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Abstract
In this paper, a population based mathematical model describing the transmission of measles
disease with double vaccination dose, treatment and two groups of measles infected and
measles induced encephalitis infected humans with relapse under the fractional Atangana–
Baleanu–Caputo (ABC) operator is studied. The existence, uniqueness and positivity analysis
of the fractional order model is established, while the model is validated by fitting data on
measles prevalence in Nigeria made available by the Nigerian Center for Disease Control
relative to the year 2020, using the nonlinear least square algorithm. Using the estimated and
fitted parameters, the basic reproduction number Rms is obtained and found to be Rms ≈ 1.34,
which reveal that despite the vaccination and treatment as controls, at least an individual is
still being infected on the average, which describes the failure of vaccination effort and
coverage in the Nigerian nation. Also, the model system equilibria, called the measles-free
and measles-endemic equilibrium were obtained and the measles-free equilibrium is shown
to be locally and globally asymptotically stable if Rms is less than unity. A numerical scheme
under the ABC operator, which is a mixture of the two-step Lagrange polynomial and the
fundamental theorem of fractional calculus, is used to obtain the approximate solutions of
the fractional order measles model, which proved to be convergent and efficient.

Keywords Lagrange polynomial · Basic reproduction number Rms · Existence and
uniqueness · Stability theory
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τ Fractional order
ABC Dτ

0 Atangana–Baleanu–Caputo fractional differential operator
Sm Human individuals susceptible to measles disease
Ve Humans who received vaccinations
Im Humans infected with measles
Ie Humans infected with measles induced encephalitis
Tm Treated humans
Rm Humans who recovered from measles infection
ζt (·) One parameter Mittag-Leffler function
�1 Space function
g, f (t) Function of t
ς Vector of unknown function
X Space function
Pi (i = 1 − 6) Functions satisfying the Lipschitz condition
ωi (i = 1 − 6) Lipschitz constants
r Constant for triangular inequality
∧ Set of feasible solutions of the model
Em Measles-free equilibrium solution
E∗
m Measles-endemic equilibrium solution

F Non-negative matrix of appearance of new infections
V Non-negative matrix of movement of individuals within compartments
h Step length
� Gamma function
�(qi ) Real part of a matrix

Introduction

Measles is a highly communicable infectious disease caused by paramyxovirus, which trans-
mits through air and human to human direct contact. It is reported by the World Health
Organization (WHO) [44], that 140,000measles related death cases and 73% drop in measles
cases occurred between the years 2000 and 2019 globally. The first clinical manifestation
associated to measles disease is high fever accompanied with nasal discharge, red and watery
eyes, cough, small white spots, rash on the face and body etc., which occurs within 10–12
days. It is also reported that measles induced encephalitis occurs as a result of the infection
of brain during the rash face of the disease. Also, this acute form of measles leads to a disease
called Sub-acute Sclerosing Pan-Encephalitis (SSPE), which is a degenerative neurological
condition that destroys the brain nerve cells which causesmental illness and death. Encephali-
tis is diagnosed using the magnetic resonance imaging and analysis of cerebrospinal fluid,
while it is treated using corticosteroids and intravenous fluids [13,14,26]. It is also interesting
to note that, relapse of measles occurs with all the clinical signs of the disease after the attack
is apparently over, but measles is still present in the system [15,18]. Vaccination has been an
effective intervention strategy to mitigate the spread of measles using the Measles–Mumps–
Rubella (MMR) vaccine. This vaccine fight against three diseases namely, measles, mumps,
and rubella. The Center for Disease Control (CDC) approves of children getting two doses
of MMR vaccine, beginning the first dose to infants between the ages of 12–15 months, and
the second dose between the ages of 4–6 years [12]. Developing countries of the world are
currently challenged by this menace, with the highest burden on Nigeria [2]. The Nigerian
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Center for Disease and Control (NCDC) reported that 6112 and 7112 cases of measles occur
between the year 2019 and 2020, which has prompted the federal government of Nigeria to
declare mass awareness and vaccination against the disease [10,27,28,31–33].

Mathematical models described by the nonlinear autonomous ordinary differential equa-
tions have been adopted many times to describe the dynamics of the spread of infectious
diseases using several quantitative and qualitative techniques [21,24,25,41,43]. Several mod-
els have been derived to depict measles disease. Aldila and Asrianti [5] did a short review
of measles disease dynamics by comparing models of measles disease earlier formulated
by different authors and create another open problem in the future. Momoh et al. [30] and
Bakare, Adekunle and Kadiri [11] formulated a model to describe the impact of latency,
stability analysis and numerical implementation of a deterministic measles model. Peter et
al. [37], investigated the existence and uniqueness of the model of measles with vaccination
as control to reduce the class of exposed and infected individuals, while Fred et al. [16], and
Okyere-Siabouh and Adetunde [36], formulated a simple Susceptible–Exposed–Infected–
Recovered (SEIR) model to describe measles infection in Cape coast metropolis of Ghana
and Kisii county in Kenya respectively. Their results showed that the basic threshold is less
than unity and 93.75% of humans exceed the herd level immunity, which drives out the
disease in the region. Other works describing the population dynamics of measles disease
transmission using numerical techniques to obtain the approximate solutions of the model
[1,6–8] and [19,20,23,34,35], proved useful to this study.

