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Abstract
In this paper, a numerical investigation about mixed convection heat transfer mechanisms
in a two-dimensional square cavity is conducted. A double population lattice Boltzmann
approach was used to simulate flow inside a square cavity for natural and mixed convection
for a range of flow conditions. Such flows are commonly simulated in literature with an
additional distribution functionwhich represents temperature as a passive scalar.Nonetheless,
in our work this function represents the total energy field. This paper aims at investigating the
ability of this set of tools to correctly predict and capture buoyancy and shear stress effects
in the studied fluid flow problem. Streamlines, isotherm lines, shear stresses and average
Nusselt numbers are investigated for different mixed convection parameters (Richardson
number). A good agreement is observed between our results and other works from literature,
including those based on traditional methods such as finite differences and finite volumes.
Comparisons suggest that the adopted approach in this study shows good accuracy and
efficiency for simulations of lid-driven cavities.
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Introduction

The lattice Boltzmannmethod (LBM) has attracted much attention in the last decade, and has
been considered an alternative approach for modeling and solving several physics and engi-
neering problems. Initially developed from lattice gas automata (LGA) method [34], LBM
can also be seen as a discrete version of the Boltzmann equation, which is a mesoscopic
approach to study the behavior of a group of particles. Important governing phenomena in
fluid mechanics such as mass and momentum conservation equations are well simulated by
LBM. Therefore, LBM has shown to be an efficient tool for simulating transport phenomena
problems [6,20,25]. Furthermore, researchers have been working on different techniques to
use LBM to simulate a wide range of problems, such as multiphase flows [14,22], com-
pressible flows [3,18], and porous media [11,23], among others. Also, LBM has shown to
be well-suited for parallel computing due to its high locality, and several implementations
under homogeneous and heterogeneous system with central processing units (CPUs) and/or
graphics processing units (GPUs) [8,13,16,30,32].

One of the difficulties that arise when using LBM to solve engineering problems is a
well-suited model for addressing energy conservation. Many efforts have been made to solve
thermal fluid problems, and researchers have used different approaches. One may separate
these in three groups: multispeed approach, double population approach and hybrid approach
[7,12,21].

The multispeed approach is an extension of athermal LBM, in which a single velocity
distribution function (VDF) is used. However, in order to correctly capture thermal effects,
one should consider a higher number of particle speeds than athermal LBM [12,21]. Some
drawbacks that this approach presents are higher computational resources requirements and
severe instabilities. For these reasons, some authors argue that it is not an advantageous
approach.

The double population approach, as the name itself suggests, utilizes two distribution
functions, one for the velocity field and another one for the temperature or an energy related
variable. This approach exhibits good numerical stability and an easily adjustable Prandtl
(Pr) number [12]. However, most studies consider temperature as a passive scalar, under
assumption that viscous dissipation and compression work are negligible. To overcome this,
different strategies have been developed to include these effects under double population
framework.

In fact, strategy proposed by [12] is used in the present work. In their model, second
distribution function is related to total energy instead of temperatures and both compression
work and viscous dissipation are easily incorporated through source terms, related to velocity
distribution function, in the collision step. This strategy simplifies inclusion of complicated
spatial gradient terms, which are usually computed through finite differences or similar
schemes in earlier approaches. Although some authors argue that double distribution function
approach is not very effective [7,21], several works have shown good results regarding natural
and mixed convection in a square cavity, mostly using passive scalar or internal energy
extension approaches [1,2,5,9,17,29,33].

