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Abstract
In this article, the solution for Volterra–Fredholm integral equation (V–FIE) is investigated
numerically by using the generalized Lucas polynomials. We approximate the solution of
this equation as a base of the collocation method. This method depends on the operational
matrices of these polynomials. These expansions and the properties of the generalized Lucas
polynomials help us to solve the V–FIE. First, we approximate the unknown function and
its integration in terms of the generalized Lucas polynomials with unknown coefficients.
Then, by substituting these approximations into the equation and using the properties of
these polynomials together with the collocation method, the problem is reduced to a system
of algebraic equations in the expansion coefficients of the solution, which can be simply
solved. An error estimate and convergence of the numerical solution for the generalized Lucas
expansion are proved extensively. Eventually, some examples are included and comparedwith
other methods to show the accuracy and validity of the proposed method.

Keywords Volterra–Fredholm integral equation · Generalized Lucas polynomials ·
Collocation method · Operational matrix · Convergence and error analysis

Mathematics Subject Classification 34K40 · 65N35 · 11B39

Introduction

One of the most important methods that evaluate the numerical solutions of the differential
equations is the spectral method. We express the solution as the expansion of polynomials.
Numerical schemes are used to solve and investigate different kinds of fractional differen-
tial equations such as [1–3] using Jacobi operational matrix for solving linear multi-term
fractional differential equations, the space-fractional order diffusion equation and fractional
reaction-subdiffusion equation with variable order. [4] solutions of third and fifth-order dif-
ferential equations by using Petrov-Galerkin methods, [5] solutions of fractional differential
equations by using shifted Jacobi spectral approximations. The numerical solution of the
nonlinear time-fractional telegraph equation using the neutron transport process [6]. Numer-
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ical evaluation of the time-fractional Klein–Kramers model is obtained by incorporating
the subdiffusive mechanisms [7]. Solving the modified time-fractional diffusion equation
using a meshless method [8]. The most used spectral methods are the Galerkin, Collocation,
and Tau methods: Numerical solution of fractional reaction–subdiffusion problem using
an improved localized radial basis-pseudospectral collocation method [9]. [10,11] numer-
ical solutions of fractional Telegraph equation by using Legendre-Galerkin algorithm and
Legendre Wavelets spectral tau algorithm. [12] solution of fractional rheological models and
Newell–Whitehead–Segel equations using shifted Legendre collocationmethod. [13] numer-
ical solution of differential eigenvalue problems by using tau method. Solving fractional
advection-dispersion problems using Chebyshev method and tau-Jacobi algorithm [14,15].
[16] numerical solutions of time-fractional Klein–Gordon equations by clique polynomials.
[17–19] using generalized Lucas (tau and collocation) method for solving multi-term frac-
tional differential equations and fractional pantograph differential equation. [20] numerical
solutions for coupled system of fractional differential equations using generalized Fibonacci
tau method.

Recently, the approximate solutions of the integral equations are evaluated by differ-
ent methods. These methods help to solve different kinds of integral equations with small
error and a small number of unknowns: numerical solution of nonlinear fractional integro-
differential equations with variable order derivative using the Bernstein polynomials and
shifted Legendre polynomials [21–23]. Specially, solutions of Volterra–Fredholm integral
equations: Solving nonlinear mixed Volterra–Fredholm integral equations using variational
iterationmethod [24]. [25,26] solutions usingTaylor collocation andTaylor polynomialmeth-
ods, [27] solutions using Legendre collocation method. Solutions using Chebyshev method
and second kind Chebyshev [28,29], [30] solutions using Lagrange collocation method. [31]
solutions by continuous-time and discrete-time spline collocationmethods. [32] solving using
Hybrid function method, [33] using the Adomian decomposition method. In this article, we
numerically study the Volterra–Fredholm integral equations and apply the operational matri-
ces based on the generalized Lucas polynomials. We compared the obtained results with
the Taylor collocation (TC) method [25], the Taylor polynomial (T P) method [26], and the
Lagrange collocation (LC) method [30]. The best of our work is the first to use the general-
ized Lucas collocationmethod for solving Volterra–Fredholm integral equation. This method
is certainly will verify high accurate results and fortunately takes shorter times.

Consider the Volterra–Fredholm integral equation [27]

N (y) V (y) + L(y) V (γ (y)) = h(y) + α1

γ (y)∫

0

β1(y, t) V (t) dt + α2

�∫

0

β2(y, t) V (γ (t)) dt

(1)
whereV (y) is an unknown function. L(y), N (y),γ (y), and h(y) are knownanddefinedon the
interval [0, �] , 0 ≤ γ (y) < ∞. β1(y, t) and β2(y, t) are known functions on [0, �]× [0, �] .
α1 and α2 are real constants.