Fractional or non-classical calculus is an important area of mathematics that have been
successfully applied to the field of physics, biology, social science, finance, engineering,
epidemiology etc [3,4,9,17,22,29,38,45]. The advantage of fractional calculus of different
differential and integral operators is that, firstly, there is freedom of choice to adopt fractional
operators of any arbitrary orders, whereas it is not applicable to standard order derivative.
Also, it possess the memory and hereditary characteristics that incorporate all past informa-
tion, thereby giving rise to proper prediction of the model. This study consider the novel
fractional derivative called the ABC operator, with the aid of Mittag-Leffler functions. The
ABC operator came into existence due to the fact that Caputo and Fabrizio proposed a frac-
tional order derivative based on exponential function to solve problems of singular kernel.
They also reveal that their derivative was effective for some groups of physical problems.
Furthermore, some issues were shown against this derivative because the kernel was non-
singular and non-local which implies that the integral associate is not a fractional operator. In
order to solve the issue of non-sigular and non-local kernel, Atangana and Baleanu derived
two fractional derivatives in the sense of Caputo and Riemann–Liouville. In their results,
the derivatives now possess fractional integral as anti-derivative of their operators. There-
fore, since the nonlinear dynamics and crossover effect of several physical and biological
phenomena cannot be explained appropriately with the classical order derivative because
of its singular kernel, a generalized Mittag-Leffler function as non local and non singular
kernel is explored by Atangana and Baleanu [42]. However, fractional derivatives have been
applied to measles disease dynamics. Qureshi [39], derived a new five compartmental math-
ematical model of measles disease with conformable derivative of order α in the sense of
Caputo–Lioville operator of order β. The basic reproduction number Ro is computed to
be 2.2674e02 and the impact of several biological parameters on the system is investigated
with numerical simulations, using the Adams–Moulton numerical method where the measles
infection is discovered to vanish at α ≥ 1 under the fractional conformable derivative which
greatly reduce the burden of infection if either infectious contact rate is reduced and timely
vaccination is applied. In addition, Qureshi and Memon [40] applied the Atangana–Baleanu
operator to a fractional mathematical model of measles under the real of measles incidence
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in Pakistan from May–December 2018. They obtain the fitted values for the transmission
coefficient β and fractional order parameter α using the nonlinear least square curve fitting
method. Also, they used the fixed point approach to analyze the existence and uniqueness of
the model, while their numerical simulations for the classical and fractional measles model
show a better fit for the real data about the infected individuals with the solution obtained via
fractional order ABC operator. Different values of the model parameters are taken to observe
their impacts on the fractional model system thereby suggesting the reduction in the contact
rate of measles infected individuals with the susceptible population.

Motivatedby the aforementioned literature on the formulationofmodel describingmeasles
disease dynamics, which are mostly on the qualitative analysis, impact of single and double
dose of vaccination, fitting data on measles incidence of some nations to the model and the
application of fractional derivatives with some fractional operators some measles model, In
the context of the earlier studies, this work consider what is different from the other authors.
In this work, a new six compartmental deterministic model describing the transmission of
measles in two distinct groups of measles infected and measles induced encephalitis infected
humans with relapse combined with effect of double dose of vaccination and treatment is
considered. Furthermore, the classical order derived model is changed to integer order and
studied under the ABC sense. In addition, the proposed ABC model is fitted to the measles
prevalence in Nigeria relative to the year 2020, to predict the level of intervention strategies in
Nigeria towards curtailing the disease. To the best of the author’s knowledge, thiswork has not
been considered. The remaining part of the article is structured into sections. Second section
deals with the mathematical model derivation, while third section involves the existence,
uniqueness and the positivity analysis of the proposed fractional order measles model. Fourth
section deals with local and global asymptotic stability analysis of the measles free and
endemic equilibrium as well as the computation of Rms . Finally, fifth section deals with
the numerical implementation of the proposed Atangana–Baleanu–Caputo measles model,
graphical illustrations, conclusion and future direction of the work.

TheMathematical Model

In this section, the idea to this work is extended from the work of [39,40]. In order to
derive the mathematical model, the total human host population is divided into population of
susceptible humans Sm , vaccinated humans Ve, measles infected humans Im , measles induced
encephalitis infected humans Ie, treated humans Tm and recovered humans Rm , such that the
total human host population Nm(t) = Sm(t)+Ve(t)+, Im(t)+ Ie(t)+Tm(t)+ Rm(t). In the
model set up, fraction of susceptible humans are vaccinated or having maternal immunity at
the rate ρ, and susceptible humans are recruited at the rate θh . Susceptible humans received
first and second dose of vaccination at the rates φ1 and φ2, while the rate at which the vaccine
wanes is denoted α. The direct transmission rates between susceptible and measles and
measles induced encephalitis infected humans are denoted βa and βb respectively, while the
progression rate to treatment class is σ1. The treatment rate of measles induced encephalitis
humans and natural recovery of humans are respectively denoted by σ2 and η1 while the
recovery, relapse, natural death and death related to measles induced encephalitis infection
rates are denoted by η2, γ, μ and d1 respectively. Therefore the classical order system of first
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Fig. 1 Transmission diagram of measles disease interactions in Eq. (2)

order ordinary differential equations governing the model system is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡm = (1 − ρ)θh + (1 − φ2)αVe − (φ1 + μ)Sm − βa Im Sm − βb IeSm,

V̇e = ρθh − (μ + (1 − φ2)α)Ve + φ1Sm,

˙Im = βa Im Sm − (μ + σ1 + η1)Im + γ Rm,

İe = βb IeSm − (μ + σ2 + d1)Ie,

Ṫm = σ1 Im + σ2 Ie − (μ + η2)Tm,

Ṙm = η1 Im + η2Tm − (γ + μ)Rm .

(1)

Since epidemiological processes are better described using derivatives of fractional order
compared to classical order case. Then, changing thefirst order timederivatives in the classical
model system Eq. (1) into the fractional derivative of order τ in the sense of ABC operator
yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC Dτ
0,τ (Ṡm) = (1 − ρ)θh + (1 − φ2)αVe − (φ1 + μ)Sm − βa Im Sm − βb IeSm,

ABC Dτ
0,τ (V̇e) = ρθh − (μ + (1 − φ2)α)Ve + φ1Sm,

ABC Dτ
0,τ (

˙Im) = βa Im Sm − (μ + σ1 + η1)Im + γ Rm,
ABC Dτ

0,τ ( İe) = βb IeSm − (μ + σ2 + d1)Ie,
ABC Dτ

0,τ (Ṫm) = σ1 Im + σ2 Ie − (μ + η2)Tm,
ABC Dτ

0,τ (Ṙm) = η1 Im + η2Tm − (γ + μ)Rm,

(2)

subject to the initial conditions Sm ≥ 0, Ve ≥ 0, Im ≥ 0, Ie ≥ 0, Tm ≥ 0, Rm ≥ 0. The ABC
fractional order operator is used in (2) due of its crossover effect, which surpasses index and
power laws and enhance the proper prediction of the measles disease transmission model.
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Table 1 The meanings of estimated and fitted parameter values