The hybrid approach presents some similarity to double population approach, once veloc-
ity fields are still solved by LBM, but now, energy equation is numerically solved by different
methods, such as finite differences or finite-volumemethods. Lallemand and Luo [21] argues
that this approach allows one to avoid inherent LBM instabilities and since these cannot be
eliminated even by increasing the number of speeds, they claim this to be the best alternative
to simulate thermal fluid flows.
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To take advantage of parallel characteristics of LBM, we chose to use double distribution
function approach in this paper, by implementing traditional collision and streaming steps
in a GPU. First, a validation is conducted for classical natural convection in a square cavity,
and results show a good agreement with benchmark solutions from literature. Afterwards,
numerical experiments regarding different mixed convection flow conditions are conducted
in a 2D lid-driven square cavity. Main contribution of this paper is employment of a dou-
ble population thermal LBM, developed by [12], for modeling a two-dimensional mixed
convection cavity flow problem.

This paper is organized as follows. Section 2 presents the macroscopic flow governing
equations for the problems studied, and the assumptions made to derive them. In Sect. 3, the
numerical thermal LBM is presented for the two dimensional case, using the D2Q9 lattice
model, as well as the boundary conditions implemented to assure macroscopic conditions
in the boundary regions. In Sect. 4, numerical procedures employed, namely algorithm,
grid dependency tests, shear stresses calculation, stopping criterion and code development
and running times, are described. In Sect. 5, results obtained and respective discussions are
presented. Finally, conclusions from results are presented.

Problem Formulation

Physical problems under consideration are schematically shown in Fig. 1. First, natural
convection in a two-dimensional square cavity of side L is addressed, in which two sidewalls
are kept at distinct temperatures Th and Tc (such that Th > Tc), while bottom and top walls
are considered to be adiabatic. Also, for this case, all velocity components are considered to
be zero on the boundaries (U0 = 0).

In second problem, a constant upward velocity U0 is taken into account at the left wall of
square cavity. Furthermore, flow is investigated either when the moving wall is maintained
at Tc or at Th . Accordingly, it is expected to observe flow regimes where buoyancy effects
either aid or oppose to rotating flow driven by the moving wall.

In both problems, flow is considered to be two-dimensional, steady, laminar with constant
fluid properties, except for the density. This property depends on temperature so that buoy-
ancy term of momentum equation in vertical direction (i.e. gravitational force field direction)
is modeled by invoking Boussinesq approximation. This procedure is valid when the tem-
perature difference ΔT = Th − Tc is small compared to the average temperature T0. Viscous
dissipation and compression work are considered negligible in the energy conservation equa-
tion. Under these assumptions, the governing equations for mass (i.e. continuity), momentum
and energy conservation can be written as:

∇ · u = 0, (1a)

∇ · (ρuu) = −∇p + ∇ ·
[
μ

(
(∇u) + (∇uT ) − (∇ · u)I

)]
+ ρg[1 − β(T − Tref)],

(1b)

∇ · (uT ) = ∇ · (α∇T ), (1c)

where u = (u, v) is the 2D velocity vector comprised by, respectively, horizontal u and
vertical v components, ρ stands for density, α is the thermal diffusivity, p stands for pressure,
β is the thermal expansion coefficient, g is the acceleration due to gravity force field, T is the
temperature, μ is the dynamic viscosity and subscript ref stands for reference temperature.
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Fig. 1 Schematic representation and boundary conditions for natural (U0 = 0) andmixed convection problems
(U0 > 0)

The lid-driven square cavity problem is a well known benchmark problem since it can be
employed for distinct practical applications. This kind of flow occurs in coating industries,
e.g. producing photographic paper. For this case, field inside cavity has influence on final
coating quality [31]. Another application is in electronic systems cooling, since the cav-
ity configuration presents some interesting properties against leakage [27]. Other industrial
applications are seen in in chemical processes [19], lubrication grooves in roller bearings,
and other cooling systems such as nuclear reactors [4].

Methodology

Lattice BoltzmannMethod

In order to solve problems described in previous sections, thermal lattice Boltzmann method
(LBM) proposed by [12] is employed. Briefly, this method is described by the evolution in
time of two distribution functions: the velocity distribution function f (VDF), related to mass
and momentum conservation quantities, and the total energy distribution function h (EDF),
related to flow total energy conservation.

