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Abstract
Population dynamics modeling is a subject of major relevance, especially when involving
human or livestock disease vectors. Such importance is due to the fact that there are several
diseases that are spread by some particular species, and the knowledge on the behavior
of such populations is relevant when it is intended to create public policies to control their
proliferation. This work describes a problem of population dynamics with diffusive behavior,
with impulsive culling and delayed reproduction. The direct problem describes the space
and time evolution of the population density when the model parameters are known, and
the solution of the partial differential equation is obtained with the Generalized Integral
TransformTechnique (GITT), a hybrid numerical-analytical approach. For practical purposes
it is crucial to fit the model to a population of interest, by estimating the equation coefficients
through an inverse problem approach. In thiswork the inverse problem is illustratedwithin the
Bayesian framework employing a low-cost direct problem solution, and the Approximation
Error Model is used to take in account the error introduced by the low-cost solution.

Keywords Diffusive populations · Impulsive culling · Integral transforms · Bayesian
inference · Approximation error model
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g Source term
K Constant capacity
L Space domain width
M Subregions of integration
N Truncation order

Ncs Number of culling sites
ND Number of experimental data
NR Reduced truncation order
Ni Norms
NS Number of samples
P Logistic parameter growth
u Adult population density
u0 Initial adult population density
UC High order solution
UR Reduced order solution
x j Location of culling sites
Y Vector of measurements

Greek Symbols
δ Dirac delta function

εi (.) Modeling error
ei Experimental noise for i th measurement
λ Eigenvalue corresponding to the eigenfunction ψ

μ Premature death rate
μe Mean
π Probability density
τ Reproduction time delay
σ Standard deviation
ψ Eigenfunction

Subscripts and Superscripts
∼ Normalized eigenfunction

Introduction

Since the pioneering works of Malthus [1] and Verhulst [2] many other studies have been
proposed aiming at the analysis of population dynamics,manyof thembasedon themovement
of the population considering the dispersion and taking into account logistic growth rates,
seeking the factors that can alter in anyway birth rates andmortality. In [3] the random-walk is
adopted as a starting point for the study of dispersal in living organisms,while in [4,5] themain
models involving this mechanism are reviewed. Considering population control mechanisms
[6], extinction conditions are obtained through impulsive culling. Most of thoseworks present
different models and their simplified analytical or numerical solutions to specific cases are
carried out. However, most works end up ignoring the practical applications derived from
such models. In this sense, a way to create a bridge between theory and practice is the inverse
analysis, once the parameters estimation approach can be used for fitting such models to a
given population of interest, allowing for the practical use of these models in forecasting and
optimal mechanisms of population control [7–10]. The inverse problem analysis involves, in
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general, intensive iterative procedures. Therefore, it is of major importance to have a precise
solutionmethodologywith good computational efficiency in solving themathematicalmodel,
generally given by partial differential equations [11].

Aiming at a robust implementation for the population dynamics problem modeled as
partial differential equations, Knupp et al. [9] employed a combination of hybrid numerical-
analytical solution methodology, known as the Generalized Integral Transform Technique
(GITT), with the Differential Evolution optimization method for the inverse problem related
to population growth models with time delay and impulsive culling, using the maximum
likelihood procedure. It was observed the need of prior information regarding one or more
model parameters, which should be obtained by means of other prior independent proce-
dure. In such cases, it is critically important to consider how the uncertainties present in
the supposedly known values of these parameters affect the estimation of the others. In this
scenario, however, the most attractive framework is the Bayesian approach, which com-
bines the likelihood function with prior information in order to yield a representation for
the parameters posterior distribution [12]. The Bayesian framework has been successfully
employed in different areas, as can be seen in these works [13–19], just to cite a few exam-
ples.

In certain conditions, where the experimental error follows a normal distribution and
the prior information can be modeled as a normal distribution, it is possible to derive the
Maximum a posteriori objective function that may be used to obtain single point estimates
for the unknowns, besides the approximation of the confidence intervals. Nevertheless,
this represents only part of the information on the unknowns, and the estimated confi-
dence intervals must be used cautiously, since this commonly adopted approach is exact
only for linear problems, being just an approximation for nonlinear inverse problems, as
the one to be considered in this work. The posterior probability distribution may be fur-
ther explored using random sampling methods, such as the Markov Chain Monte Carlo
techniques. These approaches are more computationally intensive, but on the other hand
they allow to approach the true posterior distribution upon the appropriate modeling of
the prior information and the experimental errors, regardless of their statistical distribution
form.