Parameters Descriptions Values Sources

θh Birth rate 3.2192 Estimated

ρ fraction of vaccinated susceptible 0.213 Fitted

φ2 Rate of second dose of vaccination 0.316 Fitted

α Waning rate of vaccination 0.022 Fitted

φ1 Rate of first dose of vaccination 0.414 Fitted

μ Death rate 0.0863 Estimated

βa Measles transmission contact rate 0.832 Fitted

βb Measles induced encephalitis transmission contact rate 0.201 Fitted

σ1 Progression rate 0.513 Fitted

η1 Recovery rate 0.601 Fitted

γ Relapse rate 0.204 Fitted

σ2 Treatment rate 0.410 Fitted

d1 Measles induced encephalitis related death 0.014 Fitted

η2 Recovery rate 0.715 Fitted

Parameter Estimation and Data Fitting

This subsection discusses about the estimated and fitted parameters used for the proposed
ABCsystem (2) on the basis of the available real statistical incidence data ofmeasles epidemic
of 36 states of Nigeria relative to the year 2020, obtained from the NCDC website [26],
as displayed in Table 1. Some of the parameters involved in the fitting are estimated. For
instance, the demographic parameter θh for the Nigeria nation is estimated to be 37.269 per
1000 people in a year [28], where θh

μ
= 3.2192 year−1 is the limiting human total population

in the absence of measles disease. Also, the demographic death rate μ is taken to be 11.577,
so that 1

μ
= 0.0863 year−1. In other to fit the data, themodel systemEq. (2) may be expressed

in the following form, where the function

y′ = f (t, y, ς), y(t0) = y0. (3)

where t denotes the time, y denotes the vector of model solution, and ς is the vector of
unknown parameters respectively. The residual of the system is given by

residuali (ς) = f (ti , y(i), ς) − yreal(i), (4)

and the error is

error(ς) =
∑

i=1

(y(i)yreal(i))
2. (5)

The real data is represented by yreal(i) and y(i) = y(ti , θ) is the model solution to Eq. (3)
for a given ς . The objective function is minimized such that min error(ς) subject to Eq. (3)
is used to obtain the optimal parameters.

Parameter Estimation Algorithm

The parameter estimation algorithm used in obtaining the fitted values, via the global opti-
mization search package in computational software maple is given below.
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(a) (b)

Fig. 2 Simulation of the observed measles incidence relative to the year 2020 fitted to the proposed ABC
model (2) and the residuals

• Adopt initial parameter and state variable values.
• Solve the proposed fractional ABC model together with first step.
• Investigate the error.
• Minimize to obtain new set of parameter values with model outcome to get a good

agreement with real data.
• Check the convergence criteria. If it does not converge, go back to second step.
• Iteration continues until the convergence criteria for the parameters is achieved.

Figure 2a shows the comparison of the aforementioned real data with the curve of infected
population obtained under the ABC measles epidemic model system Eq. (2), with the best
fitted values as shown in Table 1. This further show the failure of vaccination and treatment
effort. It is observed that as time increases, the disease transmission increases, while Fig. 2b
shows the residuals of the fit with small scattering.

Existence and Uniqueness of the Proposed ABCModel System

Preliminaries

Definition 1 [9] Suppose that a function g(t) ∈ �1(0, T ), T > 0 and τ ∈ (0, 1), then the
ABC of fractional derivative of order τ is defined as

ABC Dτ
o,t [g(t)] = ABC(τ )

1 − τ

∫ t

0
g

′
(s)ζτ

[ −τ

1 − τ
(t − s)τ

]
ds, (6)

where ABC(τ ) satisfying ABC(0) = ABC(1) = 1 denotes the normalization function and
ζτ (.) is the one parameter Mittag-Leffler function.

Definition 2 [9] Suppose that τ ∈ (0, 1) and g(t) is a function of t , then theABC of fractional
integral of order τ is defined as

ABC Dτ
o,t [g(t)] = 1 − τ

ABC(τ )
g(t) + τ

ABC(τ )�(τ)

∫ t

0
(t − s)τ−1g(s)ds. (7)

Theorem 1 [39,40] Suppose that F(X) is a banach space of the real values continuous
functions defined on the interval X = [0, T ] with sup norm and G = F(X) × F(X) ×
F(X) × F(X) × F(X) × F(X) with the norm ||Sm, Ve, Im, Ie, Tm, Rm || = ||Sm || +
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Table 2 Data on measles prevalence in Nigeria relative to year 2020 [24]

Nigerian States Laboratory confirmed cases of measles

Edo 16

Ebonyi 19

Federal Capital Territory (FCT) 20

Lagos 22

Ondo 23

Anambra 23

Enugu 27

Benue 27

Imo 28

Cross river 30

Bayelsa 40

Rivers 43

Ekiti 43

Abia 46

Kwara 46

Taraba 54

Nassarawa 56

Akwa Ibom 56

Plateau 69

Delta 75

Ogun 85

Osun 96

Oyo 100

Kogi 138

Kaduna 180

Gombe 184

Niger 185

Kano 221

Jigawa 358

Kebbi 429

Adamawa 515

Borno 556

Bauchi 574

Zamfara 1061

Yobe 1099

Sokoto 1179

Katsina 1591
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||Ve|| + ||Im || + ||Ie|| + ||Tm || + ||Rm || where ||Sm || = sup {|Sm(t) : t ∈ X , } , ||Ve|| =
sup {|Ve(t) : t ∈ X} , ||Im || = sup {|Im(t) : t ∈ X} , ||Ie|| = sup {|Ie(t) : t ∈ X} , ||Tm || =
sup {|Tm(t) : t ∈ X}, and ||Rm || = sup {|Rm(t) : t ∈ X}
Proof Applying the fractional ABC operator on both sides of Eq. (2) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm(t) − S(0) =ABC Dτ
0,τ (Ṡm) = {(1 − ρ)θh + (1 − φ2)αVe

−(φ1 + μ)Sm − βa Im Sm − βb IeSm} ,

Ve(t) − Ve(0) =ABC Dτ
0,τ (V̇e) = ρθh − (μ + (1 − φτ

2 )α)Ve + φ1Sm,

Im(t) − Im(0) =ABC Dτ
0,τ (

˙Im) = βa Im Sm − (μ + σ1 + η1)Im + γ Rm,

Ie(t) − Ie(0) =ABC Dτ
0,τ ( İe) = βb IeSm − (μ + σ2 + d1)Ie,

Tm(t) − Tm(0) =ABC Dτ
0,τ (Ṫm) = σ1 Im + σ2 Ie − (μ + η2)Im,

Rm(t) − Rm(0) =ABC Dτ
0,τ (Ṙm) = η1 Im + η2Tm − (γ + μ)Rm .

