to obtain useful information on the
physical properties of the scattering targets [5–7]. In mechanical vibrations theory, eigen-
values can be interpreted physically as the transition point between an oscillatory and a
monotonically decaying behavior (see Refs. [8–10] and references therein). In the wavelet
theory, interesting non-classical wavelets can be obtained from eigenfunctions associated
with the eigenvalues and related functions for non-self-adjoint spectral problems [11–13].
Unlike the self-adjoint Sturm-Liouville problems which there are many numerical tech-
niques and several successful software packages available in the literatures for computing
their eigenvalues (see, e.g., [14–22] and references therein), there exist much fewer numerical
techniques for the non-self-adjoint problems. Fundamentally, the lack of oscillation theorems
of non-self-adjoint problems and the distribution and scatteration of the eigenvalues in the
complex plane,makes the computational process of the eigenvalues a strong and difficult chal-
lenge [1,2,23,24]. Some methods have been proposed and analyzed both theoretically and
computationally for second-order non-self-adjoint Sturm-Liouville problems (see, e.g. [24–
28] and references cited therein). There are a few numerical methods on the computation
of eigenvalues of the high-order non-self-adjoint Sturm-Liouville problems (for instance,
see [30–32]). Due to the increasing importance of non-self-adjoint eigenvalue problems, and
their important applications in physical and engineering sciences, there is a requirement to
extend and modified some numerical techniques, so as to be capable to compute eigenvalues
of such problems. In particular, those techniques that allows us to compute eigenvalues of the
high-order non-self-adjoint Sturm-Liouville problems, efficiently. The main objective of this
paper is to provide a numerical technique that can be used to deal directly with fourth-order
non-self-adjoint Sturm-Liouville problems, as well as that it has the capability to calculate
the eigenvalues of singular problem and/or find the high-index eigenvalues with lower cost.
Recently in [19,20], we have proposed a new efficient technique based on Chebyshev differ-
entiation matrix for computing eigenvalues of self-adjoint Sturm-Liouville problems. It has
been shown that those numerical technique has the ability to solve regular and singular self-
adjoint Sturm-Liouville problems, efficiently. Moreover, the technique finds the high index
eigenvalues with high accuracy and less computational costs. On the best of our knowl-
edge there is no Chebyshev differentiation matrices solution to a general class of regular
and singular fourth-order non-self-adjoint boundary eigenvalue problems. In this study, the
principal objective is to extend the scope of implementations of Chebyshev differentiation
matrix technique for the numerical solution of fourth-order non-self-adjoint Sturm-Liouville
problem of the form:

(p1(x)y
′′(x))′′ = (s(x)y′(x))′ + (λw(x) − q(x))y(x), x ∈ (a, b), (1)

in L2
w(a, b) subject to some four point specified conditions at the boundary x ∈ {a, b}on y, y′,

p1(x)y′′ and/or (p1(x)y′′)′−s(x)y′. The cofficients in Eq. (1) are complex-valued, satisfying
p1(x), s(x), q(x) and w(x) are continuous on [a, b] and p1(x), w(x) �= 0,∀x ∈ [a, b] [31].
In this work, both the clamped (CBCs) and the hinged (HBCs) boundary conditions are
considered with Eq. (1):

CBCs:

{
y(a) = 0, y′(a) = 0,
y(b) = 0, y′(b) = 0,

(2)

or

HBCs:

{
y(a) = 0, y′′(a) = 0,
y(b) = 0, y′′(b) = 0.

(3)
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Furthermore, combinations of boundary conditions (2) and (3) are possible. In (1) the param-
eter λ is a spectral parameter, L2

w(a, b) is the weighted Hilbert space of all Lebesgue

measurable complex-valued functions f on (a, b) satisfying
∫ b
a | f (x)|2w(x)dx < ∞ with

the inner product

( f , g) =
∫ b

a
f (x)g(x)w(x)dx, (4)

and norm

‖ f ‖L2
w(a,b) =

(∫ b

a
| f (x)|2w(x)dx

)1/2

. (5)