Time evolution of discretized distribution functions fi and hi are described as follows:

fi (x + ciΔt, t + Δt) − fi (x, t) = −ω f
[
fi (x, t) − f eqi (x, t)

] + Δt
(
1 − ω f

2

)
Fi , (2a)

hi (x + ciΔt, t + Δt) − hi (x, t) = −ωh
[
hi (x, t) − heqi (x, t)

]

+Zi (ωh − ω f )

(
fi (x, t) − f eqi (x, t) + Fi

Δt

2

)
Δt + qi , (2b)

where the index i relates to discrete velocity set ci , Z = ci · u − u2/2, x = (x, y) is the
position vector, and ω f and ωh are the collision frequencies related to velocity and energy
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distribution functions. For D2Q9 scheme, weight coefficients wi and ci are:

wi =
⎧
⎨
⎩
4/9 for i = 9
1/9 for i = {1 . . . 4}
1/36 for i = {5 . . . 8}

, (3)

and:

ci =
⎧⎨
⎩

(0, 0) for i = 9
(±1, 0)c, (0,±1)c for i = {1 . . . 4}
(±1,±1)c for i = {5 . . . 8}

, (4)

where c = Δx/Δt , so that distribution functions are advected to neighbor nodes in one time
step.

Equilibrium VDF and EDF are given by:

f eqi = wiρ

[
1 + ci · u

c2s
+ 1

2

(
ci · u
c2s

)2

− u2

2c2s

]
, (5a)

heqi = wiρc
2
s

[
ci · u
c2s

+
(
ci · u
c2s

)2

− u2

c2s
+ 1

2

(
ci · ci
c2s

− D

)]
+ E f eqi , (5b)

where c2s = 1/3c2 is the lattice sound speed, and D is the number of spatial dimensions
considered. Terms Fi and qi are related to acceleration a due to external force field F = ρa
through:

Fi = wiρ

(
ci · a
c2s

+ (ci · a)(ci · u)

c4s
− a · u

c2s

)
, (6a)

qi = Δt
(
1 − ωh

2

)
ci · a

[
wi

ρE

c2s
+

(
1 − ω f

2

)
fi (x, t)

+ ω f

2
f eqi (x, t) +

(
1 − ω f

2

)
FiΔt/2

]
. (6b)

Macroscopic fields can be evaluated through VDF and EDF as follows:

ρ =
∑
i

fi , (7a)

ρu =
∑
i

ci fi + Δt

2
ρa, (7b)

ρE =
∑
i

hi + Δt

2
ρu · a, (7c)

where total energy E takes into account internal and kinetic energies, i.e. E = cvT+(u·u)/2,
and cv is the specific heat coefficient at constant volume.

Through Chapman–Enskog analysis [12], it can be shown that these equations accurately
recovers the Navier-Stokes equations up to second order terms:

∂tρ + ∇ · (ρu) = 0 (8a)

∂t (ρu) + ∇ · (ρuu) = −∇p0 + ∇ · τ + ρa, (8b)

∂t (ρE) + ∇ · [(p0 + ρE) u] = ∇ · (λ∇T ) + ∇ · (τ · u) + ρu · a, (8c)
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where p0 = ρc2s is the pressure, τ = μ
[
(∇u) + (∇uT ) − (∇ · u)I

]
is the viscous stress

tensor. Viscosity, μ, and thermal conductivity, λ, are related to collision frequencies ωh and
ω f through:

λ = ρc2s

(
1

ωh
− Δt

2

)
γ cp,

μ = ρc2s

(
1

ω f
− Δt

2

)
,

(9)

where γ is the heat capacity ratio.