In the present work, the inverse analysis of population dynamics with time delay and
impulsive culling is tackled, with two main contributions: (i) in order to adequately take
into account the prior information considered available for one or more model parameters,
as well as the uncertainties involved, the inverse analysis is carried out within the Bayesian
framework and implemented via Markov Chain Monte Carlo methods with the Metropolis-
Hastings (MH) algorithm; (ii) in order to overcome the difficulty posed by the high number
of simulations required by the Markov Chain Monte Carlo methods, it is necessary a fast
and accurate direct problem solution implementation. In this sense, it is proposed a com-
putationally low cost solution, constructed upon the integral transformation of the original
problem, and employing semi-analytical integrations and reduced-order expansions of the
nonlinear terms. The use of this approximated solution, however, introduces errors which
should be taken in account in the inverse problem solution. Thus, in this work it is also
investigated the Approximation Error Model (AEM) approach in the Bayesian formulation
[20].
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Direct Problem Formulation and SolutionMethodology

Consider the time dependent density of an adult population u defined in a one-dimensional
space with diffusive behaviour according to Fick’s law, and constant dispersion coefficient
D, reproduction time delay τ , premature death rate μ, and birth and death rates given by
b(u) and d(u), respectively. The governing equation is given by [6],

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ e−μτb(u) − d(u) −

Ncs∑

j=1

Bju(x j , t)δ(x − x j ) (1)

defined in 0 < x < L for t > 0 and the positions x j represent the location of the culling
sites, with culling intensities Bj . The total number of culling sites is given by Ncs , and δ

denotes the Dirac-delta function.
The initial and boundary conditions are given respectively by:

u(x, t) = u0(x, t), −τ ≤ t ≤ 0 (2)
∂u

∂x

∣∣∣∣
x=0

= 0,
∂u

∂x

∣∣∣∣
x=L

= 0 (3)

Assume that the rates b(u) and d(u) are defined according to a logistic model, being
respectively given by [7]:

b(u) = u(x, t − τ)

K + Cu(x, t − τ)
(4)

d(u) = Pu2(x, t)

K + Cu(x, t − τ)
(5)

Table 1 Parameters for the direct
problem solution

D P K C B μ τ L u0(x, t)

0.0001 0.005 1.0 0.5 0.001 0.0 10.0 1.0 1.0

Table 2 Direct problem solution convergence behavior, u(x, t = 50) (a) With M = 30 subregions for the
semi analytical integration. (b) With M = 150 subregions for the semi analytical integration

Complete Model Reduced Model (NR = 1)
N x = 0.2 x = 0.4 x = 0.5 sec.∗ x = 0.2 x = 0.4 x = 0.5 sec.∗

20 0.741 0.736 0.886 2.25 0.738 0.731 0.885 0.36

30 0.728 0.723 0.873 5.27 0.725 0.719 0.871 0.44

50 0.719 0.714 0.877 17.85 0.717 0.710 0.876 1.18

80 0.715 0.710 0.881 64.19 0.712 0.706 0.879 2.48

100 0.714 0.709 0.881 120.63 0.711 0.705 0.880 4.34

20 0.741 0.736 0.886 11.98 0.738 0.731 0.885 0.78

30 0.729 0.723 0.873 30.01 0.725 0.719 0.871 1.26

50 0.720 0.715 0.877 114.69 0.717 0.710 0.876 3.42

80 0.716 0.710 0.880 361.89 0.713 0.706 0.879 5.85

100 0.714 0.709 0.880 673.35 0.711 0.705 0.879 11.06

∗CPU time
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Table 3 Direct problem solution convergence behavior, u(x, t = 125) (a) With M = 30 subregions for the
semi analytical integration. (b) With M = 150 subregions for the semi analytical integration, 21

Complete Model Reduced Model (NR = 1)
N x = 0.2 x = 0.4 x = 0.5 sec.∗ x = 0.2 x = 0.4 x = 0.5 sec.∗

20 0.608 0.573 0.690 5.77 0.608 0.563 0.680 0.30

30 0.600 0.566 0.683 16.42 0.600 0.557 0.673 0.56

50 0.594 0.560 0.689 46.33 0.595 0.552 0.680 1.17

80 0.592 0.559 0.693 153.64 0.592 0.550 0.684 2.37

100 0.591 0.558 0.694 308.13 0.591 0.549 0.685 3.58

20 0.608 0.573 0.690 28.67 0.608 0.563 0.680 0.81

30 0.600 0.566 0.683 66.41 0.600 0.557 0.673 1.42

50 0.595 0.561 0.689 254.52 0.595 0.552 0.679 3.09

80 0.592 0.559 0.692 393.88 0.592 0.550 0.683 5.87

100 0.591 0.558 0.693 690.53 0.591 0.550 0.683 8.78

∗CPU time

Table 4 Test cases

Approximation With inverse Without inverse With Prior Without Prior
Error Model crime crime