When the problem (1)–(2) and/or (3) is singular, either because (a, b) is an infinite interval or
because one or more of the coefficients functions (mean one of p1(x), s(x), q(x) and w(x)
in (1)) is badly behaved near an endpoint, we must use an interval truncation procedure [33],
then apply our numerical technique to compute the eigenvalues of the resulting problem. In
this technique the derivative of Chebyshev polynomials at grid points can be determined by
using the spectral differentiation matrices and then converts the non-self-adjoint problem (1)
into a generalized eigenvalue problem. The efficiency and precision of our technique is
reflected in its ability to deal with regular and singular problems, adaptability to handle
general types of boundary conditions and accuracy of the estimates of eigenvalues with less
computational costs even when the high index eigenvalues are computed. We will apply
the technique to three different numerical examples among which singular ones, firstly, to
demonstrate the accuracy and efficiency of the technique, the eigenvalues of a singular fourth-
order non-self-adjoint problem which has exact solution are computed. The famous problem
in the hydrodynamic stability, which is known by the Orr-Sommerfeld equation (frequently
used as test example in the engineering literature), will be our second test problem. The final
test problem is the square of the anharmonic oscillator problem. The remaining structure
of this paper is organized as follows: The Chebyshev polynomials are briefly described
in Sect. 2.1. In Sect. 2.2 the Chebyshev spectral collocation technique is introduced and
explained by applying it to solve fourth-order non self-adjoint Sturm-Liouville problems.
Convergence and stability of technique is summarized in Sect. 2.3. To examine the accuracy
and efficiency of the technique, three numerical experiments are discussed inSect. 3. Section 4
includes our conclusions

Chebyshev Spectral Collocation Technique

In this section, we investigate the application of the Chebyshev spectral collocation method
for the calculation of the eigenvalues of the fourth-order non-self-adjoint Sturm-Liouville
problems (1)–(2) or (1)–(3). We recall that, by using the following change of independent
variable:

x = b − a

2
(X + 1), x ∈ [a, b] −→ X = 2x

b − a
− 1, X ∈ [−1, 1], (6)

the interval [a, b] can be transformed into [−1, 1]. If (a, b) is an infinite interval, then an
interval truncation procedure must be adopted. Fourth-order non-self-adjoint problem (1)
can be numerically solved using the spectral collocation method. In that case, the spectral
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representation of eigenfunction y(x) of this problem can be expanded as:

y(x) =
n∑
j=0

ŷ j (x)Tj (x), (7)

where {Tj (x)} is a sequence of orthogonal polynomials of of degree ≤ n and ŷ j is the set
of coefficients to be determined. Here, Chebyshev polynomials of the first kind are used to
expand the solution of problem (1). Before getting into this topic of using Chebyshev poly-
nomials in the spectral representation of solution, let’s briefly summarize some of important
properties of these type of orthogonal polynomials.

The Chebyshev Polynomials of the First Kind

Definition 1 The Chebyshev polynomials of the first kind, Tn(x) of order n, are the eigen-
functions of the singular self-adjoint Sturm-Liouville problems

√
(1 − x2)

(√
(1 − x2)T ′

n(x)
)′ + n2Tn(x) = 0, (8)

where x ∈ (−1, 1). If Tn(x) is normalized so that Tn(1) = 1, then

Tn(x) = cos(nθ), θ = cos−1x . (9)

From this representation, it is clear that the Chebyshev polynomials are cosine functions after
a change of variable. This is the main reason of their widespread popularity in the numeri-
cal estimation of non-periodic boundary value problems [34–36]. The recursive relation of
Chebyshev polynomials is the following:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x). (10)

Some properties of the Chebyshev polynomials are

|Tn(x)| ≤ 1, x ∈ [−1, 1], (11)

|T ′
n(x)| ≤ n2, x ∈ [−1, 1], (12)

Tn(±1) = (±1)n, (13)

T ′
n(±1) = (±1)n+1n2. (14)

More properties of this sequence of polynomials can be found in Refs. [34–39] and references
therein.