Boussinesq Approximation

Buoyancy force can be calculated by using Boussinesq approximation:

ρg = ρrefg − ρrefgβ(T − Tref), (10)

where g is the acceleration due to gravity force field, ρref is the fluid density at Tref, and β

is the thermal expansion coefficient. In fact, constant part ρrefg can be embedded into the
pressure, such that effective external force field used in LBM is given by:

ρa = −ρrefgβ(T − Tref). (11)

In this situation, pressure field predicted by LBM is actually only the dynamic part p
′ =

pref−ρrefgy, where y corresponds to vertical coordinate. As compressible work is negligible,
this modification does not play an important role, and it has shown to produce reasonable
results [1,5,7,12].

Applying Boussinesq approximations, stationary dimensionless version of Eqs. (8a), (8b)
and (8c) can be rewritten by using the following dimensionless variables:

X = x

H
,

Y = y

H
,

U = u

Uc
,

V = v

Uc
,

t∗ = tUc

H
,

θ = T − TC
TH − TC

.

(12)

where x and y are, respectively, the horizontal and vertical position (Fig. 1), and t is time.
Thus:

∇∗ · U = 0, (13a)

∇∗ · (ρUU) = −∇∗ p∗
0 + 1

Re
∇∗ · τ∗ − Ri θ ê, (13b)

∇∗ · (ρUθ) = ∇∗ ·
( γ

Pr Re
∇∗θ

)
− γ Ec p∗

0∇∗ · U + γEc

Re
τ∗ : ∇∗U, (13c)

where versor ê indicates gravitational field direction ê = g/||g||. Prandtl, Reynolds, Grashof
and Richardson numbers are given by:

Pr = ν

α
, Re = UcH

ν
, Gr = gβH3ΔT

ν2
, Ri = Gr

Re2
, (14)

where ν is the kinematic viscosity. Characteristic velocity Uc for Reynolds number is equal
to cavity left wall velocityUc = U0 for mixed convection cases. For pure natural convection,
i.e., when U0 = 0, characteristic velocity is related to thermal diffusivity and boundary
dimension through Uc = α/H .
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Table 1 Velocity and thermal boundary conditions considered for all case studies

Case Variable Upper wall Bottom wall Left wall Right wall

Pure natural convection θ ∂θ/∂Y = 0 ∂T /∂Y = 0 0 1

U 0 0 0 0

V 0 0 U0 = 0 0

Buoyancy aiding shear effects θ ∂θ/∂Y = 0 ∂T /∂Y = 0 1 0

U 0 0 0 0

V 0 0 U0 = 1 0

Buoyancy opposing shear effects θ ∂θ/∂Y = 0 ∂T /∂Y = 0 0 1

U 0 0 0 0

V 0 0 U0 = 1 0

Boundary Conditions

Macroscopic boundaries conditions for all cases considered in this work are summarized in
Table 1.

Implementation of boundary conditions for proposed problems was accomplished by
extrapolating the nonequilibrium distribution functions of nearest neighbor sites to boundary
nodes. Mathematically, this is expressed for, respectively, VDF and EDF as:

fi (xb) = f eqi (xb, ρb, ub) +
[
fi

(
x f

) − f (eq)
i

(
x f

)]
, (15a)

hi (xb) = heqi (xb, ρb, Eb) +
[
hi

(
x f

) − h(eq)
i

(
x f

)]
, (15b)

where xb is the boundary position, xn is the nearest neighbor node, ub is velocity to be
imposed at boundary sites, Eb is the boundary imposed total energy, which can be computed
from boundaries temperatures and velocities values. The value of ρb does not necessarily
represent the fluid density at the boundary, and it can be seen as a free model parameter to
be fine-tuned. For this work, the value ρb = ρ(x f ) has been used, as it has shown to be a
suitable approximation [12].