Case 1 � �
Case 2 � �
Case 3 � �
Case 4 � �
Case 5 � � �
Case 6 � � �

Table 5 Case 1—Inverse problem solution (a) Statistics obtained after discarding the burn-in states. (b)
Estimates with 95% confidence intervals obtained with MCMCmethod. CI width (%): ratio between the 95%
confidence interval range and the estimated mean value

Parameters Exact Mean(μ) Standard Deviation (σ ) Coefficient of Variation(σ/μ)%

D × 104 1 0.617138 6.35198 × 10−3 1.02926

P × 103 5 3.43084 1.77159 × 10−2 0.516373

K 1 0.758786 6.38265 × 10−3 0.841166

C × 10 5 0.0181148 1.54953 × 10−2 85.5394

B × 103 1 0.739847 7.73914 × 10−3 1.04605

Parameters Initial Confidence Interval CI width( %)

D × 104 0.82142 [0.60469, 0.62959] 4.03464

P × 103 4.50741 [3.39612, 3.46556] 2.02414

K 1.05749 [0.74628, 0.77130] 3.29731

C × 10 4.60489 [−0.01226, 0.04849] 335.308

B × 103 0.97761 [0.72468, 0.75501] 4.10043
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Fig. 1 Case 1—Markov Chain for each parameter (black), Mean (green), 95% confidence interval (red) and
exact value (blue)

In this population dynamics model, the parameters are biologically interpreted as: D is the
population dispersion coefficient, P is the intrinsic growth rate, K is the carrying capacity,
C is the rate of replacement of the population in carrying capacity and B is the intensity of
impulsive culling sites.

For the solution of the partial differential equation, given by Eqs. (1–5), the hybrid
numerical–analytical approach named Generalized Integral Transform Technique (GITT)
[21] has been employed. Following the formalism for the solution of the nonlinear model
given by Eq. (1), the following integral transformation pair is defined:

Transform: ui (t) =
∫ L

0
u(x, t)ψ̃i (x)dx (6)

Inverse: u(x, t) =
∞∑

i=0

ui (t)ψ̃i (x) (7)
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Fig. 2 Case 1—posterior distribution

where ψ̃i (x) are the normalized eigenfunctions:

ψ̃i (x) = ψi (x)√
Ni

(8)

with the normalization integral, Ni , given by:

Ni =
∫ L

0
ψ2
i (x)dx (9)

The eigenfunctions are obtained considering an auxiliary eigenvalue problem, derived
from the direct application of separation of variables to the linear homogeneous purely
diffusive version of Eq. (1). Hence, the following Sturm–Liouville eigenvalue problem is
employed:

D
d2ψi (x)

dx2
+ λ2i ψi (x) = 0 , 0 < x < L (10)
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Table 6 Case 2—Inverse problem solution (a) Statistics obtained after discarding burn-in states. (b) Estimates
with 95% confidence intervals obtained withMCMCmethod. CI width (%): ratio between the 95% confidence
interval range and the estimated mean value

Parameters Exact Mean (μ) Standard Deviation (σ ) Coefficient of Variation (σ/μ)%

D × 104 1 1.04804 7.63162 × 10−3 0.73

P × 103 5 5.62001 3.25257 × 10−2 0.56

K 1 1.21984 1.43334 × 10−2 1.17

C × 10 5 13.6429 4.29008 × 10−1 3.14

B × 103 1 1.04939 6.42819 × 10−3 0.61

Parameters Initial Confidence Interval CI width( %)

D × 104 1.315 [1.03309, 1.063] 2.85

P × 103 5.866 [5.55626, 5.68376] 2.27

K 1.568 [1.19175, 1.24793] 4.60

C × 10 13.099 [12.802, 14.4837] 12.32

B × 103 1.2581 [1.03679, 1.06199] 2.40

with boundary conditions:

dψi (x)

dx

∣∣∣∣
x=0

= 0,
dψi (x)

dx

∣∣∣∣
x=0

= 0 (11)

Equation (10), with the boundary conditions given in Eq. (11), leads to an infinite set of
solutions for the eigenfunctions ψi (x), for discrete values of λi :

ψi (x) = cos(λi x), i = 0, 1, 2, . . . (12)

where the eigenvalues λi are given by:

λi = iπ
√
D

L
, i = 0, 1, 2, . . . (13)

The integral transformation of the original problem is carried out by operating on Eq. (1)
with