The Chebyshev DifferentiationMatrices Technique

In this subsection,we are interested in applying the spectral differentiationmatrices technique
to solve the fourth-order non-self-adjoint Sturm-Liouville problems. At first, let us rewrite
Eq. (1) in the following form

y(4) + 2L1(x)y
′′′ + L2(x)y

′′ − S(x)y′ + Q(x)y = λW (x)y,−1 < x < 1, (15)

where L1(x) = p′
1(x)

p1(x)
, L2(x) = p′′

1 (x)−s(x)
p1(x)

, S(x) = s′(x)
p1(x)

, Q(x) = q(x)
p1(x)

and W (x) = w(x)
p1(x)

are defined on the interval of−1 ≤ x ≤ 1. Now let us consider the basis functions Tj that are
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Chebyshev polynomials of degree ≤ N satisfying Tj (xk) = δ j,k for the Chebyshev-Gauss-
Lobatto nodes xk [19,20,34–36]:

xk = cos

(
kπ

N

)
, 0 ≤ k ≤ N , (16)

which are the extrema of the Chebyshev polynomial Tj on the interval [−1, 1]. Therefore,
the spectral differentiation matrix for the collocation points can be obtained by interpolating
a polynomial P(x) through the collocation points, namely the polynomial

P(x) =
N∑
j=0

Tj (x)y j (x), (17)

which agrees with y(x) at the N +1 interior collocation points xk, 0 ≤ k ≤ N given in (16),
i.e.

P(x) = y, (18)

where x = (x0, x1, · · · , xN )T and y = (y0, y1, · · · , yN )T . Then the d-th derivative of the
interpolating polynomial P(x) at the nodes is given by [19,20]

P(d)(x) = D(d)y, (19)

where the i, j-th element of the differentiation matrices D(d) is T (d)
j (xi ), 0 ≤ i, j ≤ N . For

each N ≥ 1, let the rows and columns of the (N + 1) × (N + 1) Chebyshev differentiation
matrix D(1)

N be indexed from 0 to N . Then the entries of the matrix are [19,20,40]

(D(1)
N )00 = 2N 2 + 1

6
, (D(1)

N )NN = −2N 2 + 1

6
,

(D(1)
N ) j j = −x j

2(1 − x2j )
, j = 1, · · · , N − 1,

(D(1)
N )i j = ci

c j

(−1)i+ j

(xi − x j)
, i �= j, j = 1, · · · , N − 1, (20)

where

ci =
{
2, i = 0 or N
0, otherwise.

Evaluating Eq. (15) at each interior node xk , k = 0, 1, · · · , N , leads to

y(4)(xk) + 2L1(xk)y
′′′(xk) + L2(xk)y

′′(xk) − S(xk)y
′(xk)

+Q(xk)y(xk) = λW (xk)y(xk). (21)

As mentioned in Eq. (18), the interpolating polynomial P(x) is known to be satisfy Eq. (15)
at all N+1 collocation points. Consequently, we will get the following collocation equations

P(4)(xk) + 2L1(xk)P
′′′(xk) + L2(xk)P

′′(xk) − S(xk)P
′(xk)

+Q(xk)P(xk) = λW (xk)P(xk). (22)

Here, we recall that the

P
′′′
(x) =

N−1∑
j=1

T
′′′
j (xk)y j , (23)
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and

P(4)(x) =
N−2∑
j=1

T (4)
j (xk)y j . (24)

In addition, for the clamped boundary conditions (2), we have
{
P(−1) = P ′(−1) = 0,
P(1) = P ′(1) = 0,

(25)

and for the hinged boundary conditions (3), we get
{
P(−1) = P ′′(−1) = 0,
P(1) = P ′′(1) = 0,

(26)

where P ′′(−1) = ∑N
j=1 T

′′
j (−1)y j and P ′′(1) = ∑N

j=1 T
′′
j (1)y j . Rewriting Eq. (22) in the

differentiation matrix form, we get
(
D(4) + 2L̂1D

(3) + L̂2D
(2) − ŜD(1) + (Q̂ − λŴ )

)
y = 0, (27)

where L̂1 = diag(L1), L̂2 = diag(L2), Ŝ = diag(S), Q̂ = diag(Q) and Ŵ = diag(W ).
The boundary conditions in (25) and (26) are modelled in the following forms respectively

{
Ily = D(1)

l y = 0,
Iry = D(1)

r y = 0,
(28)

and {
Ily = D(2)

l y = 0,
Iry = D(2)

r y = 0,
(29)

where indices l and r are represented boundary conditions at endpoints−1 and 1, respectively.
Inserting four boundary conditions (28) or (29) into (27), yields the following generalized
eigenvalue problems