Numerical Procedure

Numerical Algorithm

Commonly in LBM literature, Eq. 2 are decomposed in two steps for numerical solution:
collision (also referred to as relaxation) and streaming (also known as propagation). These
steps can be mathematically described as:

Collision step: f ∗
i (x, t) = (

1 − ω f
)
fi (x, t) + ω f f

eq
i (x, t) + Δt

(
1 − ω f

2

)
Fi

h∗
i (x, t) = (1 − ωh) hi (x, t) + ωhh

eq
i (x, t) (16a)

+ Zi (ωh − ω f )

(
fi (x, t) − f eqi (x, t) + Fi

Δt

2

)
Δt + qi , (16b)

Streaming step: fi (x + ciΔt, t) = f ∗
i (x, t), (16c)

hi (x + ciΔt, t) = h∗
i (x, t), (16d)
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where superscript ∗ denotes a relaxed distribution population. Boundary conditions are
applied after streaming step. Basically, the algorithm consists in an iterative sequence of
these steps until a stopping criterion is achieved. Detailed studies regarding data structures,
CPU, memory efficiency and addressing modes can be seen in [16,24] and [28]. Our codes
implement two-lattice algorithm, which allows to easily fuse collision and streaming steps.

Grid Independence Tests

Grid independence tests were performed for both problems proposed in the following man-
ners. For natural convection in square cavity problem, an average Nusselt number, Nu, was
assessed as proposed by [15]:

Nu = q ′

q ′
c
, (17)

where q ′ is the linear heat flux across the cavity, and q ′
c is the linear heat flux considering a

pure conduction in cavity with stationary fluid:

q ′
c = μcp

Pr

Th − Tc
L

H . (18)

Heat flux across the cavity takes into account diffusion and convection heat transfer mech-
anisms. However, in steady state, heat flux is constant across cavity and it can be easily
evaluated considering the heat flux across one of the stationary walls. This value can be
computed by finding the average heat flux resulting from numerically simulated temperature
gradients obtained from simulation.

Average Nusselt number has been computed from LBM simulations using lattices
ranging from 8 × 8 up to 2048 × 2048 sites, for increasing Rayleigh numbers, namely
Ra = 103, 104, 105 and 106, while Prandtl and Eckert numbers were fixed respectively
at Pr = 0.71, and Ec = (α/H)2/cpΔT = 10−30. VDF collision frequency was fixed at
ω f = 1.6 [12]. All other parameters can be determined from the number of grid nodes and
dimensionless parameters.

Figure 2 shows results from aforesaid grid independence analyses. Variations observed
were under 0.3% for meshes greater than 512 points under all flow conditions studied. For
high accuracy sake, subsequent LBM simulations in this work used 1024× 1024 lattices for
mixed convection and 2048 × 2048 lattices for natural convection problems.

For mixed convection, grid independence was assessed by studying the velocity profile
across the mid vertical plane in the cavity. For these simulations, Reynolds and Richardson
numbers were respectively set to Re = U0H/ν = 100 and Ri = Ra/PrRe2 = 1, which
guarantees same order of magnitude for shear and buoyancy effects. Also, tests were carried
out considering the opposing buoyancy case in relation to the shear stress effects. Variation
of the velocity profile was determined by:

Profile variation =
∫ H
0

(
ux,m+1 − ux,m

)2
dy∫ H

0 (ux,m+1)2dy
, (19)

wherem+1 andm are indices indicating results from, respectively, a finer and a coarsermesh.
Grid independence results are shown in Fig. 3 and Table 2. From visual results, differences to
finest grid simulated are very difficult to be observed, specially tomeshes finer than 160×160.
As a compromise between accuracy and CPU time, LBM simulations in the next section for
mixed convection adopted 1024 × 1024 lattice.
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Fig. 2 Grid independence analyses in terms of average Nusselt number across square cavity for increasing
Rayleigh number

Shear Stresses Calculation

Dimensionless shear stresses are calculated by using results of velocity fields and applying
the following relation:

τxy =
μ

(
∂u
∂ y + ∂v

∂x

)

τ0
, (20)

where τ0 = μU0/H is a stress value based on characteristic properties of the problem. These
equations are applied to show shear stresses in mixed convection simulation results.