∫ L
0 ψ̃i (x) (.) dx , and employing the inverse formula, Eq. (7), into the source-terms,

yielding the following set of ordinary differential equations for the transformed potentials
ui ,

dui (t)

dt
+ λ2i ui (t) = gi (t,u), i = 0, 1, 2, . . . (14)

with

u = (u0, u1, u2 . . .) (15)

and

gi (t,u) = gi,1(t,u) + gi,2(t,u) + gi,3(t,u) (16)

where

gi,1 =
∫ L

0

ψ̃i (x)e−μτ
∑∞

j=0 u j (t − τ)ψ̃ j (x)

K + C
∑∞

j=0 u j (t − τ)ψ̃ j (x)
dx (17)
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Fig. 3 Case 2—Markov Chain for each parameter (black), Mean (green), 95% confidence interval (red) and
exact value (blue)

gi,2 =
∫ L

0

ψ̃i (x)P
(∑∞

j=0 u j (t)ψ̃ j (x)
)2

K + C
∑∞

j=0 u j (t − τ)ψ̃ j (x)
dx (18)

gi,3 = ∫ L
0 ψ̃i (x)

∑Ncs
k=1 Bk

(∑∞
j=0 u j (t)ψ̃ j (xk)

)
δ(x − xk)dx

= ∑Ncs
k=1 Bkψ̃i (xk)

(∑∞
j=0 u j (t)ψ̃ j (xk)

) (19)

The transformed initial conditions are obtained by the integral transformation of Eq. (2),
yielding:

ūi (t) =
L∫

0

ψ̃i (x)u0(x, t)dx, − τ ≤ t ≤ 0, i = 0, 1, 2, . . . (20)

Equations (14–20) form an infinite set of coupled ordinary differential equations, which is
unlikely to allow for explicit analytical solutions. Nonetheless, if the system and the infinite
expansions appearing in Eqs. (17–19) are truncated to a finite order N , the system can be
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Fig. 4 Case 2—posterior distribution

numerically solved by reliable built-in routines provided by well-established computational
platforms, such as the NDSolve routine within the Wolfram Mathematica environment.

The most computationally intensive task within this solution procedure is the calculation
of Eqs. (17) and (18), since the integrals involvedmost probably cannot be solved analytically,
and numerical techniques can become costly due to the oscillatory behavior of the eigen-
functions. Thus, the alternative semi-analytical integration procedure, such as proposed in
Ref. [22], is employed. Assuming that t he function to be integrated is of the form f (x, t, u),
one can write the following approximation:

∫ x1

x0
f (x, t, u)ψi (x)dx ≈

M∑

j=1

∫ x j

x j−1

f̂ j (x, t, u)ψi (x)dx (21)

where f̂ j (x, t, u) are simpler representations of the original function f (x, t, u), defined in M
subregions. In this work f̂ are first order representations of f within each subregion, i.e. f̂ j
is a linear approximation of f within [x j−1, x j ], for j = 1, 2, . . . , M . Hence, the integrals
on the RHS of Eq. (21) allows for analytical integration.

It should be remembered that thiswork is aimed at the corresponding inverse problem anal-
ysiswithin theBayesian framework, exploring the posterior densities of the sought parameters
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Fig. 5 Case 3—Markov Chain for each parameter (black), Mean (green), 95% confidence interval (red) and
exact value (blue)

with the Markov Chain Monte Carlo method, which may require thousands numerical sim-
ulations of the direct problem solution. So, even considering the semi-analytical integration
proposed, the computational cost can still be very high. Based on the better convergence
characteristics of the integrals of eigenfunction expansions [23], one of the contributions of
the present work is the proposition of a low-cost solution of the direct problem, based on
a reduced truncation order, NR ≤ N , of the expansions appearing in the integrals of the
nonlinear terms, in Eqs. (17, 18), as follows:

gi,1 =
∫ L

0

ψ̃i (x)e−μτ
∑NR

j=0 u j (t − τ)ψ̃ j (x)

K + C
∑NR

j=0 u j (t − τ)ψ̃ j (x)
dx (22)

gi,2 =
∫ L

0

ψ̃i (x)P
(∑NR

j=0 u j (t)ψ̃ j (x)
)2

K + C
∑NR

j=0 u j (t − τ)ψ̃ j (x)
dx (23)

This approach can yield a significant reduction of the computational effort associated with
the numerical integrations, without considerable precision loss, as we shall demonstrate later.
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Fig. 6 Case 3—posterior distribution

Table 7 Case 4—Inverse problem solution (a) Statistics obtained after discarding the burn-in states. (b)
Estimates with 95% confidence intervals obtained with MCMCmethod. CI width (%): ratio between the 95%
confidence interval range and the estimated mean value