⎛
⎜⎜⎜⎜⎝

D(4) + 2L̂1D(3) + L̂2D(2) − ŜD(1) + Q̂
Il

D(1)
l
Ir

D(1)
r

⎞
⎟⎟⎟⎟⎠ y = λ

⎛
⎜⎜⎜⎜⎝

Ŵ I
0T

0T

0T

0T

⎞
⎟⎟⎟⎟⎠ y, (30)

or
⎛
⎜⎜⎜⎜⎝

D(4) + 2L̂1D(3) + L̂2D(2) − ŜD(1) + Q̂
Il

D(2)
l
Ir

D(2)
r

⎞
⎟⎟⎟⎟⎠ y = λ

⎛
⎜⎜⎜⎜⎝

Ŵ I
0T

0T

0T

0T

⎞
⎟⎟⎟⎟⎠ y, (31)

respectively. Now, the approximate eigenvalues of non self-adjoint problem (1)–(2) or (1)–(3)
can be obtained by solving the generalized eigenvalue problem (30) or (31).
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Convergence Behavior and Error Estimate

In this subsection, we briefly summarize the convergence and stability of the proposed
technique for estimating the eigenvalues of fourth-order non-self-adjoint Sturm-Liouville
problems that outlined in the previous subsection. First, let us denote by PN be the set of
Chebyshev polynomials {Tn(x)} of degree ≤ N . Note that, these polynomials are orthogo-
nal over the interval [−1, 1] with respect to a weight function w(x) = 1√

1−x2
, namely, for

naturals n and m ∫ 1

−1
Tn(x)Tm(x)w(x)dx = 0, i f n �= m. (32)

The classical Weierstrass theorem and the results reported in Ref. [11,41–45] about systems,
whose constituent functions are complex valued implies that such a system is complete in
the space L2

w(−1, 1). This space is the space of functions f (x) over the interval (−1, 1) such
that satisfying

∫ 1

−1
| f (x)|2w(x)dx < ∞. (33)

We see that the space L2
w(−1, 1) with the inner product

( f , g) =
∫ 1

−1
f (x)g(x)w(x)dx, (34)

and norm

‖ f ‖L2
w(−1,1) =

(∫ 1

−1
| f (x)|2w(x)dx

)1/2

, (35)

is a Hilbert space. Now if the y(x) ∈ L2
w(−1, 1) is a solution of fourth-order non self-adjoint

problem (1), then the Chebyshev series expansion of y(x) is

y(x) =
∞∑
j=0

ŷ j (x)Tj (x), where ŷ j = (y, Tj )

‖Tj‖2L2
w(−1,1)

. (36)

Therefore, if the solution y(x) in (36) is truncated up to the N th terms, then the approximate
solution can be written as

PN y(x) =
N∑
j=0

ŷ j (x)Tj (x). (37)

Take into account the orthogonality property (32) of Chebyshev polynomials {Tn(x)} implies
that the PN y is the orthogonal projection of y on P, that is,

(PN y, T ) = (y, T ), ∀ T ∈ PN . (38)

Moreover, from completeness property of the polynomials {Tn(x)} it follows that
‖ y − PN y ‖L2

w(−1,1)→ 0, as N → ∞, (39)

for all y ∈ L2
w(−1, 1). In fact, the convergence and stability of this technique can be deter-

mined based on the convergence behavior of the truncated Chebyshev series (37). Therefore,
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to survey the approximation properties of the Chebyshev projection (37) in a weighted
Sobolev space:

Hm
w (−1, 1) := {y ∈ L2

w(−1, 1) : y(k) ∈ L2
w(−1, 1), 0 ≤ k ≤ m}, (40)

equipped with the following norm

‖y‖Hm
w (−1,1) =

(
m∑

k=0

‖y(k)‖2L2
w(−1,1)

)1/2

=
(

m∑
k=0

∫ 1

−1
|y(k)(x)|2w(x)dx

)1/2

, (41)

we can give the following definition which is a fundamental condition to the convergence
of the approximate solution of the system (1) generated by using the Chebyshev spectral
collocation technique.

Definition 2 Suppose that PN y is the truncated Chebyshev series given in (37) as an approx-
imate to the exact solution y(x) of the system (1) for all x ∈ (a, b) or X ∈ (−1, 1) generated
by using current technique, then this numerical technique converges if

lim
N→∞ ‖ y − PN y ‖L2

w(−1,1)= 0.