(8)

Applying Definition 2 on model system Eq. (2), one obtains
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm(t) − Sm(0) = 1−τ
ABC(τ )

P1(Sm(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P1(Sm(q), q)dq,

Ve(t) − Ve(0) = 1−τ
ABC(τ )

P2(Ve(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P2(Ve(q), q)dq,

Im(t) − Im(0) = 1−τ
ABC(τ )

P3(Im(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P3(Im(q), q)dq,

Ie(t) − Ie(0) = 1−τ
ABC(τ )

P4(Ie(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P4(Ie(q), q)dq,

Tm(t) − Tm(0) = 1−τ
ABC(τ )

P5(Tm(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P5(Tm(q), q)dq,

Rm(t) − Rm(0) = 1−τ
ABC(τ )

P6(Rm(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P6(Rm(q), q)dq,

(9)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1(Sm(t), t) = (1 − ρ)θh + (1 − φ2)αVe − (φ1 + μ)Sm − βa Im Sm − βb IeSm,

P2(Ve(t), t) = ρθh − (μ + (1 − φ2)α)Ve + φ1Sm,

P3(Im(t), t) = βa Im Sm − (μ + σ1 + η1)Im + γ Rm,

P4(Ie(t), t) = βb IeSm − (μ + σ2 + d1)Ie,

P5(Tm(t), t) = σ1 Im + σ2 Ie − (μ + η2)Im,

P6(Rm(t), t) = η1 Im + η2Tm − (γ + μ)Rm .

(10)

Given that Sm(t), Ve(t), Im(t), Ie(t), Tm(t) and Rm(t) have an upper bound, then

P1(Sm(t), t), P2(Ve(t), t), P3(Im(t), t), P4(Ie(t), t), P5(Tm(t), t)

and P6(Rm(t), t) are said to satisfy the Lipschitz condition. Let Sm(t) be two functions, so
that

||P1(Sm(t), t) − P1(Sm1(t), t)|| = || − (φ1 + μ)Sm(t) + (φ1 + μ)Sm1(t)||. (11)

Considering w1 = ||φ + μ||, we obtain
||P1(Sm(t), t) − P1(Sm1(t), t)|| ≤ w1 = ||Sm(t) − Sm1(t)||. (12)

In the same manner, one obtains
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

||P2(Ve(t), t) − P2(Ve1(t), t)|| ≤ w2 = ||Ve(t) − Ve1(t)||,
||P3(Im(t), t) − P3(Im1(t), t)|| ≤ w3 = ||Im(t) − Im1(t)||,
||P4(Ie(t), t) − P4(Ie1(t), t)|| ≤ w4 = ||Ie(t) − Ie1(t)||,
||P5(Tm(t), t) − P5(Tm1(t), t)|| ≤ w5 = ||Tm(t) − Tm1(t)||,
||P6(Rm(t), t) − P6(Rm1(t), t)|| ≤ w6 = ||Rm(t) − Rm1(t)||.

(13)
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Hence, theLipschitz condition is satisfied for all the functions Sm(t), Ve(t), Im(t), Ie(t), Tm(t)
and Rm(t), where w1, w2, w3, w4, w5, and w6 are the corresponding Lipschitz constants.
Furthermore, Eq. (9) can be written recursively as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm(t) = 1−τ
ABC(τ )

P1(Smn−1(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P1(Smn−1(q), q)dq + Sm(0),

Ve(t) = 1−τ
ABC(τ )

P2(Ven−1(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P2(Ven−1(q), q)dq + Ve(0),

Im(t) = 1−τ
ABC(τ )

P3(Imn−1(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P3(Imn−1(q), q)dq + Im(0),

Ie(t) = 1−τ
ABC(τ )

P4(Ien−1(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P4(Ien−1(q), q)dq + Ie(0),

Tm(t) = 1−τ
ABC(τ )

P5(Tmn−1(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P5(Tmn−1(q), q)dq + Tm(0),

Rm(t) = 1−τ
ABC(τ )

P6(Rmn−1(t), t) + τ
ABC(τ )�(τ)

∫ t
0 (t − q)τ−1P6(Rmn−1(q), q)dq + Rm(0).

(14)

Taking the difference of the successive terms together with the initial conditions in Eq. (2),
the following system of equations are derived, given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λSm, n (t) = Sm(t) − Smn−1 (t) = 1−τ
ABC(τ )

(P1(Smn−1 (t), t) − P1(Smn−2 (t))) + τ
ABC(τ )�(τ)∫ t

0 (t − q)τ−1P1(Smn−1 (q), q) − P1(Smn−2 (q), q)dq,

λVe, n (t) = Ve(t) − Ven−1 (t) = 1−τ
ABC(τ )

(P2(Ven−1 (t), t) − P2(Ven−2 (t), t)) + τ
ABC(τ )�(τ)∫ t

0 (t − q)τ−1P2(Ven−1 (q), q) − P2(Ven−1 (q), q)dq,

λIm, n (t) = Im(t) − Imn−1 (t) = 1−τ
ABC(τ )

(P3(Imn−1 (t), t) − P3(Imn−2 (t), t)) + τ
ABC(τ )�(τ)∫ t

0 (t − q)τ−1(P3(Imn−1 (q), q) − P3(Imn−2 (q), q))dq,

λIe, n (t) = Ie(t) − Ien−1 (t) = 1−τ
ABC(τ )

(P4(Ien−1 (t), t) − P4(Ien−2 (t), t)) + τ
ABC(τ )�(τ)∫ t

0 (t − q)τ−1(P4(Ien−1 (q), q) − P4(Ien−2 (q), q))dq,

λTm, n (t) = Tm(t) − Tmn−1 (t) = 1−τ
ABC(τ )

(P5(Tmn−1 (t), t) − P5(Tmn−2 (t), t)) + τ
ABC(τ )�(τ)∫ t

0 (t − q)τ−1(P5(Tmn−1 (q), q) − P5(Tmn−2 (q), q))dq,

λRm, n (t) = Rm(t) − Rmn−1 (t) = 1−τ
ABC(τ )

(P6(Rmn−1 (t), t) − P6(Rmn−2 (t), t))
τ

ABC(τ )�(τ)∫ t
0 (t − q)τ−1(P6(Rmn−1 (q), q) − P6(Rmn−2 (q), q))dq.