Parameters Exact Mean (μ) Standard Deviation (σ ) Coefficient of Variation(σ/μ)%

D × 104 1 0.990093 1.03 × 10−2 4.09

P × 103 5 4.96818 4.45 × 10−2 3.51

K 1 0.993104 1.32 × 10−2 5.24

C × 10 5 4.88469 2.73 × 10−1 21.98

B × 103 1 0.994054 1.01 × 10−2 4.01

Parameters Initial Confidence Interval CI width( %)

D × 104 1.315 [0.972988, 1.01346] 4.37

P × 103 5.866 [4.88089, 5.05547] 3.86

K 1.568 [0.967087, 1.01912] 5.75

C × 10 13.099 [4.34784, 5.42155] 24.23

B × 103 1.2581 [0.974098, 1.01401] 4.32
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Fig. 7 Case 4—Markov Chain for each parameter (black), Mean (green), 95% confidence interval (red) and
exact value (blue)

Inverse Problem Formulation and SolutionMethodology

Consider known the rates of premature death, μ, and reproduction time delay, τ , for the
population under investigation, such as discussed in Ref. [9]. Hence, in this work the inverse
problem will be formulated as a problem of estimating the following parameters:

P = {D, P, K ,C, B}T (24)

where we have assumed that all the possible culling sites have the same culling intensity B.
Given a set of ND experimental data, obtained from transient measurements at one or

more distinct locations:

Y = {
Y1, Y2, . . . , YND

}T (25)

In the Bayesian approach, the inverse problem is formulated as a problem of statistical
inference based on the following principles [12]:

(i) The sought parameters are modeled as random variables;
(ii) The randomness describes our degree of information;
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Fig. 8 Case 4—posterior distribution

(iii) The degree of information is coded into probability distributions;
(iv) The solution of the inverse problem is the posterior probability distribution.

Thus, in the Bayesian approach all possible information is incorporated into the model,
as prior probability density functions, in order to reduce the amount of uncertainty present
in the problem. Denoting the prior probability density function as π (P), the Bayes’ theorem
formulation for inverse problems can be expressed as:

π (P|Y) = π (Y|P) π (P)

π (Y)
(26)

where π(P|Y) is the posterior probability distribution, π (Y) is the marginal density and
π(Y|P) is the likelihood function.

Note that this method can be implemented in various ways. In this work it is explored the
Markov ChainMonte Carlo method (MCMC).While other methods result in a point estimate
for the unknowns, the MCMC directly exploits the posterior probability distribution through
its sampling strategy [12,24].

The implementation of the MCMC method with the Metropolis-Hastings algorithm can
be performed using the following steps:
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Fig. 9 Convergence of the mean of the approximation error

Fig. 10 Convergence trace of the covariance matrix

1. Initialize the chain iterations counter i = 0, and choose a starting value P0.
2. Generate a candidate value P′ from an arbitrary auxiliary distribution q(P′|Pi ). In this

work, a random walk implemented with a uniform distribution is considered. Hence:

q(P′|Pi ) = U (Pi − δ,Pi + δ) (27)

where U represents a uniform distribution with support [Pi − δ,Pi + δ].
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3. Calculate the following acceptance probability α, for the chosen candidate:

α = min

[
1,

π(P′|Y)q
(
Pi |P′)

π
(
Pi |Y)

q
(
P′|Pi

)
]

(28)

4. Following the Metropolis-Hastings algorithm, draw a random number � from � ∼
U (0, 1), where U is the uniform distribution with support [0,1].

5. If � ≤ α then accept the new value and make Pi+1 = P′.
6. Else reject the candidate, and make Pi+1 = Pi .
7. Increase the counter i to i + 1, and go back to step 2.

This procedure is carried out to yield a Markov chain with NMCMC states, in the form{
P1,P2, . . . ,PNMCMC

}
. This sequence of generated samples is a representation of the pos-

terior distribution. Hence, inference on the sought posterior distribution is obtained from
inference on the generated samples. For inference purpose, it is worth noting that the ini-
tial states of the Markov chain must be ignored while the chain has not converged to the
equilibrium. These ignored states are commonly referred to as the burn-in period.

Approximation Error Model

While the solution of the inverse problem considering only Gaussian additive errors is given
by:

Y = UC (P) + e (29)

where UC is considered the solution of the direct problem, taken as the solution that best
represents the nature of the problem and e is a vector containing measurement errors, which
in most cases are well represented by a normal distribution with zero mean and standard
deviation σe.

On the other hand, in the Approximation Error Model approach (AEM), the modeling
error is treated as an additional noise to the conventional error model. The approximation
error modeling can be written as [25].