Following [36,46–48]), the truncation error obtained by the use of the truncated Chebyshev
series PN y (37) to approximate y(x) in Hilbert space norms (35) is given by:

Theorem 1 Let PN y is the truncated Chebyshev series of y, then the truncation error ‖
y − PN y ‖ for all y ∈ L2

w(−1, 1), m ≥ 0 can be estimated as follows

‖ y − PN y ‖L2
w(−1,1)≤ CN−m ‖ y(m) ‖L2

w(−1,1), (42)

where the constant C independent of N and depends on m.

Moreover, we can estimate the truncation error y − PN y in Sobolev norms (41) as follows:

Theorem 2 Let PN y is the truncated Chebyshev series of y in the weighted Sobolev space
Hm

w (−1, 1), then

‖ y − PN y ‖Hm
w (−1,1)≤ CNk−m ‖ y(m) ‖L2

w(−1,1), (43)

for any m ≥ 0 and any 0 ≤ k ≤ m.

Thus, the proposed technique gives spectral accuracy; that is, the accuracy depends upon
the smoothness of the functions being interpolated. If the eigenfunction y(x) belongs to
C∞−class, then the produced error of approximation ‖ y − PN y ‖→ 0, as N → ∞ with
exponential convergence rate O(e−CN ), for someC > 0. On the other hand, it is well known
that the proposed technique in the current work can be considered as the hp-version of the
finite element method (see [19,49–53]). So, by adopting this process, we would expect an
estimate of the error of the n-th eigenvalue due to truncation of the Chebyshev series up to
the N th terms of the form O(n pe−CN ).
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Numerical Results and Discussion

In this section, to demonstrate the accuracy, efficiency and reliability of the numerical tech-
nique that outlined in the previous section, three of themore interesting and difficult examples
in the hydrodynamic and engineering literature, including singular ones such as the Orr-
Sommerfeld equations and square of the anharmonic oscillator problem are presented and
discussed. All of the computational experiments were implemented usingMATLABR2014a,
running in an Intel (R) Core (TM) i3-8145U CPU@ 2.10 GHz, equipped with 4 GB of Ram.

Example 1 Consider the singular fourth-order non-self-adjoint Sturm-Liouville problem
(Taken from [31])

{(
− d2

dx2
+ x2

) (
− d2

dx2
+ x2 + i

)
y(x) = λy(x), x ∈ [0,∞),

y(0) = y′′(0) = 0.
(44)

We will consider the truncated problem over the interval [0, b∗] for various b∗ and compute
the eigenvalues of

{(
− d2

dx2
+ x2

) (
− d2

dx2
+ x2 + i

)
y(x) = λy(x), x ∈ [0, b∗],

y(0) = y′′(0) = 0, y(b∗) = y′′(b∗) = 0.
(45)

Now, let us rewrite (45) in the following form
⎧⎨
⎩

y(4)(x) − (
2x2 + i

)
y′′(x) − 4xy′(x) + (

x4 − 2 + i x2
)
y(x)

= λy(x), x ∈ [0, b∗],
y(0) = y′′(0) = 0, y(b∗) = y′′(b∗) = 0.

(46)

Then, by the change of variables x = b∗
2 (X + 1), X ∈ [−1, 1], this problem becomes

⎧⎪⎨
⎪⎩

16
b∗4 Y

(4)(X) − 4
b∗2 L2(X)Y ′′(X) − 2

b∗ S(x)Y ′(X) + Q(X)Y (X)

= λY (X), X ∈ [−1, 1],
Y (−1) = b∗2

4 Y ′′(−1) = 0, Y (1) = b∗2
4 Y ′′(1) = 0,

(47)

where L2(X) = (b∗(X + 1) + i), S(X) = 2b∗(X + 1) and Q(X) = ( b
∗
2 (X + 1))4 − 2 +

i( b
∗
2 (X + 1)). In this case the collocation equation is

16

b∗4 P
(4)(xk) − 4

b∗2 L̂2(xk)P
′′(xk) − 2

b∗ Ŝ(xk)P
′(xk) + Q̂(xk)P(xk) = λP(xk). (48)

The differentiation matrix relation can be written as(
16

b∗4 D
(4) − 4

b∗2 L̂2D
(2) − 2

b∗ ŜD
(1) + (Q̂ I − λI )