(15)

Also, it should be noted that Sm, n(t) = ∑n
j=0 λSm, j (t), Ve, n(t) = ∑n

j=0 λVe, j (t), Im, n(t) =
∑n

j=0 λIm, j (t), Ie, n(t) = ∑n
j=0 λIe, j (t), Tm, n(t) = ∑n

j=0 λTm, j (t) and Rm, n(t) =
∑n

j=0 λRm, j (t), Using Eqs.(12) and (13) and taking into account that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λSm, n−1(t) = Smn−1(t) − Smn−2(t),

λVe, n−1(t) = Ven−1(t) − Ven−2(t),

λIm, n−1(t) = Imn−1(t) − Imn−2(t),

λIe, n−1(t) = Ien−1(t) − Ien−2(t),

λTm, n−1(t) = Tmn−1(t) − Tmn−2(t),

λRm, n−1(t) = Rmn−1(t) − Rmn−2(t),

(16)
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Then, the following are derived.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

||λSm,n (t)|| ≤ 1−τ
ABC(τ )

w1||λSm,n−1(t)|| + τ
ABC(τ )�(τ)

w1
∫ t
0 (t − q)τ−1||λSm,n−1(q)||dq,

||λVe,n (t)|| ≤ 1−τ
ABC(τ )

w2||λVe,n−1(t)|| + τ
ABC(τ )�(τ)

w2
∫ t
0 (t − q)τ−1||λVe,n−1(q)||dq,

||λIm,n (t)|| ≤ 1−τ
ABC(τ )

w3||λIm,n−1(t)|| + τ
ABC(τ )�(τ)

w3
∫ t
0 (t − q)τ−1||λIm,n−1(q)||dq,

||λIe,n (t)|| ≤ 1−τ
ABC(τ )

w4||λIe,n−1(t)|| + τ
ABC(τ )�(τ)

w4
∫ t
0 (t − q)τ−1||λIe,n−1(q)||dq,

||λTm,n (t)|| ≤ 1−τ
ABC(τ )

w5||λTm,n−1(t)|| + τ
ABC(τ )�(τ)

w5
∫ t
0 (t − q)τ−1||λTm,n−1(q)||dq,

||λRm,n (t)|| ≤ 1−τ
ABC(τ )

w6||λRm,n−1(t)|| + τ
ABC(τ )�(τ)

w6
∫ t
0 (t − q)τ−1||λRm,n−1(q)||dq.

(17)

��
Theorem 2 [39,40] The proposed fractional order measles ABC operator model Eq. (2) pos-
sess a unique solution for some to ∈ [0, T ] if the following condition holds true.

1 − τ

ABC(τ )
w j + 1 − τ

ABC(τ )�(τ)
wτ

j to < 1, j = 1, . . . , 6. (18)

Proof It is clear that Sm(t), Ve(t), Im(t), Ie(t), Tm(t) and Rm(t) are bounded functions and
they also satisfy the Lipschitz condition. Also the expressions P1, P2, P3, P4, P5 and P6
satisfy the Lipschitz condition as shown in Eqs. (12) and (13). Hence, employing the recursive
principle with the application of Eq. (17), the following system are derived.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

||λSm,n || ≤ ||Sm(0)||
(

1−τ
ABC(τ )

w1 + τ to
ABC(τ )�(τ)

w1

)n
,

||λVe,n || ≤ ||Ve(0)||
(

1−τ
ABC(τ )

w2 + τ to
ABC(τ )�(τ)

w2

)n
,

||λIm,n || ≤ ||Im(0)||
(

1−τ
ABC(τ )

w3 + τ to
ABC(τ )�(τ)

w3

)n
,

||λIe,n || ≤ ||Ie(0)||
(

1−τ
ABC(τ )

w4 + τ to
ABC(τ )�(τ)

w4

)n
,

||λTm,n || ≤ ||Tm(0)||
(

1−τ
ABC(τ )

w5 + τ to
ABC(τ )�(τ)

w5

)n
,

||λRm,n || ≤ ||Rm(0)||
(

1−τ
ABC(τ )

w6
τ to

ABC(τ )�(τ)
w6

)n
.

(19)

Therefore, the sequences obtained above exist and satisfy ||λSm,n (τ )|| → 0, ||λVe,n (τ )|| →
0, ||λIm,n (τ )|| → 0, ||λIe,n (τ )|| → 0, ||λTm,n (τ )|| → 0 and ||λRm,n (τ )|| → 0 and n → ∞.
Moreover, from Eq. (19) and making use of the triangular inequality for any r yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

||Smn+r (t) − Smn (t)|| ≤ ∑n+r
j=n+1 L

j
1 = Ln+1

1 −Ln+r+1
1

1−L1
,

||Ven+r (t) − Ven (t)|| ≤ ∑n+r
j=n+1 L

j
2 = Ln+1

2 −Ln+r+1
2

1−L2
,

||Imn+r (t) − Imn (t)|| ≤ ∑n+r
j=n+1 L

j
3 = Ln+1

3 −Ln+r+1
3

1−L3
,

||Ien+r (t) − Ien (t)|| ≤ ∑n+r
j=n+1 L

j
4 = Ln+1

4 −Ln+r+1
4

1−L4
,

||Tmn+r (t) − Tmn (t)|| ≤ ∑n+r
j=n+1 L

j
5 = Ln+1

5 −Ln+r+1
5

1−L5
,

||Rmn+r (t) − Rmn (t)|| ≤ ∑n+r
j=n+1 L

j
6 = Ln+1

6 −Ln+r+1
6

1−L6
,

(20)

where L1, L2, L3, L4, L5 and L6 are the terms mentioned within Eq. (19). Therefore
Smn , Ven , Imn , Ien , Tmn and Rmn compose the Cauchy sequences in F(x), which is uniformly
convergent. The limit of these sequences is the unique solution of Eq. (2) demonstrated when
the limit theory in Eq. (14) as n → ∞ is applied. Therefore, the existence of the unique
solution for the fractional order ABC model system Eq. (2) is proved. ��
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Positivity and Boundedness of the Proposed ABCModel Solutions

Theorem 3 [21,24,41] The solutions (Sm(t), Ve(t), Im(t), Ie(t), Tm(t), Rm(t)) of the frac-
tional order ABC model Eq. (2) are nonnegative for all t ≥ 0 with nonnegative initial
conditions in R+6.