The organization of this paper is as follows: Sect. 1 contains a brief history of the subject
of our work. In Sect. 2, some properties of the generalized Lucas polynomials, which will
be used in the following sections, are introduced. In Sect. 3, we describe the algorithm of
this method using the generalized Lucas polynomials for solving Volterra–Fredholm integral
equation. In Sect. 4, the convergence and error analysis are examined.We give some examples
and compared them with other techniques in Sect. 5. In the last, Sect. 6 we introduce some
conclusions.
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Properties and Used Formulas

The main aim of this section is to recall some important properties and formulas of the
generalized Lucas polynomials which will be used further [17,34–36].

The generalizedLucas polynomials
{
ϕ

ν1,ν2
m (y)

}
m≥0( ν1 and ν2 are non zero real numbers).

Which has the recurrence relation:

ϕν1,ν2
m (y) = ν1 y ϕ

ν1,ν2
m−1 (y) + ν2 ϕ

ν1,ν2
m−1 (y) , m ≥ 2. (2)

With initial values: ϕν1,ν2
0 (y) = 2, ϕ

ν1,ν2
1 (y) = ν1y.

ϕ
ν1,ν2
m (y) has the Binet’s form:

ϕν1,ν2
m (y) =

(
ν1 y +

√
ν21 y

2 + 4ν2

)m

+
(

ν1 y −
√

ν21 y
2 + 4ν2

)m

2m
m ≥ 0. (3)

Assume that we can expand the function V (y) in terms of generalized Lucas polynomials:

V (y) =
∞∑

m=0

em ϕν1,ν2
m (y) . (4)

Let the approximation of V (y) be

V (y) ≈ VK (y) =
K∑

m=0

em ϕν1,ν2
m (y) = ET �(y), (5)

where
�(y) = [

ϕ
ν1,ν2
0 (y) , ϕ

ν1,ν2
1 (y) , ..., ϕ

ν1,ν2
K (y)

]T
, (6)

and the coefficients
ET = [e0, e1, ..., eK ] , (7)

must be determined.

The Algorithm of theMethod

In this section, we use the generalized Lucas polynomials to approximate the solution of Eq.
(1). Suppose that 0 ≤ γ (y) < �. From the approximation (5), we have

V (γ (y)) ≈
K∑

m=0

em ϕν1,ν2
m (γ (y)) . (8)

From Eqs. (5) and (8) then Eq. (1) is rewritten as:

N (y)
K∑

m=0

em ϕν1,ν2
m (y) + L(y)

K∑
m=0

em ϕν1,ν2
m (γ (y))

= h(y) + α1

γ (y)∫

0

β1(y, t)
K∑

m=0

em ϕν1,ν2
m (t) dt

+α2

�∫

0

β2(y, t)
K∑

m=0

em ϕν1,ν2
m (γ (t)) dt . (9)
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Let
gm(y) = N (y) ϕa,b

m (y) + L(y) ϕν1,ν2
m (γ (y))

−α1

γ (y)∫

0

β1(y, t) ϕν1,ν2
m (t) dt − α2

�∫

0

β2(y, t) ϕν1,ν2
m (γ (t)) dt . (10)

Therefore we can write Eq. (9) in the form:
K∑

m=0

em gm(y) = h(y). (11)

Where Eq. (11) has K + 1 roots. So we have a system of equations
K∑

m=0

em gm(yi ) = h(yi ), (12)

where

yi = i

K
, i = 0, 1, ..., K .

The matrix form of equation (12) is given by
GT E = H ,

where
G = (gmi ), i,m = 0, 1, ....K ,

and

H = [h(y0), h(y0), ..., h(yK )]T .

The unknown constants can be determined by the following equation:

E = (GT )−1H .

Convergence and Error Analysis

In this section, we investigate the convergence and error analysis of generalized Lucas expan-
sion of V–FIE. The following theorems are satisfied:

Theorem 1 If V (y) is defined on [0, 1] and ∣∣V (i)(0)
∣∣ ≤ �i , i ≥ 0 where � is a positive

constant and if V (y) has the expansion:

V (y) =
∞∑

m=0

em ϕν1,ν2
m (y) .

Then:

1) |em | ≤
|ν1|−m�m cosh

(
2|ν1|−1ν

1
2
2 �

)

m ! ,

2) The series converges absolutely.

Proof See [17] ��
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If εK (y) = |V (y) − VK (y)| then we have the following truncation error:

Theorem 2 Let V (y) satisfy the assumptions stated in theorem (1). Moreover εK (y) =
∞∑

m=K+1
em ϕ

ν1,ν2
m (y) be the truncation error so:

|εK (y)| <
2e

�

(
1+

√
1+ν−2

1 ν2

)

(K + 1)! cosh

(
2�

(
1 +

√
1 + ν−2

1 ν2

)) (
1 +

√
1 + ν−2

1 ν2

)K+1

.

Proof See [17] ��
Now, we give an estimated value for the error of the numerical solution of Eq. (1) obtained

by the proposed method.