Stopping Criterion

Simulations and tests were performed until a stationary regime was achieved. In order to
assure this condition, it was established the following stopping criterion:

√√√√
∑ ∑

x,y (Φk(x, t) − Φk−n(x, t))2∑ ∑
x,y Φ2

k−n(x, t)
≤ 10−6 (21)

123



209 Page 10 of 18 Int. J. Appl. Comput. Math (2021) 7 :209

Fig. 3 Grid independence study with respect to the x velocity profile across mid vertical plane, for the mixed
convection problem

Table 2 x-component velocity profile divergence across the mid vertical plane between (m + 1)-th and m-th
meshes

m m + 1 Variation m m + 1 Variation m m + 1 Variation

32 64 1.2E−3 320 352 7.4E−7 896 1024 2.2E−7

64 96 1.7E−4 352 384 5.2E−7 1024 1152 1.2E−7

96 128 4.9E−5 384 416 3.9E−7 1152 1280 7.7E−8

128 160 1.9E−5 416 448 2.8E−7 1280 1408 5.4E−8

160 192 9.0E−6 448 480 2.2E−7 1408 1536 3.5E−8

192 224 4.9E−6 480 512 1.7E−7 1536 1664 2.6E−8

224 256 2.8E−6 512 640 1.5E−6 1664 1792 2.2E−8

256 288 1.6E−6 640 768 8.2E−7 1792 1920 1.5E−8

288 320 1.0E−6 768 896 4.1E−7 1920 2048 1.0E−8

where Φ represents the monitored variable, k is the field variable evaluated at k-th time step
and n stands for howmany time steps apart from each other. In this work, both total energy E
and velocity fields u were assured to obey the stopping criterion with n = 100. In the latter
case, quadratic operations are calculated as dot products.

Code Development and Running Times

Due to high locality of LBM, several authors have been applying general-purpose computing
on graphics processing units (GPGPU) [8,32]. In this paper, for the natural convection case,
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Table 3 Serial and parallelized processing times for the natural convection time regarding a 1024×1024 grid

Ra 103 104 105 106

Serial 25h 10m 40s 35h 56m 36s 42h 28m 33s 59h 52m 47s

Parallelized 1h 21m 56s 1h 28m 28s 1h 55m 48s 2h 21m 6s

Fig. 4 Natural convection streamlines for a Ra = 103, b Ra = 104, c Ra = 105, d Ra = 106

a serial and parallelized version were developed by using C and Compute Unified Device
Architecture (CUDA) extension language. Hardware for LBM simulations comprised AMD
Ryzen 7 1700 (3.0GHz) and NVIDIA GeForce 1080 Ti. Processing times for a 1024× 1024
grid regarding both versions are summarized inTable 3, inwhich stopping criterion previously
in Eq. 21was employed. It should be noted that simulations were simply coded and no special
optimizations or fine tuning were carried out in this study.

It is worth mentioning that, in order to reduce running time, results from coarser meshes
were interpolated and used as an initial solution for the finer ones in all cases.

Results and Discussions

Pure Natural Convection

Figures 4 and 5 show natural convection results obtained for, respectively, streamlines and
isotherms. One can observe that, for Ra = 103, a vortex is formed in the center of the square
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Fig. 5 Natural convection isotherms for a Ra = 103, b Ra = 104, c Ra = 105, d Ra = 106

cavity. This structure is typical of natural convection cavity flows. As Ra number increases,
natural convection currents are intensified, and central vortex assumes an elliptic shape.When
Ra = 105, central vortex breaks in two structures and convection effects are more notable
near wall regions due to higher temperature gradient in these areas. For greater convective
effects, such as when Ra = 106, a new central vortex is formed besides those two near wall
regions. This behavior is well documented and is in agreement with literature [10,12,15,26].

Through isotherm lines, one can analyze the role of heat transfer mechanisms according
to the Rayleigh number. For Ra = 103, velocities due to buoyancy effects are very low and
predominant mechanism observed is conduction with small convective effects. As Rayleigh
number increases, convective effects become more predominant. This is the reason why
isotherms approach horizontal lines in the central region. On the other hand, conduction
effects become more confined near to wall regions, fact that becomes evident as isotherms
are fairly vertical in these areas [12,15].