Proof It is clear that the existence and uniqueness of the ABC model system Eq. (2) is in
(0,∞). Since the human population exist, then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC Dτ
0,τ (Sm(t))|k(Sm ) = (1 − ρ)θh + (1 − φ2)αVe ≥ 0,

ABC Dτ
0,τ (Ve(t))|k(Ve) = ρθh + φ1Sm ≥ 0,

ABC Dτ
0,τ (Im(t))|k(Im ) = βa Sm + γ Rm ≥ 0,

ABC Dτ
0,τ (Ie(t))|k(Ie) = βbSm ≥ 0,

ABC Dτ
0,τ (Tm(t))|k(Tm ) = σ1 Im + σ2 Ie ≥ 0,

ABC Dτ
0,τ (Rm(t))|k(Rm ) = η1 Im + η2Tm ≥ 0,

(21)

where k(τ ) = {
τ(t) = 0, Sm, Ve, Im, Ie, Tm, Rm ∈ F(R+6)

}
and τ ∈ {Sm, Ve, Im, Ie, Tm, Rm}.

From the theorem above, any solution of the ABC model system Eq. (2) is such that
(Sm(t), Ve(t), Im(t), Ie(t), Tm(t), Rm(t)) ∈ R+6,∀t ≥ 0. ��
Theorem 4 [21,24,41] The domain ∧ =

{
(Sm, Ve, Im, Ie, Tm, Rm ∈ (R+6) : Nm ≤ θh

μ

}
is

a positively invariant set for the proposed ABC fractional model Eq. (2), where Nm(t) =
Sm(t) + Ve(t) + Im(t) + Ie(t) + Tm(t) + Rm(t).

Proof The summation of the total number of human population in Eq. (2) yields

ABC Dτ
0,τ Nm(t) = θh − μNm ≤ θh − μNm(t). (22)

Solving the above inequality, one obtains

lim
t→∞ supNm(t) ≤ θh

μ
. (23)

Therefore, from Eq. (23), the epidemiologically relevant domain in the sense of measles
disease transmission is given by

∧ =
{

(Sm, Ve, Im, Ie, Tm, Rm) ∈ (R+6) : Nm ≤ θh

μ

}

. (24)

Hence the ABC fractional measles disease model Eq. (2) is restricted to the solution set ∧. ��

Asymptotic Stability Analysis and Basic Reproduction Number (Rms)

In order to examine the stability of the ABC model (2), the two basic equilibria, namely,
the measles-free and measles-endemic eqilibria. Let ABC Dτ

0,τ Sm = 0,ABC Dτ
0,τVe =

0,ABC Dτ
0,τ Im = 0,ABC Dτ

0,τ Ie = 0,ABC Dτ
0,τTm = 0,ABC Dτ

0,τ Rm = 0 , the measles-
free equilibrium is given by

⎧
⎪⎪⎨

⎪⎪⎩

Em = (Som, V o
e , I om, I oe , T o

m, Ro
m) =

(
Som = (1−ρ)θh+((1−φ2)α)ρθh

(φ1+μ)(μ+(1−φ2)α)
,

V o
e = ρθh

μ+((1−φ2)α)
, I om = 0, I oe = 0, T o

m = 0, Ro
m = 0,

)
(25)
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while the measles-endemic equilibrium is given by

⎧
⎪⎪⎨

⎪⎪⎩

E∗
m = (S∗

m, V ∗
e , I ∗

m, I ∗
e , T ∗

m, R∗
m) =

(
S∗
m = (1−φ2)αV ∗

e +(1−ρ)θ

βa I ∗
m+βb I ∗

e +μ+φ1
, V ∗

e = ρθ+φ1
αφ2−μ

,

I ∗
m = γ Rm

μ+η1+σ1−βa S∗
m
, I ∗

e = β I ∗
e

(μ+σ2+d1)I ∗
e
,

T ∗
m = σ1 I ∗

m+σ2 I ∗
e

μ+η2
, R∗

m = I ∗
mη1+T ∗

mη2
γ+μ

)
(26)

Basic Reproduction Number (Rms)

Here, the next generationmatrix method [17,20] is employed to obtain the basic reproduction
number Rms of the proposed ABC model system Eq. (2), where the two matrices F and V
are given by

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 βa Som 0 0 0
0 0 0 βbSom 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(φ1 + μ) (1 − φ2)α 0 0 0 0
φ1 (μ + (1 − φ2)α) 0 0 0 0
0 0 (μ + σ1 + η1) 0 0 γ

0 0 0 (μ + σ2 + d1) 0 0
0 0 0 0 (μ + η2) 0
0 0 0 0 0 (γ + μ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(27)

where

Rms(F · V−1) = βaβb((1 − ρ)θh + ((1 − φ2)α) · ρθh

(μ + σ1 + η1)(μ + σ2 + d1)(φ1 + μ)(μ + (1 − φ2)α)
, (28)

is the vaccination controlled basic reproduction number (Rms) governing the measles epi-
demic spread in the human host population. If Rms < 1, then measles die out in the system,
while the persistence leading to high epidemic burden of measles occur when Rms > 1.

Local and Global Asymptotic Stability of theMeasles-Free Equilibrium

Theorem 5 [21,24,41]Themeasles-free equilibriumpoint Em should satisfy Re(qi ) < 0, i =
1, . . . , 6 for being locally asymptotically stable, where q denote the eigenvalues of the Jaco-
bian matrix computed at such equilibria.
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Proof Linearizing the ABC fractional model Eq. (2) around the measles-free equilibrium Em

(25), the following Jacobian matrix is derived, given by

J (Em) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(φ1 + μ) (1 − φ2)α 0 0 0 0
φ1 −(μ + (1 − φ2)α) 0 0 0 0
0 0 βa Som − (μ + σ1 + η1) 0 0 γ

0 0 0 βb Som − (μ + σ2 + d1) 0 γ

0 0 σ1 σ2 −(μ + η2) 0
0 0 η1 η2 0 −(γ + μ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(29)

It is clear from Eq. (29), that the negative eigenvalues of the 6 × 6 Jacobian matrix are
q1 = −(φ1+μ) < 0, q2 = −(μ+(1−φ2)α) < 0, q5 = −(μ+η1) < 0, q6 = −(γ +μ) < 0,
except the quantities βa Sm − (μ + σ1 + η1) and βbSm − (μ + σ2 + d1) which are positive,
which reduces Eq. (29) to a two dimensional matrix given by

J (Em) =
(

βa Som − (μ + σ1 + η1) 0
0 βbSom(μ + σ2 + d1)

)

, (30)

such that after the simplification of Eq. (30), one obtains

βaβbS
o
m − (μ + σ1 + η1)(μ + σ2 + d1) >

(μ + σ1 + η1)(μ + σ − 2 + d1)

(μ + σ1 + η1)(μ + σ2 + d1)
. (31)

Since Som has been defined earlier in (25), then

βaβb((1 − ρ)θ + ((1 − φ2)α) · ρθ

(μ + σ1 + η1)(μ + σ2 + d1)(φ1 + μ)(μ + (1 − φ2)α)
>

(μ + σ1 + η1)(μ + σ − 2 + d1)

(μ + σ1 + η1)(μ + σ2 + d1)
.

