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Abstract
In the current study, we establish a fractional reduced differential transform method, which
is successfully applied to obtain the analytical approximate solutions of the nonlinear gen-
eralized fractional-order Fitzhugh–Nagumo equation. Also, we considered three different
cases of generalized fractional-order Fitzhugh–Nagumo equation for different values of α.
The fractional derivative is considered in the context of the Caputo derivative. The obtained
results show that the proposed technique is efficient, and convenient to implement fractional-
order differential equations. We compared the approximate solutions and the exact solutions
of the partial fractional differential equations for integer order. The approximate solutions
are rapidly convergences of the exact solutions and also, this method reduced numerical
calculation.

Keywords Fractional reduced differential transform method (FRDTM) · Fitzhugh–Nagumo
equation · Nonlinear partial differential equation · Caputo sense

Introduction

Anomalous phenomena in mathematics are nonlinear and it has paramount importance in
applied physics, mathematics, biology, mechanics, and so on. Therefore, explicit solutions to
the nonlinear equations are of fundamental significance to preserve the actual physical dis-
tinctiveness of the problem and described process can be understood deeply. To solve such
equations, Semi-analytical method such as the Fractional Reduced Differential Transform
Method (FRDTM) is used. The FRDTMhas no specific requirements for nonlinear operators,
discretization, linearization, transformation or perturbation. The fractional Reduced Differ-
ential Transform Method (FRDTM) is a strong and efficient method, which can be widely
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used to handle linear and nonlinear models due to the flexibility of applications, convenience
and accuracy of obtained results.
The generalized Fitzhugh–Nagumo equation is fractionalized into fractional-order and
defined as [4,12]

∂αθ

∂tα
= ∂2θ

∂x2
− θ3 + (1 + β) θ2 − βθ, where, 0 < α ≤ 1 (1)

having the exact solution as follows [4]

θ (x, t) = 1

2
+ 1

2
tanh

(√
2x + (1 − 2β) t

4

)
(2)

Eq. 1 is an important nonlinear reaction-diffusion equation and frequently used to repre-
sent the spread of nerve impulses [5]; moreover, used in mathematical biology, the area
of population genetics, and circuit theory as a mathematical model [2]. Therefore, in this
paper, the FRDTM is applied to find the closed-form solution of the fractional-order non-
linear Fitzhugh–Nagumoequation (whenβ = 1) [12,16],Newell–Whitehead equation (when
β = −1) [4], [12] and Fisher’s equation (when β = 0) [3], [17].
Zhengab and Shen [18] investigated the effect of diffusion on pattern formation in FitzHugh–
Nagumomodel and also they discussed the dynamics of the conduction of electrical impulses
along a nerve fiber, and reveal how the dynamics of ion conduction is affected by diffusion.
Prakash and Kaur [12] studied the fractional model of Fitzhugh–Nagumo equation arising
in the transmission of nerve impulses with a reliable computationally effective numerical
scheme, which was compilation of homotopy perturbation method with Laplace transform
approach. Agbavon andAppadu [1] constructed four versions of nonstandard finite difference
schemes in order to solve the FitzHugh–Nagumo equationwith specified initial and boundary
conditions. Khan [9] studied the partial differential equation of Fitzhugh–Nagumo equation
which ismodified by the appropriatewave transforms into a dimensionless nonlinear ordinary
differential equation and solved by using a semi-inverse variational method.
Many researchers and scientists are solving such equations using different techniques. Keskin
and Oturanc [7,8] solved linear and nonlinear wave equations using the RDTM, and they
showed the accuracy and the effectiveness of the proposed method. Moreover, Keskin and
Oturanc showed that the number of iterations it takes to get an approximate solution is
less than the one used by the DTM and other well-known methods in the field. Singh and
Kumar [15] obtained the solution of time-fractional order multi-dimensional Navier–Stokes
equation by adopting a semi-analytical scheme, FRDTM. Singh and Gupta [14] obtained
the analytical solutions of space-time fractional hyperbolic-like equations with two reliable
methods, New Integral Projected Differential Transform Method (NIPDTM) and FRDTM.
Moreover, they compared both the methods and concluded that FRDTM solutions are easy
to compute without using any transformation as compared to NIPDTM. Mukhtar et. al [11]
used FRDTM for Solving Different Types of Nonlinear Fractional Burgers’ Equations in
one, two coupled, and three dimensions and compared their results with the exact solutions.
The paper is organized as follows. In Sect. 2, we define definitions and preliminary concepts
of fractional derivatives. In Sect. 3 we describe the fractional reduced differential transform
method (FRDTM). In Sect. 4, we examine the generalized Fitzhugh-Nagumo equation for
different values of β with the described method introduced in Sect. 3. Finally, conclusion
and advantages are given in Sect. 5.
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Definitions and Preliminary Concepts

In this section, we discuss some necessary definitions and properties of the fractional calculus
theory.