Y = UR(P) + [UC (P) −UR(P)] + e (30)

where UR(P) is the solution of the problem considering the reduced model, and one can
define:

ε(P) = UC (P) −UR(P) (31)

The approach of modeling error can be written as:

Y = UR(P) + η(P) (32)

with η(P) = ε(P) + e.
The posterior distribution analysis procedure is the same as the conventional error model,

with only a small change in the likelihood composition.

π(Y|P) = 2π− Nd
2 |W∗|− 1

2 exp

[
−1

2
RT∗ W−1∗ R∗

]
(33)

where W∗ is the covariance matrix and R∗ is the residual vector, given by:

R∗ = Y −UR(P) − ε∗(P) (34)

where ε∗(P) is the mean value of ε(P). To obtainW∗ and ε∗(P) it was used:
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1. NS samples are generated for the parameter vector P.
2. UR and UC solutions are calculated for each set P.
3. NS samples are calculated for the modeling error ε(P).
4. The mean and covariance matrix are calculated for ε(P)

Results and Discussion

Some numerical results are now reported, first for the direct problem solution, considering the
solutionmethodology described in “Direct ProblemFormulation and SolutionMethodology”
section, and next for the inverse problem solution, considering the methodology described in
“Inverse Problem Formulation and Solution Methodology” section. For the numerical exam-
ples, we consider the parameter values presented in Table 1, which are the same employed
in Refs. [7,9], considering four culling sites, i.e. NCS = 4 in Eq. (1), with equal culling
intensities, B1, . . . , B4 = B, located at x1 = 0.2, x2 = 0.4, x3 = 0.6 and x4 = 0.8. For
the solution of the direct and inverse problems, the computational implementations were run
with a computer equipped with CPU Intel Core i5-6200U, 2.3GHz processor, with 7.85 GB
RAM.

The convergence of the direct problem solution was analyzed for the order of the semi
analytical integration (M), see Eq. (21) and the truncation order of the eigenfunctions expan-
sions (N ), considering both the complete solution, in which NR = N in Eqs. (22) and (23),
and the approximated solution, with NR < N , aiming at the computational cost reduction.
Besides investigating the convergence behavior of the solutions, it was also analyzed the
computational time required. Comparing Table 2a, b, one may observe a very good perfor-
mance of the semi-analytical integration procedure, achieving convergence of two to three
significant digits for M = 30 in comparison to the more refined case, with M = 150, while
yielding considerable lower CPU times. Furthermore, the results presented in Table 2 demon-
strate good convergence behaviors regarding also the truncation order of the eigenfunctions
expansions (N ), for both the complete and the approximated solutions, with a remarkable
CPU time reduction observed in the approximated solution, without significant accuracy loss,
keeping the results converged with two to three significant digits. It is worth noting that the
less refined solution presented in Table 2, with N = 20, NR = 1 and M = 30, was achieved
with only 0.36 s and keeps the relative error in the order of 3% in comparison with the most
refined case presented, with N = 100, M = 150 and NR = N , which took 673.35 s to com-
pute. Similar results are presented in Table 3 for the time instant (t = 125) with even better
results observed for the approximated solution, demonstrating the good agreement with the
more refined solutions also for increasing time instants.

For the inverse problem solution, the synthetic experimental data were simulated in the
following form:

Yi = Ui (Pexact) + ei , ei ∼ N (0, 0.004) (35)

whereUi represents the direct problem solution at a given location x and time instant t , using
the exact values for the parametersP. In order to investigate the influence of the approximated
solution into the estimations, two sets of experimental data were considered. The first set
was generated considering the approximated solution with N = 20 and NR = 1, and the
second set was generated using the most refined solution considered, with N = NR = 150.
Although the most appropriate test scenario is the use of the complete solution for simulating
the experimental data, in order to avoid the so called inverse crime [12], we also tested the
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Table 8 Case 5—Inverse problem solution (a) Statistics obtained after discarding the burn-in states. (b)
Estimates with 95% confidence intervals obtained with MCMCmethod. CI width (%): ratio between the 95%
confidence interval range and the estimated mean value

Parameters Exact Mean (μ) Standard Deviation (σ ) Coefficient of Variation(σ/μ)%

D × 104 1 0.890586 1.81 × 10−2 4.09

P × 103 5 4.80234 6.81 × 10−2 3.51

K 1 0.940803 1.84 × 10−2 5.24

C × 10 5 0.317024 1.86 × 10−1 21.98

B × 103 1 1.05132 2.11 × 10−2 4.01

Parameters Initial Confidence Interval CI width( %)