(32)

It is clear fromEq. (32), that Rms < 1 if−Rms > −1. Hence, themeasles-free equilibrium
of model system Eq. (2) is locally asymptotically stable. ��
Theorem 6 [21,24,41] The measles-free equilibrium Eq. (25) of ABC model system Eq. (2) is
globally asymptotically stable if Rms < 1.

Proof Using the comparison technique, the equation for the infected classes in (2) is consid-
ered and simplified as follows
( ˙Im
İe

)

=
( Sm
Nm

)( ˙Im
İe

)

− V

(
Im
Ie

)

=(F − V )

(
Im
Ie

)

−
(
1 − S

N

)
F

(
Im
Ie

)

≤ (F − V )

(
Im
Ie

)

,

(33)

where F and V are earlier defined. Therefore, the linearized differential inequality system is
stable whenever Rms < 1 . By standard comparison theorem, we obtain

(Im, Ie) → (0, 0), t → ∞. (34)

Substituting Im = Ie = 0 in the ABC model system Eq. (2) becomes

(Sm, Ve, Tm, Rm) =
( (1 − ρ)θ + ((1 − φ2)α)ρθ

(φ1 + μ)(μ + (1 − φ2)α)
,

ρθ

μ + ((1 − φ2)α)
, 0, 0, 0, 0,

)
, (35)

which converges to the measles free equilibrium Eq. (25) as t → ∞. Hence, the measles-free
equilibrium Em of Eq. (25) is globally asymptotically stable whenever Rms < 1. ��
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Numerical Implementation and Discussions of Simulations

Numerical Implementation

Here, the proposed fractional ABC model system Eq. (2) under the ABC fractional operator
of order τ is numerically solved. The approximate solutions are obtained using the algorithm
in the novel method developed by [35]. The advantage of this method is to enhance the
limitation of other well known existing methods of Adams–Bashforth, Eulers etc., since they
cannot solve non-local, non-singular kernel fractional derivatives in terms of efficiency and
convergence. The nonlinear fractional differential equationwith respect to theABC fractional
derivative of order τ yields

ABC Dτ
t �(t) = �(t,�(t)), �(0) = �o, 0 ≤ t ≤ ζ, (36)

together with the following initial conditions �(ν) = �ν
o , ν = 0, 1, 2, . . . , [τ ] − 1. Using

the fundamental principles of fractional calculus, Eq. (36) is transformed into a fractional
integral equation as

�(t) − �(0) = 1 − τ

ABC(τ )
�(t,�(t)) + τ

�(τ)ABC(τ )

∫ t

0
(t − t)τ−1�(τ, τ(t))dt . (37)

At the point tn+1, n = 0, 1, 2 . . . we have from Eq. (37), that
{

�(tn+1) − �(0) = 1−τ
ABC(τ )

�(tn,�(tn)) + τ
�(τ)ABC(τ )

∫ tn+1
0 (tn+1 − t)τ−1�(ζ, τ(ζ ))dζ

= 1−τ
ABC(τ )

�(tn,�(tn)) + τ
�(τ)ABC(τ )

∑n
k=0

∫ tk+1
tk

(tn+1 − t)τ−1�(ζ, τ(ζ ))dζ.

(38)

The function �(ζ, τ(ζ )), within the interval [tk, tk+1], employing the two- step Lagrange
polynomial interpolation approximately yields

⎧
⎪⎨

⎪⎩

Gk(ζ ) = ζ−tk−1
tk−tk−1

�(tk, τ (tk)) − ζ−tk
tk−tk−1

�(tk−1, τ (tk−1))

= �(tk ,ζ(tk ))
h (ζ − tk−1) − �(tk−1,ζ(tk−1))

h (ζ − tk)
∼= �(tk ,ζ(tk ))

h (ζ − tk−1) − �(tk−1,ζ(tk−1))
h (ζ − tk).

(39)

Using the approximation in Eq. (39), where h is the step length, we obtain from Eq. (38),
⎧
⎨

⎩

τn+1 = τ(0) + (1−τ)
ABC(τ )

ψ(tn, τ (tn)) + τ
ABC(τ )×�(τ)

× ∑n
k=0

(
�(tk ,τk−1

h

∫ tk+1
tk

(ζ − tk − 1)(tn+1 − t)ζ1dζ − �(tk1 ,ζk−1)

h

∫ tk+1
tk

(ζ − tk)(tn+1 − t)τ−1dζ
) (40)

Without generality loss, we consider

Pτ,k,1 =
∫ tk+1

tk
(ζ − tk−1)(tn+1 − ζ )ζ−1dζ, (41)

and

Pτ,k,2 =
∫ tk+1

tk
(ζ − tk)(tn+1 − ζ )ζ−1dζ, (42)

so that

Pτ,k,1 = hτ+1 (n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 2 + 2τ)

τ (τ + 1)
(43)
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and

Pτ,k,2 = hτ+1 (n + 1 − k)τ+1 − (n − k)τ (n − k + 1 + τ)

τ (τ + 1)
. (44)

Thus integrating Eqs. (42), (43) and (44), and replacing them in Eq. (40), yields
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�n+1 = �(0) + (1−τ)
ABC(τ )

�(tn,�(tn)) + τ
ABC(τ )

∑n
k=0 ×

(
hτ �(tk ,τk )

�(τ+2)

((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 2 + 2τ))
)

− τ
ABC(τ )

∑n
k=0(

hτ �(tk−1,τk−1)
�(τ+2) ((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 1 + τ))

)
.