Definition 2.1 The fractional derivative (Dα) of f (x) in the Caputo’s sense is defined as
[10]:

Dα f (t) = 1

Γ (n − α)

∫ 1

0
(t − ξ) f (n) (ξ) dξ, for n − 1 < α ≤ n, n ∈ N . (3)

Definition 2.2 For α > 0 the Caputo fractional derivative of order Dα
t t

r = Γ (r + 1)

Γ (r − α + 1)
tr − α, r > 0 on the whole space, denoted by cDα+, is defined by [6]:

cDα+ f (x) = 1

Γ (n − α)

∫ x

−∞
(x − ξ)n−α−1Dn f (ξ) dξ . (4)

Property: Some useful formula and important property of the modified Riemann – Liouville
derivative is as follows [13]:

Dα
t t

r = Γ (r + 1)

Γ (r − α + 1)
tr − α, r > 0. (5)

Overview of Fractional Reduce Differential TransformMethod

Consider a function θ (x, t), which is analytical, and it is the function of t and x . Now θ (x, t)
is multiplication of two individual variable functions, expressed as θ (x, t) = ξ (x) · ψ (t).
So, the function can be denoted as

θ (x, t) =
( ∞∑

i=0

ζ (i) xi
) ⎛

⎝ ∞∑
j=0

Ψ ( j) t j

⎞
⎠ =

∞∑
k=0

Θk (x) tk . (6)

Definition 3.1 The t-dimensional spectrum function, for the analytic and continuously dif-
ferentiable function θ (x, t) with respect to x and t in the domain, is given by

Wk (x) = 1

Γ (αk + 1)

[
∂αk

∂tαk
θ (x, t)

]
t=t0

. (7)

Where a parameter α describes the order of time-functional derivative.
Throughout this paper, θ (x, t) represents the original function and Θk (x) represents the
reduced transformed function. The differential inverse transform of Θk (x) is given by

θ (x, t) =
∞∑
k=0

Θk (x) (t − t0)
αk . (8)

Combining equations (7) and (8), we obtain

Θk (x) =
∞∑
k=0

1

Γ (αk + 1)

[
∂αk

∂tαk
θ (x, t)

]
t=t0

(t − t0)
αk . (9)
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Table 1 Properties of Reduce Differential Transform Method

Functional Form Transform Form

RD [θ (x, t)]
1

k!

[
∂k

∂tk
Θ (x)

]
t=0

RD

[
∂Nα

∂t Nα
θ (x, t)

]
Γ (kα + Nα + 1)

Γ (kα + 1)
Θk+N (x)

RD [θ1 (x, t) ± θ2 (x, t)]
[
Θ1k (x, t) ± Θ2k (x, t)

]
RD [θ1 (x, t) × θ2 (x, t)]

k∑
r=0

Θ1r (x) Θ2k−r (x)

RD

[
∂k

∂tk
θ (x, t)

]
(k + 1) (k + 2) . . . (k + r) Θk+r (x) = (k + r)!

k! Θk+r (x)

RD

[
∂n

∂xn
θ (x, t)

]
∂n

∂xn
Θk (x)

When t0 = 0, equation (9) becomes

θ (x, t) =
∞∑
k=0

1

Γ (αk + 1)

[
∂αk

∂tαk
θ (x, t)

]
t=0

tαk . (10)

Some properties of reduced differential transformation method are [7,8] as shown in Table 1.