Maximum values of horizontal, Umax , and vertical, Vmax , velocities along, respectively,
vertical and horizontal planes located at x = H/2 and y = H/2 were compared to other
results from literature. Dimensionless positions Y = y/H and X = x/H of, respectively,
maximum horizontal and vertical velocities are also compared, as well as average Nusselt
number in the cavity. Comparison of these values for Ra = 103, 104, 105 and 106 are summa-
rized in Table 4. It is worth mentioning that velocities values are normalized by characteristic
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Table 4 Comparisons to the literature about average Nusselt number, maximum velocities in the mid planes
and their locations for distinct natural flow conditions

Ra Nu Umax Y Vmax X Grid

103 Present work 1.1180 3.6487 0.8134 3.6962 0.1783 2048 × 2048

Ref. [12] 1.1195 3.6430 0.8047 3.6919 0.1719 128 × 128

Ref. [10] 1.1168 3.6554 0.8125 3.6985 0.1797 128 × 128

104 Present work 2.2458 16.1785 0.8232 19.6291 0.1187 2048 × 2048

Ref. [12] 2.2545 16.1254 0.8203 19.5577 0.1172 128 × 128

Ref. [15] 2.2442 16.1802 0.8265 19.6295 0.1193 160 × 160

105 Present work 4.5236 34.7471 0.8544 68.6211 0.0660 2048 × 2048

Ref. [12] 4.5278 34.6033 0.8516 68.0820 0.0703 128 × 128

Ref. [15] 4.5216 34.7399 0.8558 68.6396 0.0657 320 × 320

Ref [26] 4.5707 34.6755 0.8516 68.0494 0.0697 150 × 150

106 Present work 8.8295 64.8422 0.8500 220.5028 0.0376 2048×2048

Ref. [12] 8.7746 64.9059 0.8516 218.9000 0.03910 128×128

Ref. [15] 8.8251 64.8367 0.8505 220.4610 0.03900 640×640

Ref [26] 8.8765 64.7348 0.8552 218.9930 0.03996 150×150

(i.e reference) velocity flow Uc = α/H . One may see that results obtained are in well
agreement with those observed in literature.

Mixed Convection

Numerically simulated streamlines and isotherms are shown in Fig. 6, whereas dimensionless
shear stresses are exhibited in Fig. 7. Streamlines were exhibited again along with dimen-
sionless shear stresses for visualization purposes. Also, it is worth mentioning that for all
cases, Reynolds number was fixed at Re = 100, and only Richardson number, Ri was varied.
Three different regimes can be identified: pure natural convection (Ri � 1), pure forced
convection (Ri � 1) and mixed convection (Ri ≈ 1).

In forced convection regime, velocity field inside cavity is influenced by left wall move-
ment, mainly because of shear stress effects. This forms a shear driven clockwise vortex
inside the square cavity. Also, two smaller counter-clockwise vortices can be observed near
the top and bottom right corner. One can observe this behavior in the flow for Ri = 0.01, for
both cases when buoyancy effects either aid or oppose shear stress effects. This fact shows
buoyancy effects are negligible in these conditions, and flow is shear driven predominant.