(45)

Equation (45) represent the numerical scheme for the ABC fractional derivative. Therefore
employing this scheme to the proposed ABC model system Eq. (2) yields the following;

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Smn+1 = Sm(0) + (1−τ)
ABC(τ )

�(tn, Sm(tn)) + τ
ABC(τ )

∑n
k=0 ×

(
hτ �(tk ,Smk )

�(τ+2)

((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 2 + 2τ))
)

− τ
ABC(τ )

∑n
k=0

(
hτ �(tk−1,Smk−1)

�(τ+2) ((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 1 + τ))
)
,

(46)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ven+1 = Ve(0) + (1−τ)
ABC(τ )

�(tn, Ve(tn)) + τ
ABC(τ )

∑n
k=0 ×

(
hτ �(tk ,Vek )

�(τ+2)

((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 2 + 2τ))
)

− τ
ABC(τ )

∑n
k=0

(
hτ �(tk−1,Vek−1)

�(τ+2) ((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 1 + τ))
)
,

(47)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Imn+1 = Im(0) + (1−τ)
ABC(τ )

�(tn, Im(tn)) + τ
ABC(τ )

∑n
k=0 ×

(
hτ �(tk ,Imk )

�(τ+2)

((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 2 + 2τ))
)

− τ
ABC(τ )

∑n
k=0(

hτ �(tk−1,Imk−1)

�(τ+2) ((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 1 + τ))
)
,

(48)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Inn+1 = In(0) + (1−τ)
ABC(τ )

�(tn, In(tn)) + τ
ABC(τ )

∑n
k=0 ×

(
hτ �(tk ,Ink )

�(τ+2)

((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 2 + 2τ))
)

− τ
ABC(τ )

∑n
k=0(

hτ �(tk−1,Ink−1)

�(τ+2) ((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 1 + τ))
)
,

(49)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Tmn+1 = Tm(0) + (1−τ)
ABC(τ )

�(tn, Tm(tn)) + τ
ABC(τ )

∑n
k=0 ×

(
hτ �(tk ,Tmk )

�(τ+2)

((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 2 + 2τ))
)

− τ
ABC(τ )

∑n
k=0(

hτ �(tk−1,Tmk−1)

�(τ+2) ((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 1 + τ))
)
,

(50)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rmn+1 = Rm(0) + (1−τ)
ABC(τ )

�(tn, Rm(tn)) + τ
ABC(τ )

∑n
k=0 ×

(
hτ �(tk ,Rmk )

�(τ+2)

((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 2 + 2τ))
)

− τ
ABC(τ )

∑n
k=0(

hτ �(tk−1,Rmk−1)

�(τ+2) ((n + 1 − k)τ (n − k + 2 + τ) − (n − k)τ (n − k + 1 + τ))
)
.

(51)

Discussions of Simulations

Here, the numerical simulations for the proposed measles infection ABC model system
Eq. (2) is presented. A novel iterative technique, proposed in recent study of [35], is used to
obtain the approximate solutions of the proposed fractional type ABCmeasles model Eq. (2)
using the fitted and estimated values in Table 1.
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(a) (b) (c)

Fig. 3 Simulations of the effect of the measles transmission and relapse parameters of the proposed ABC
measles model Eq. (2)

(a) (b) (c)

Fig. 4 Simulations of the effect of vaccination parameters of the proposed ABC measles model Eq. (2)

Figure 3a–c displays the simulations of the fitted values of the effect of transmission βa ,
βb and relapse γ rates in measles infected and measles induced encephalitis individuals.
In Fig. 3a, b, a slight increase occurs which in turn decreases to the endemic state as time
increases. This is due to the fact that infection rate is higher in the host population compared
to the level of vaccination interventions implemented, which must be scaled up in order to
bring down the infection near zero. Also, Fig. 3c shows that as time increases some certain
individuals after temporary improvement against measles infection experience relapse of the
disease in their body system. Furthermore, Fig. 4a–c displays the simulations of the fitted
values of the effect of vaccination in the human host community. Figure 4a, c reveals that
after the first and second dose of vaccination of individuals denoted φ1 and φ2, there is a
decrease in likelihood of acquiring infection and that the vaccine wanes quickly as depicted
in Fig. 3b, while Table 3 shows the peak values and times for the graphical behaviors. This
shows that the level of vaccination is low compared to the endemic burden of the disease
since the simulations fail to converge to the measles-free equilibrium. From the physical
(epidemiological) point of view, Figs. 3 and 4 shows the long term (12 months) behavior
of the disease transmission and vaccination efforts applied. The curve of measles infection
transmission rates fails to flatten out in 12 months, which means that vaccination efforts of
first and second dose coverage is low, and the vaccine wanes quickly, which sustains measles
endemicity in Nigeria.
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Table 3 Peak values and times Variables Parameters Peak values Peak times (months)

Im βa 4.00 1.8

Ie βb 0.13 3.7

Rm γ 0.204 12

Sm φ1 0.414 3.5

Ve α 0.432 2.5

Sm φ2 0.316 1.6

Conclusion

An epidemiological model of measles disease transmission in distinct classes of measles
infected and measles induced encephalitis infected humans with the effect of vaccination,
treatment and relapse under the fractional ABC sense is rigorously examined. The model
is validated by fitting measles prevalence data of all Nigerian states relative to the year
2020. Using the nonlinear least square algorithm via the direct search optimization package
in computational software maple, the fitted and estimated parameter values and the basic
reproduction Rms number are obtained. The Computation of the Rms(Rms ≈ 1.34) reveal
that an individual is being infected on the average in the naive susceptible population in
Nigeria despite vaccination and treatment coverage, there is still a significant population
of un-immunized individuals, which results in the disease being in an endemic state in the
nation Nigeria. To this effect, the Nigerian government should scale up sufficient attention
to vaccination logistics, so that it can reach rural areas, regular supervision, intermittent
sensitization through media and special attention to children and families with low socio-
economic status to prevent immunization gaps, whichmay lead to high prevalence of measles
in the future. Analytically, the existence and uniqueness of the model is established, while
the model is found to be locally and globally asymptotically stable when Rms<1. A novel
numerical technique that combines fractional calculus with two step Lagranges polynomial is
employed to solve and obtain the approximate solutions of the proposed ABC model system
equations. The fractional order τ is varied using the fitted parameters and the results reveal
that despite the intervention measures like vaccination and treatment, the simulation curves
converges to the endemic state, which implies that measles is still an endemic burden on
the Nigerian nation. Also, the numerical scheme proved to be efficient and convergent with
less computational cost. This work is open to further research by considering the impact
of seasonality of measles transmission using spatial models, impact of fractional optimal
controls of media and educational awareness and socio-economic status of humans in the
host community as well as considering the impact of other fractional operators like the
Caputo–Fabrizio, Grunwald–Letnikov, just to mention a few.
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