Applications of Fractional Reduced Differential TransformMethod

In this section, we apply the FRDTM to three numerical examples like Fitzhugh–Nagumo
equation, Newell–Whitehead equation, and Fisher’s equation which are different cases of
generalized Fitzhugh–Nagumo equation for differentβ values. Also, we compare our approx-
imate solutions results to the exact solutions followed by the discussion (2).
Case 1: If β = 1, then Eq. (1) is called fractional-order Fitzhugh–Nagumo equation and it
is defined as [12], [16]

∂αθ

∂tα
= ∂2θ

∂x2
− θ3 + 2θ2 − θ, where, 0 < α ≤ 1 (11)

with initial condition

θ (x, t) = 1

2
+ 1

2
tanh

(√
2x

4

)
(12)

According to the FRDTM and properties of Table 1, the derivatives of Eq. (11) becomes

Γ (α (k + 1) + 1)

Γ (kα + 1)
Θk+1 (x) = ∂2

∂x2
Θk (x) −

k∑
i=0

i∑
j=0

Θ j (x)Θi− j (x) Θk−i (x)

+2
k∑

i=0
Θi (x) Θk−i (x) − Θk (x)

(13)

or
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Θk+1 (x) = Γ (kα + 1)

Γ (α (k + 1) + 1)

⎡
⎢⎢⎢⎣

∂2

∂x2
Θk (x) −

k∑
i=0

i∑
j=0

Θ j (x) Θi− j (x) Θk−i (x)

+2
k∑

i=0
Θi (x) Θk−i (x) − Θk (x)

⎤
⎥⎥⎥⎦

(14)

From the initial conditions Eq. (12), we write

Θ0 (x) = 1

2
+ 1

2
tanh

(√
2x

4

)
(15)

Putting Eq. (15) into Eq. (14), we can obtain

Θ1 (x) = −1

8

1

Γ (α + 1) cosh2
(√

2x

4

)

Θ2 (x) = − 1

16

sinh

(√
2x

4

)

Γ (2α + 1) cosh3
(√

2x

4

)
...

(16)

and so on.
So, an approximation solution as follows

�
θ n (x, t) =

n∑
k=0

Θk (x) tkα

= 1

2
+ 1

2
tanh

(√
2x

4

)
− 1

8

tα

Γ (α + 1) cosh2
(√

2x

4

) − 1

16

sinh

(√
2x

4

)
t2α

Γ (2α + 1) cosh3
(√

2x

4

) + · · ·

(17)

Eq. (17) is the approximate solution of the fractional-order nonlinear Fitzhugh–Nagumo
equation.
Fig. 1 shows the graphical comparison between FRDTM and Exact Solution of Fitzhugh–
Nagumo equation for different values of t. The absolute error between FRDTM and
exact solutions at the surface is shown in Fig. 2. Figure 3 shows the graphical repre-
sentation for θ (x, t) of Fitzhugh–Nagumo equation for different fractional order values
α = 0.25, 0.50, 0.75 and t = 0.2, 0.8. Moreover, it shows the solution increases with
increasing α values.
Table 3 shows numerical values for θ (x, t) of Fitzhugh–Nagumo equation for fractional
order values α = 0.25, 0.50, 0.75 as well as integer order α = 1. Furthermore, it shows
the comparison between the solutions obtained using FRDTM and the exact solutions at
different values of x and t . The solution of FRDTM has minor error when compared to the
exact solution. When α values approaches to 1, the values close to exact solution; also, the
FRDTM solutions converge to the exact solutions for integer order α = 1.
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Fig. 1 Comparison between FRDTM and Exact Solution of Fitzhugh–Nagumo equation

Fig. 2 Surface of θAbs.Error = |Exact − FRDTM| for Fitzhugh–Nagumo equation

Case 2: If (β = −1), then Eq. (1) is called fractional-order Newell–Whitehead equation and
it is defined as [4], [12]

∂αθ

∂tα
= ∂2θ

∂x2
− θ3 + θ, where, 0 < α ≤ 1 (18)
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Fig. 3 Graphical representation for θ (x, t) of Fitzhugh–Nagumo equation for different fractional values
α = 0.25, 0.50, 0.75 and t = 0.2, 0.8.