D × 104 1.03073 [0.8552, 0.9260] 7.94

P × 103 5.70019 [4.6687, 4.9359] 5.56

K 1.17517 [0.9046, 0.9770] 7.70

C × 10 5.25067 [−0.0491, 0.6832] 231

B × 103 1.20620 [1.0099, 1.0928] 7.89

Table 9 Case 6—Inverse problem solution (a) Statistics obtained after discarding the burn-in states. (b)
Estimates with 95% confidence intervals obtained with MCMCmethod. CI width (%): ratio between the 95%
confidence interval range and the estimated mean value

Parameters Exact Mean(μ) Standard Deviation (σ ) Coefficient of Variation(σ/μ)%

D × 104 1 1.00561 1.65566 × 10−2 1.64643

P × 103 5 4.98208 4.47747 × 10−2 0.89871

K 1 0.99157 2.12822 × 10−2 2.14631

C × 10 5 4.81839 2.22816 × 10−1 4.6243

B × 103 1 0.99108 1.58183 × 10−2 1.59607

Parameters Initial Confidence Interval CI width( %)

D × 104 1.08432 [0.973156, 1.03806] 6.4539

P × 103 5.27353 [4.89433, 5.06984] 3.5229

K 1.10727 [0.94986, 1.03328] 8.41337

C × 10 4.94680 [4.38167, 5.2551] 18.1269

B × 103 1.08386 [0.960073, 1.02208] 6.2565

case involving the inverse crime, i.e., themodel employed in simulating the experimental data
is the same employed in the inverse problem solution, aiming at evaluating how the quality of
estimates vary when considering the given approximation. In Ref. [9] a thorough sensitivity
analysis was performed for this problem, which showed that all parameters but C could be
simultaneously estimated without the use of any prior information. Hence, in this work, we
considered the use of prior information for this parameter, whereas for the others no prior
information is adopted. The prior information for C was modeled by a normal distribution
with mean in the exact value for the parameter C , and standard deviation of 5% of the mean
value. Nonetheless, the inverse problem solution without prior information for this parameter
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Fig. 11 Case 5—Markov Chain for each parameter (black), Mean (green), 95% confidence interval (red) and
exact value (blue)

was also tried here, in order to revisit the conclusions achieved in Ref. [9], now within the
Bayesian framework. In summary, we can separate the test cases considering: (i) nature of
the simulated experimental data; and (ii) use of a priori information for the parameter C . In
this sense, the test cases considered are shown in Table 4. For all cases considered, the direct
problem solution within the inverse problem procedure was obtained using the approximated
solution with N = 20, M = 30 sub-regions in the semi-analytical integration, (21) and
approximated solution NR = 1, (23).

In Case 1 the Markov chain was constructed with a total of 120,000 states, being the
first 80,000 states discarded as the burn-in. Table 5 summarizes the calculated statistics
quantities. One may observe that the absence of prior associated with lack of accuracy of
the solution in reproducing the experimental data (the experimental data were simulated
with the complete solution in this case) leads to poor estimates. Figure 1 shows that the
Markov chains converge to incorrect values, and it should be noticed that the parameter C
was estimated to a meaningless value, in which the confidence interval encompasses the zero
value, suggesting an overparametrized model. This result is in agreement with the sensitivity
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Fig. 12 Case 5—posterior distribution

analysis performed inRef. [9]. Figure 2 consolidates this analysis by presenting the histogram
of the posterior distribution of the sought parameters.

In Case 2 it was considered 70,000 states for theMarkov chains, and the first 20,000 states
were discarded as the burn-in. The results presented in Table 6 show that the estimated confi-
dence intervals are close to the expected values with low levels of uncertainty, as concluded
from its confidence interval relatively narrow width. It can be seen that due to the inverse
crime (in this case the experimental data were simulated with the approximated solution) the
convergence and quality of the estimates improved, as shown Figs. 3 and 4, even without
prior information for the parameter C . Nonetheless, the estimated confidence interval for C
does not encompass the exact value, once again confirming the difficulties associated with
the estimation of this parameter, as also demonstrated with the sensitivity analysis performed
in Ref. [9].