)
y = 0, (49)

wher L̂2(xk) = diag(L2(xk)), Ŝ(xk) = diag(S(xk)) and Q̂(xk) = diag(Q(xk)). The
boundary conditions are modeled in the following form

Ily = 4

b∗2 D
(2)
l y = 0, Iry = 4

b∗2 D
(2)
r y = 0. (50)
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Combining Eqs. (49) and (50), we get the following generalized eigenvalue problem
⎛
⎜⎜⎜⎜⎜⎝

16
b∗4 D

(4) − 4
b∗2 L̂2D(2) − 2

b∗ ŜD(1) + Q̂ I
Il

4
b∗2 D

(2)
l

Ir
4
b∗2 D

(2)
r

⎞
⎟⎟⎟⎟⎟⎠
y = λ

⎛
⎜⎜⎜⎜⎝

I
0T

0T

0T

0T

⎞
⎟⎟⎟⎟⎠ y. (51)

Solving generalized eigenvalue problem (51), gives the eigenvalues of the problem (44).
Table 1 lists the first twenty computed eigenvalues of the problem (44) together with the
related absolute error and those results reported in Ref. [31]. The exact eigenvalues of prob-
lem (44) are given by

λn = (4n + 3)(4n + 3 + i), n = 0, 1, 2, · · · . (52)

From Table 1, one can see that there are variations in of the number of exact calculated
eigenvalues based on the number of grid points N and the truncated interval [0, b∗] used in
each time. It is observed that, we can calculate the exact values of the first ten and eighteen
eigenvalues by using N = 60, 70 respectively, over the truncated interval [0, 10], whereas,
calculating the exact values of the first twenty eigenvalues requires the use of N = 115 and a
truncated interval [0, 20] (see column fourth, Table 1).Here, itmust be noted that by following
this procedure, the approximate value of λ11 in the second column (i.e. when N = 60 over
[0, 10]) is 2208.99331791665+47.000003747952i , while the approximate value of λ18 with
N = 70 over [0, 10] and λ20 with N = 115 over [0, 20] in the third and fourth columns are
5625.01804856698 + 75.0000917969447i and 6888.96815509742 + 83.0000085573244i
respectively. So, the accuracy can be improved by increasing the number of Chebyshev
collocation nodes N and/or choosing the appropriate truncated interval [0, b∗]. In Table 2,
we introduce the results of numerical experiments for high index eigenvalues on this problem
and the related absolute error. As documented in Table 2, in order to get the exact values
of the high-index eigenvalues, we must increase N and choosing the appropriate truncated
interval [0, b∗]. Numerical results in Tables 1 and 2 show the high performance of the current
technique. Figure 1 displays the eigenvalues computed by truncating [0,∞) to [0, 20] and
using N = 150.

Example 2 (Orr-Sommerfeld problem) The Orr-Sommerfeld problem, in hydrodynamic sta-
bility, is an eigenvalue problem describing the linear modes of perturbation to a viscous
parallel flow. This problem may be written as:⎧⎪⎨

⎪⎩

( − d2

dx2
+ α2

)2
y(x) + iαReU (x)

{( − d2

dx2
+ α2

)
y(x) +U ′′(x)y(x)

}
= αRe λ

( − d2

dx2
+ α2

)
y(x), x ∈ [−1, 1],

y(−1) = y′(−1) = 0, y(1) = y′(1) = 0,

(53)

where α ∈ R is a wave number, Re is the Reynolds number, U (x) is a real-valued function
representing the undisturbed stream velocity, and the wave speed λ is the spectral parame-
ter [30,40,54–56].

Here, we consider that U (x) = 1 − x2 and α = 1 which gives⎧⎨
⎩

(
y(4)(x) − 2y′′(x) + y(x)

) + i Re
(
1 − x2

)( − y′′(x) + y(x)
)

−i Re y(x) = Re λ
( − y′′(x) + y(x)

)
,

y(−1) = y′(−1) = 0, y(1) = y′(1) = 0.
(54)
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Table 2 Computation of some high eigenvalues of the problem in Example 1 over [0, b∗]
n λn Abs. Err. N b∗ n λn Abs. Err. N b∗