Table 2 Numerical values for θ (x, t) of Fitzhugh–Nagumo equation for different fractional values α =
0.25, 0.50, 0.75 and compared with the exact solution when α = 1

x t α = 0.25 α = 0.5 α = 0.75 α = 1 Exact [4] Abs. Error

0.1 0.2 0.427418 0.454935 0.477029 0.492678 0.492678 5.26E-08

0.4 0.411555 0.429688 0.449555 0.467722 0.467723 5.11E-07

0.6 0.401291 0.410894 0.425857 0.442927 0.442927 9.06E-07

0.8 0.393583 0.395550 0.404564 0.418416 0.418414 2.40E-06

0.3 0.2 0.461640 0.489905 0.512307 0.528003 0.528004 1.95E-07

0.4 0.445267 0.464133 0.484582 0.503030 0.503033 2.80E-06

0.6 0.434619 0.444777 0.460446 0.478035 0.478047 1.26E-05

0.8 0.426595 0.428860 0.438573 0.453136 0.453171 3.45E-05

0.5 0.2 0.496159 0.524966 0.547464 0.563051 0.563051 3.21E-07

0.4 0.479367 0.498899 0.519760 0.538308 0.538313 4.86E-06

0.6 0.468375 0.479131 0.495415 0.513362 0.513385 2.32E-05

0.8 0.460051 0.462744 0.473159 0.488322 0.488390 6.86E-05

0.7 0.2 0.530655 0.559780 0.582153 0.597479 0.597480 4.22E-07

0.4 0.513551 0.533657 0.554743 0.573207 0.573214 6.54E-06

0.6 0.502269 0.513645 0.530429 0.548558 0.548590 3.20E-05

0.8 0.493674 0.496910 0.508002 0.523629 0.523726 9.72E-05

0.9 0.2 0.564813 0.594013 0.616050 0.630973 0.630974 4.91E-07

0.4 0.547522 0.568079 0.589194 0.607392 0.607400 7.72E-06

0.6 0.536019 0.548003 0.565149 0.583277 0.583315 3.83E-05

0.8 0.527198 0.531062 0.542773 0.558707 0.558825 1.18E-04

123



188 Page 8 of 15 Int. J. Appl. Comput. Math (2021) 7 :188

with initial condition

θ (x, 0) = 1

2
+ 1

2
tanh

(√
2x

4

)
(19)

According to the FRDTM and properties of Table 1, the derivatives of Eq. (18) becomes

Γ (α (k + 1) + 1)

Γ (kα + 1)
Θk+1 (x) = ∂2

∂x2
Θk (x) −

k∑
i=0

i∑
j=0

Θ j (x) Θi− j (x) Θk−i (x) + Θk (x)

(20)

or

Θk+1 (x) = Γ (kα + 1)

Γ (α (k + 1) + 1)

⎡
⎣ ∂2

∂x2
Θk (x) −

k∑
i=0

i∑
j=0

Θ j (x) Θi− j (x) Θk−i (x) + Θk (x)

⎤
⎦
(21)

From the initial conditions Eq. (19), we write

Θ0 (x) = 1

2
+ 1

2
tanh

(√
2x

4

)
(22)

Putting Eq. (22) into Eq. (21), we can obtain

Θ1 (x) = 3

8

1

Γ (α + 1) cosh2
(√

2x

4

)

Θ2 (x) = − 9

16

sinh

(√
2x

4

)

Γ (2α + 1) cosh3
(√

2x

4

)
...

(23)

and so on. So, an approximation solution as follows

�
θ n (x, t) =

n∑
k=0

Θk (x) tkα

= 1

2
+ 1

2
tanh

(√
2x

4

)
+ 3

8

tα

Γ (α + 1) cosh2
(√

2x

4

) − 9

16

sinh

(√
2x

4

)
t2α

Γ (2α + 1) cosh3
(√

2x

4

) + · · ·

(24)

Eq. (24) is the approximate solution of the fractional-order Newell–Whitehead equation.
Figure 4 shows the comparison between FRDTM and Exact Solution for Newell–Whitehead
equation for different values of t. Figure 5 shows the absolute error between FRDTM and
exact solutions at the surface. Figure 6 shows the graphical representation for θ (x, t) of
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Fig. 4 Comparision between FRDTM and Exact Solution of Newell–Whitehead equation

Fig. 5 Surface of θAbs.Error = |Exact − FRDTM|for Newell–Whitehead equation

Fitzhugh–Nagumo equation for different fractional order values α = 0.25, 0.50, 0.75 and
t = 0.2, 0.8. Moreover, it shows the solution decreases with increasing α values.
Table 3 shows the numerical values for θ (x, t)of fractional order Newell–Whitehead equa-
tion obtained using FRDTM for different fractional-order values α = 0.25, 0.5 and 0.75.
Moreover, A comparison between the computed solutions using FRDTM and the exact solu-
tions at different values of x and t are shown. By observing the absolute error, it can be
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Fig. 6 Graphical representation for θ (x, t) of Newell–Whitehead equation for different fractional values
α = 0.25, 0.50, 0.75 and t = 0.2, 0.8.