Analyzing the case in which left wall is held at TH (Fig. 6a), one may see significant
differences in streamlines and isotherms with Richardson number. This fact allows one to
conclude that both buoyancy and shear stress effects play significant roles. As Richardson
number increases, streamlines and isotherms gradually assume behavior seen in pure natural
convection, shown in Figs. 4 and 5. In fact, cases with Ri = 10 and Ri = 100 present great
resemblance with previous natural convection results. As for the shear stresses (Fig. 7a), one
may observe that highest values in magnitude for low Richardson numbers are restricted
to left wall boundary. This fact corroborates shear effect predominancy on these flows. As
Richardson number increases, buoyancy effects become predominant and high values of
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Fig. 6 Streamlines and isotherm lines for different Ri number conditions for buoyancy effects a aiding and b
opposing to left wall movement

Fig. 7 Streamlines and shear stress tensor for different Ri number conditions for buoyancy effects a aiding
and b opposing to left wall movement
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Fig. 8 Dimensionless velocity profiles across the mid vertical plane in the square cavity for buoyancy effects
a aiding b opposing the left wall movement

shear stresses are restricted only near wall regions. The case with Ri = 100 represents pure
natural convection phenomenon.

When left wall is held at TC (Fig. 6b), natural convection effects are more prominent, once
it is possible to observe a counter-clockwise vortex formation near the hot wall region, in
opposition to the clockwise vortex driven by left wall movement. At Ri = 0.5, both vortices
possess similar characteristic length magnitude, which indicates similar buoyancy and shear
effects. As Richardson number increases, i.e., as buoyancy effects relevancy increases in
comparison to shear stress effects, one may observe that area occupied by counter-clockwise
vortex grows and clockwise vortex diminishes. ForRi = 10.0, the clockwise vortex due to left
wall movement is confined to a small region in the computational domain. For Ri = 100.0,
this same vortex is even smaller, and it is visible only in a very small portion near to bottom
left corner. Regarding shear stresses effects (Fig. 7b), a similar behavior to previous case is
observed. For low Ri numbers, high values of τxy are observed near left wall region, due
to movement of this region. Very high values are seen specially near top and bottom left
corners due to the high velocity gradients in these regions. For high values of Ri numbers,
velocity fields inside cavity are induced by buoyancy effects, and their magnitudes become
much higher than left wall upwards velocities. In this case, shear stresses are much higher
in regions near the wall, in which velocities vary from a finite value to zero. Such behavior
allows to conclude that shear stress plays negligible role in this case (Ri = 100) and flow is
dominated by buoyancy effects.

From observations regarding both buoyancy aiding and opposing situations, one may
classify the following flow regimes: forced convection when Ri < 0.1, mixed convection
when 0.1 ≤ Ri ≤ 10, and natural convection when Ri > 10.0. These very same tests were
performed by [4] using a control volume-based finite difference technique and both results
are in well agreement.

Dimensionless velocity profiles across mid vertical plane are shown in Fig. 8. Results
presented by these profiles corroborate what was observed by streamlines and isotherm lines
regarding buoyancy and shear stress effects. For Ri = 0.01 and Ri = 0.1, differences in
velocity profiles are very subtle. For Richardson numbers equal or greater to 0.5, natural
convection play significant role in the flow. This fact can be observed by the great rise
in velocity magnitudes for aiding buoyancy effects and reduction in values for opposing
buoyancy to the left wall movement. In fact, the formation of the counter-clockwise vortex
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when buoyancy effects opposes the left wall movement is very clear in the velocity profiles,
specially for Ri greater than 1.0.

Conclusion

Conclusions of this paper are:

– Despite criticism to double population approach, total energy based approach developed
by [12] has shown a very robust and good stability results for different flow conditions;

– Results from the present work (namely: average Nusselt number and maximum hor-
izontal/vertical velocities and their locations) were compared to counterparts in the
literature and the good agreement between them suggests that total energy based LBM
is equally valid as classic approaches (e.g additional population as passive scalar and
finite-differences method).

– By using double population approach, parallel computing for time evolution of velocity
is very similar to that for total energy distribution functions so both can be coded in a
single function. In this work, GPU speedups were observed to be about 25 times when
compared to serial versions of natural convection codes;

– Regarding mixed convection flow, three different flow regimes were observed and cate-
gorized: natural convection (Ri < 0.1), mixed convection (0.1 ≤ Ri ≤ 10.0) and forced
convection (Ri > 100.0).
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