0 9 + 3i 0 150 20 170 466489 + 683i 0 500 30

20 6889 + 83i 0 150 20 180 522729 + 723i 0 500 30

30 15129 + 123i 0 150 20 200 644809 + 803i 0 500 30

35 20449 + 143i 0 150 20 210 710649 + 843i 0 500 30

37 22801 + 151i 0 150 20 212 724201 + 851i 0 500 30

CPU TIME 0.060670 seconds CPU TIME 0.940698 seconds

40 26569 + 163i 0 200 20 213 731025 + 855i 0 600 40

50 41209 + 203i 0 200 20 215 744769 + 863i 0 600 40

60 59049 + 243i 0 200 20 218 765625 + 875i 0 600 40

70 80089 + 283i 0 200 20 220 779689 + 883i 0 600 40

71 82369 + 287i 0 200 20 225 815409 + 903i 0 600 40

72 84681 + 291i 0 200 20 229 844561 + 919i 0 600 40

CPU TIME 0.098919 seconds CPU TIME 1.681647 seconds

80 104329 + 323i 0 300 20 230 851929 + 923i 0 700 40

85 117649 + 343i 0 300 20 240 927369 + 963i 0 700 40

89 128881 + 359i 0 300 20 250 1006009 + 1003i 0 700 40

CPU TIME 0.208779 seconds 260 1087849 + 1043i 0 700 40

90 131769 + 363i 0 400 30 270 1172889 + 1083i 0 700 40

100 162409 + 403i 0 400 30 280 1261129 + 1123i 0 700 40

110 196249 + 443i 0 400 30 290 1352569 + 1163i 0 700 40

120 233289 + 483i 0 400 30 299 1437601 + 1199i 0 700 40

130 273529 + 523i 0 400 30 300 1447209 + 1203i 0 700 40

140 316969 + 563i 0 400 30 301 1456849 + 1207i 0 700 40

150 363609 + 603i 0 400 30 302 1466521 + 1211i 0 700 40

160 413449 + 643i 0 400 30 303 1476225 + 1215i 0 700 40

161 418609 + 647i 0 400 30 304 1485961 + 1219i 0 700 40

CPU TIME 0.458471 seconds CPU TIME 2.783854 seconds

Rewriting (54) into (15) form, leads to

{
y(4)(x) − L2(x)y′′ + Q(x)y(x) = Re λ(−y′′(x) + y(x)),
y(−1) = y′(−1) = 0, y(1) = y′(1) = 0,

(55)

where Q(x) = (
1 + i Re(1 − x2) − 2i Re

)
and L2(x) = (

2 + i Re (1 − x2)
)
. Nowwe trans-

form the eigenvalue problem (55) to a generalized eigenvalue problem. To this end, we use the
same procedure as we did in Example 1, except the boundary conditions which are modeled
by the equations

Ily = D(1)
l y = 0, Iry = D(1)

r y = 0. (56)
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Fig. 1 The eigenvalues of the problem in Example 1 over truncated interval [0, 20] with N = 150

Then problem (55) is equivalent to the following generalized eigenvalue problem
⎛
⎜⎜⎜⎜⎝

D(4) − L̂2D(2) + Q̂ I
Ir

D(1)
r

Il
D(1)
l

⎞
⎟⎟⎟⎟⎠ y = Re λ

⎛
⎜⎜⎜⎜⎝

−D(2) + I
0T

0T

0T

0T

⎞
⎟⎟⎟⎟⎠ y, (57)

where L̂2(xk) = diag (L2(xk)) and Q̂(xk) = diag (Q(xk)). Table 3 shows the first twenty-
five computed eigenvalues of the problem (53). For comparison, the author solved this
problem using the method described by Trefethen in [40] and those described by Weideman
and Reddy in [55]. As it is shown in the Table 3, there is an excellent agreement between the
results of the current work and the results of Refs. [40,55], but from the last row we can see
that the CPU time for the proposedmethod in this work has less cost than those resulting from
the use of the program 40 [40] and the MATLAB program was given in Table XVII [55].
The graph of the calculated eigenvalues of the problem (53) are shown in Fig. 2.