Table 3 Numerical values for θ (x, t) of Newell–Whitehead equation for different fractional values α =
0.25, 0.50, 0.75 and compared with the exact solution when α = 1.

x t α = 0.25 α = 0.5 α = 0.75 α = 1 Exact [4] Abs. Error

0.1 0.2 0.712693 0.685107 0.634779 0.591631 0.591631 1.20E-07

0.4 0.712224 0.727258 0.702543 0.661672 0.661662 1.02E-05

0.6 0.701487 0.741707 0.747913 0.725403 0.725261 1.41E-04

0.8 0.686791 0.739056 0.774078 0.781773 0.780864 9.09E-04

0.3 0.2 0.733926 0.712225 0.666335 0.625306 0.625306 2.52E-07

0.4 0.730566 0.748766 0.729310 0.692582 0.692564 1.80E-05

0.6 0.718291 0.758657 0.769312 0.752748 0.752526 2.22E-04

0.8 0.702703 0.752244 0.789838 0.805411 0.804102 1.31E-03

0.5 0.2 0.756506 0.738240 0.696497 0.657811 0.657811 3.50E-07

0.4 0.752516 0.770276 0.754683 0.721853 0.721829 2.34E-05

0.6 0.740736 0.777298 0.789950 0.778188 0.777914 2.73E-04

0.8 0.726144 0.769236 0.806094 0.826971 0.825426 1.55E-03

0.7 0.2 0.780077 0.763050 0.725094 0.688899 0.688899 4.03E-07

0.4 0.777418 0.791672 0.778610 0.749343 0.749317 2.59E-05

0.6 0.767864 0.797388 0.809841 0.801677 0.801385 2.92E-04

0.8 0.755857 0.789575 0.822859 0.846479 0.844877 1.60E-03

0.9 0.2 0.804119 0.786549 0.751995 0.718372 0.718371 4.09E-07

0.4 0.804312 0.812740 0.801046 0.774962 0.774936 2.55E-05

0.6 0.798295 0.818467 0.828936 0.823220 0.822940 2.79E-04

0.8 0.790062 0.812450 0.839976 0.864017 0.862522 1.49E-03
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concluded that there is an excellent agreement between FRDTM and the numerical results
for integer order α = 1.
Case 3: If (β = 0), then Eq. (1) is called fractional-order Fisher’s equation and it is defined
as [3], [17]

∂αθ

∂tα
= ∂2θ

∂x2
− θ3 + θ2, where, 0 < α ≤ 1 (25)

with initial condition

θ (x, 0) = 1

2
+ 1

2
tanh

(√
2x

4

)
(26)

According to the FRDTM and properties of Table 1, the derivatives of Eq. (25) becomes

Γ (α (k + 1) + 1)

Γ (kα + 1)
Θk+1 (x) = ∂2

∂x2
Θk (x) −

k∑
i=0

i∑
j=0

Θ j (x)Θi− j (x) Θk−i (x)

+
k∑

i=0
Θi (x) Θk−i (x)

(27)

or

Θk+1 (x) = Γ (kα + 1)

Γ (α (k + 1) + 1)

⎡
⎢⎢⎢⎣

∂2

∂x2
Θk (x) −

k∑
i=0

i∑
j=0

Θ j (x)Θi− j (x) Θk−i (x)

+
k∑

i=0
Θi (x) Θk−i (x)

⎤
⎥⎥⎥⎦(28)

From the initial conditions Eq. (26), we write

Θ0 (x) = 1

2
+ 1

2
tanh

(√
2x

4

)
(29)

Putting Eq. (29) into Eq. (28), we can obtain

Θ1 (x) = 1

8

1

Γ (α + 1) cosh2
(√

2x

4

)

Θ2 (x) = − 1

16

sinh

(√
2x

4

)

Γ (2α + 1) cosh3
(√

2x

4

)
...