In Case 3, The Markov chains were constructed with 50,000 states. These results illus-
trate that when prior information is considered available for the parameter C , much better
estimations are achieved. Nonetheless, the results obtained still lead to some estimations that
are relatively far from the expected values for some parameters, even if good convergence
of the Markov chain is observed for all parameters, as shown in Figs. 5 and 6. For example,
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Fig. 13 Case 6—Markov Chain for each parameter (black), Mean (green), 95% confidence interval (red) and
exact value (blue)

one may observe that the estimated confidence intervals for the parameters D, P and B do
not encompass the exact values of such parameters. This is probably explained by the errors
associated with the approximated solution. To demonstrate this, we finally consider in Case
4 the case with inverse crime and prior information available for the parameter C . In Case
4 the Markov chain was considered with 120,000 states, being the 20,000 first states dis-
carded as the burn-in. Table 7 summarizes the results obtained. One may observe that for all
parameters, the exact value lies inside the estimated 95% confidence intervals, demonstrating
that the errors associated with the approximated solution, even if small, can have significant
influence on the estimated parameters. In Fig. 7 it is shown that all the chains present fast
convergence and the posterior density distribution, presented in Fig. 8, approaches a normal
distribution.

Before proceeding to the inverse problem solution with the AEM approach, some con-
siderations must be made about the characterization of the modeling error ε. To generate the
samples, the average of the parameters obtained in Case 4 were disturbed by a random noise
with zero mean and standard deviation of 5% of the mean, each of these parameters was
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Fig. 14 Case 6—posterior distribution

used to generate a measure of the approximation error. For the calculation of the mean and
the covariance matrix, 15,000 samples were generated, which proved to be sufficient when
considering the convergence of the mean and the trace of the covariance matrix, as can be
seen in the Figs. 9 and 10.

In Case 5, no prior information was used for the parameter C , and the Markov chains
were constructed with 150,000 states. Convergence was achieved and all parameters were
estimated with reasonable values, near the exact ones, with exception of parameter C , as
expected due to the sensitivity issues already discussed here. These results are summarized
in Table 8 and Figs. (11) and (12).

To solve the inverse problem in Case 6, prior information was used for parameter C , with
chains of 100,000 states using 30,000 burn-in states for all parameters except for parameter
P which used 40,000, as indicated by the convergence test from Heidel [26]. After removing
the burn-in states, the statistical quantities were calculated and presented in the Table 9. In
Fig. 13 it is shown that all the chains converge considering few states and the posterior density
distribution, presented in Fig. 14, follows a normal distribution. One may observe that the
use of the low cost solution with the AEM approach yielded very good estimations for all
parameters considered, within relatively small and reliable confidence intervals. This result
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Fig. 15 Autocorrelation functions of the Markov chains regarding the parameters C and D in Cases 1 and 3

Fig. 16 Autocorrelation functions of the Markov chains regarding the parameters C and D in Cases 5 and 6

confirms the importance of taking into account the error model when employing approxi-
mated solutions or surrogate models, especially in nonlinear models such as the case of most
population dynamics formulations.

In order to better observe the influence of the prior information and the AEM approach
in the Markov chains, Figs. 15 and 16 present the autocorrelation functions regarding the
Markov chains obtained for the parameters with lower sensitivity (parameters C and D)

123



189 Page 24 of 25 Int. J. Appl. Comput. Math (2021) 7 :189

[9], for Cases 1 and 3 (in Fig. 15) and Cases 5 and 6 (in Fig. 16). The autocorrelation
functions show that considering prior information for C leads to a significant improvement
in the convergence behavior, with a remarkable decrease in the number of states needed to
obtain an independent sample, for both parameters here analyzed, C and D, even with prior
information only adopted for C .

Concluding Remarks

This work addressed the direct and inverse problem formulation and solution to tackle the
diffusive population problemwith impulsive culling sites. The direct problemwas formulated
using the reaction-diffusion equation with logistic birth and mortality rates and impulsive
culling. The solution of this problem followed the formalism of the Generalized Integral
Transform Technique (GITT) employing a computationally low cost solution, since the
inverse methodology would require several calculations of the direct problem. The inverse
problem was formulated within the Bayesian framework and the Markov Chain Monte Carlo
method, implemented with the Metropolis-Hastings algorithm, which was employed to sam-
ple the posterior probability density function. The approximate solution of the direct problem
was used to reduce the computational cost, but the error due to this type of approximation
generated estimates and/or confidence regions incompatible with the values used in the simu-
lation. To handle this issue, the Approximation ErrorModel (AEM) approach was employed,
leading to reliable results, as presented in Case 6. This work also confirmed the sensitivity
analysis performed in Ref. [16], now within the Bayesian framework, demonstrating that
one of the parameters appearing in the logistic-like growth rate model employed in this
formulation yields low sensitivity and is unlikely to be estimated without the use of prior
information. It should be highlighted that the methodology here developed, combining a
low cost numerical-analytical solution with the Approximation Error Model approach, can
be efficiently employed for the solution of inverse problems within the Bayesian frame-
work, despite of the sampling methodology considered, including newly developed MCMC
methods.
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