Example 3 (Square of the anharmonic oscillator) Our final test problem is the square of
the anharmonic oscillator [32], namely the following singular fourth-order non-self-adjoint
problem:

l2y(x) = λy(x), x ∈ [0,∞), (58)

in which

ly(x) = −d2y

dx2
+ (1 + 3i)x2y, (59)

with the boundary conditions

y(0) = y′(0) = 0. (60)
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Fig. 2 The eigenvalues of the Orr-Sommerfeld problem with Reynolds number Re = 5772, wave number
α = 1 and N = 151

Here we shall use interval truncation and compute the eigenvalues of the following problem
over the truncated interval [0, b∗]⎧⎨

⎩
y(4)(x) − (

L1(x) + L2(x) − L3(x)
)
y′′(x) − (

S1(x) + S2(x)
)
y′(x)+(

Q1(x) − 2 − 6i
)
y(x) = λy(x), x ∈ [0, b∗],

y(0) = y′(0) = 0, y(b∗) = y′(b∗) = 0,
(61)

where L1(x) = x2, L2(x) = 3i x2, L3(x) = (1 + 3i)x2, S1(x) = 4x, S2(x) = 12i x and
Q(x) = (1 + 3i)x2. As in [32] we shall take b∗ = 30.
The square of the anharmonic oscillator problem (58), under the change of variable x =
30
2 (X + 1), becomes

⎧⎨
⎩

16
304

Y (4)(X) − 4
302

(
L1(X) + L2(X) − L3(X)

)
Y ′′(X) − 2

30

(
S1(X)

+S2(X)
)
Y ′(X) + (

Q1(X) − 2 − 6i
)
Y (X) = λY (X), X ∈ [−1, 1],

Y (−1) = 2
30Y

′(−1) = 0, Y (1) = 2
30Y

′(1) = 0.
(62)

Using the same procedure as we did in the previous two examples, leads to the following
generalized eigenvalue problem⎛

⎜⎜⎜⎜⎜⎜⎜⎝

16
304

D(4) − 4
302

(
L̂1 + L̂2 − L̂3

)
D′′ − 2

30

(
Ŝ1 + Ŝ2

)
D′

+(
Q̂ − 2 − 6i

)
I

Il
2
30D

(1)
l

Ir
2
30D

(1)
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
y = λ

⎛
⎜⎜⎜⎜⎝

I
0T

0T

0T

0T

⎞
⎟⎟⎟⎟⎠ y, (63)

where L̂1(xk) = diag(L1(xk)), L̂2(xk) = diag(L2(xk)), L̂3(xk) = diag(L3(xk)),
Ŝ1(xk) = diag(S1(xk)), Ŝ2(xk) = diag(S2(xk)) and Q̂(xk) = diag(Q(xk)). By truncating
interval [0,∞) to [0, 30] and by using N = 164, 192, 224 and 256, we obtained the results
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Fig. 3 The eigenvalues of the square of the anharmonic oscillator problem obtained by truncating [0, ∞) to
[0, 30] and imposing Dirichlet boundary conditions at both ends

summarized in the second to fifth columns of Table 4. The final column of Table 4 con-
tains some numerical results reported in Ref. [32]. It should be noted here that the results in
Table 4 does not include all approximate value of eigenvalues obtained by truncating [0,∞)

to [0, 30] and using N = 164, 192, 224, 256, only high-accuracy results are included. For
illustration, by using N = 164, we get λ6 = 576.001102491999 + 1728.00174592563i ,
when N = 194, we get λ10 = 1599.99326435074 + 4799.98661567798i , but when
N = 224, we get λ14 = 3136.00685088521 + 9408.00461319592i , with N = 256, then
λ17 = 4624.00706180033 + 13871.9956404672i . In Figure 3 we introduce the results of
numerical experiments on this problem attained by truncating [0,∞) to [0, 30] and N = 256
with Dirichlet boundary conditions y(0) = y′(0) = 0 and y(30) = y′(30) = 0. Numerical
results further demonstrate the superior performance of the current technique.

Conclusion

In this paper, an effective technique based on the Chebyshev spectral collocation approach
has been applied to numerically approximate the eigenvalues of the fourth-order non-self-
adjoint Sturm-Liouville problems. This approach converts the non-self-adjoint problem into
a generalized eigenvalue problem based on utilizing the spectral differentiation matrices to
compute derivatives of Chebyshev interpolating polynomials at interior nodes. The most
salient features of this approach is not only has the ability to solve regular and singular
non-self-adjoint problems efficiently, but also has ability to deal with different types of
the boundary conditions. Another advantage is the fact that this approach is considerably
accurate, computationally convenient and requires less computational costs even when high
index eigenvalues are needed.
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