(30)

and so on.
So, an approximation solution as follows

�
θ n (x, t) =

n∑
k=0

Θk (x) tkα

= 1

2
+ 1

2
tanh

(√
2x

4

)
+ 1

8

tα

Γ (α + 1) cosh2
(√

2x

4

) − 1

16

sinh

(√
2x

4

)
t2α

Γ (2α + 1) cosh3
(√

2x

4

) + · · ·

123



188 Page 12 of 15 Int. J. Appl. Comput. Math (2021) 7 :188

Fig. 7 Comparision between FRDTM and Exact Solution of Fisher’s equation

Fig. 8 Surface of θAbs.Error = |Exact − FRDTM|for Fisher’s equation

(31)

Eq. (31) is the approximate solution of the fractional-order nonlinear Fisher’s equation.
Figure 7 shows the comparison between FRDTMand Exact Solution for Fisher’s equation for
different values of t . Figure 8 shows the absolute error between FRDTM and exact solutions
at the surface. Figure 9 shows the graphical representation for θ (x, t) of Fisher’s equation for
different fractional order values α = 0.25, 0.50, 0.75 and t = 0.2, 0.8. Moreover, it shows
the solution decreases with increasing α values.
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Fig. 9 Graphical representation for θ (x, t) of Newell–Whitehead equation for different fractional values
α = 0.25, 0.50, 0.75 and t = 0.2, 0.8.

Table 4 Numerical values for θ (x, t) of Fisher’s equation for different fractional values α = 0.25, 0.50, 0.75
and compared with the exact solution when α = 1

x t α = 0.25 α = 0.5 α = 0.75 α = 1 Exact [4] Abs. Error

0.1 0.2 0.607541 0.579728 0.558029 0.542574 0.542574 2.06E-08

0.4 0.624171 0.604611 0.585031 0.567267 0.567267 6.50E-07

0.6 0.635373 0.623334 0.608198 0.591626 0.591631 4.89E-06

0.8 0.644106 0.638889 0.628969 0.615532 0.615552 2.04E-05

0.3 0.2 0.639862 0.613492 0.592512 0.577406 0.577406 1.86E-08

0.4 0.655466 0.637390 0.618758 0.601598 0.601599 5.83E-07

0.6 0.665857 0.655204 0.641090 0.625302 0.625306 4.34E-06

0.8 0.673883 0.669886 0.660973 0.648409 0.648427 1.79E-05

0.5 0.2 0.670946 0.646202 0.626109 0.611484 0.611484 1.51E-08

0.4 0.685416 0.668940 0.651378 0.634959 0.634960 4.72E-07

0.6 0.694923 0.685729 0.672710 0.657807 0.657811 3.47E-06

0.8 0.702183 0.699451 0.691573 0.679938 0.679952 1.41E-05

0.7 0.2 0.700614 0.677605 0.658533 0.644506 0.644506 1.09E-08

0.4 0.713905 0.699052 0.682643 0.667072 0.667073 3.32E-07

0.6 0.722509 0.714740 0.702841 0.688896 0.688899 2.38E-06

0.8 0.728997 0.727453 0.720587 0.709906 0.709916 9.47E-06

0.9 0.2 0.728724 0.707489 0.689541 0.676207 0.676207 6.20E-09

0.4 0.740845 0.727556 0.712345 0.697705 0.697706 1.79E-07

0.6 0.748576 0.742105 0.731313 0.718370 0.718371 1.22E-06

0.8 0.754327 0.753800 0.747877 0.738149 0.738154 4.60E-06
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Table 4 shows the numerical values for θ (x, t) of fractional order Fisher’s equation obtained
using FRDTM for different fractional-order values α = 0.25, 0.5 and 0.75. The results shows
that, when fractional order α value increases, the solution decreases. Moreover, a comparison
made between the solutions obtained using FRDTMand the exact solutions at different values
of x and t . By observing the absolute error, it can be concluded that there is an excellent
agreement between FRDTM and the numerical results for integer-order α = 1. Dehghan
et al. [4] solved the generalized Fitzhugh-Nagumo equation using ADM, HPM and, VIM.
Besides, it is found that the solution obtained using FRDTM is the same as compared to
ADM, HPM and, VIM for α = 1.

Conclusion

In this paper, FRDTM has been implemented in three cases of the generalized fractional-
order Fitzhugh-Nagumo equation to study the effectiveness and accurateness of the proposed
method. It is found that FRDTM solutions are in excellent agreement with the available exact
solution. This shows that FRDTM is an effective, efficient and powerful mathematical tool,
which is easily applied in finding out the approximate analytic solutions for a wide range of
real-world problems arising in engineering and applied sciences.
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