Theorem 3 Let ε
γ

K (y) = εK (γ (y)), εK = max
0≤y≤�

εK (y) and ε
γ

K = max
0≤y≤�

ε
γ

K (y), and

RK (y) = | N (y) VK (y) + L(y) VK (γ (y)) − α1

γ (y)∫

0

β1(y, t) VK (t) dt

−α2

�∫

0

β2(y, t) VK (γ (t)) dt − h(y) |,

let

�K = max
0≤y≤�

RK (y),

and if |N (y)| ≤ N1, |L(y)| ≤ L1, |β1(y, t)| ≤ �1, |β2(y, t)| ≤ �2 and |γ (y)| ≤ λ.

Where N1, L1, �1, �2 and λ are positive constants. Then we have the following global error
estimate:

�K ≤ 2 σ
e
�

(
1+

√
1+ν−2

1 ν2

)

(K + 1)! cosh

(
2�

(
1 +

√
1 + ν−2

1 ν2

)) (
1 +

√
1 + ν−2

1 ν2

)K+1

,

where

σ = max {N1, L1, |α1| �1λ, |α2| �2�} .

Proof From Eq. (1), we have

h(y) = N (y) V (y) + L(y) V (γ (y)) − α1

γ (y)∫

0

β1(y, t) V (t) dt − α2

�∫

0

β2(y, t) V (γ (t)) dt .

So

RK (y) ≤ |N (y) εK (y)| + ∣∣L(y) ε
γ

K (y)
∣∣ +

∣∣∣∣∣∣∣
α1

γ (y)∫

0

β1(y, t) εK (t) dt

∣∣∣∣∣∣∣

+
∣∣∣∣∣∣α2

�∫

0

β2(y, t) ε
γ

K (t) dt

∣∣∣∣∣∣ .
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From the assumptions of the theorem, we have

RK (y) ≤ N1 | εK (y)| + L1
∣∣ ε

γ

K (y)
∣∣ + |α1| �1λ | εK (y)| + |α2| �2�

∣∣ ε
γ

K (y)
∣∣ .

Then we obtain

�K ≤ {N1 + L1 + |α1| �1λ + |α2| �2�} max
(
εK (y), εγ

K (y)
)
.

From Theorem (2) , so the proof is completed. ��

Numerical Examples

In this section, we introduce a numerical approach to solve Eq. (1) using the generalized
Lucas collocation (GLC) method and compare our results within [25,26,30]. Numerical
examples are presented to show the validity, effectiveness, and accuracy of the method.

Example 1 Suppose that the following V–FIE [27]

(sin y) V (y) + (cos y) V (ey) = h(y) +
ey∫

0

ey+t V (t) dt −
1∫

0

ey+t V (et ) dt . (13)

The exact solution of this equation is V (y) = y2, where

h(y) = 1

3
ey

(−1 + e3
) + ey

{
2 − ee

y [
2 + ey

(−2 + ey
)]}

+e2y cos y + y2 sin y.

Table 1 shows that the absolute error which obtained by the GLC method is better than that
obtained by the Taylor collocation (TC) method [25], the Taylor polynomial (T P) method
[26], and the Lagrange collocation (LC) method [30]. The last two columns clarify the time
used for the running program (CPU time) and the difference between two consecutive errors
(CK ).

Table 1 Comparison between
absolute errors with different
values of K

K GLC TC [25] T P [26] LC [30]

2 1.7 × 10−15 7.6 × 10−15 2 × 10−15 2.8 × 10−15

3 1.9 × 10−15 1.2 × 10−14 2.8 × 10−15 1.4 × 10−14

4 1.8 × 10−15 3.4 × 10−14 4.4 × 10−15 1.9 × 10−13

CPU time CK

6.546 2 × 10−16

17.22 1 × 1−16

52.642 9.2 × 10−15
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Example 2 Suppose that the following V–FIE [27]

y2V (y) + eyV (2y) = h(y) +
2y∫

0

ey+t V (t)dt −
1∫

0

ey−2t V (2t)dt . (14)

The exact solution of this equation is V (y) = sin y, where

h(y) = −1

4
ey − 1

4
e−2+y cos 2 + 1

2
e3y cos 2y − 1

4
e−2+y sin 2 + y2 sin y

+ey sin 2y − 1

2
e3y sin 2y.

In Table 2, there is a comparison between the absolute errors of the present method with
the Taylor collocation (TC) method [25], the Taylor polynomial (T P) method [26], and the
Lagrange collocation (LC) method [30]. In Figure 1 we illustrate the results of the present
method at K = 2, 5, 8 and 9. The Figure shows that the convergence is exponential and the
errors are better when the values of K are large.

Table 2 Maximum absolute
errors with various values of K

K GLC TC [25] T P [26] LC [30]

2 7.4 × 10−2 7.9 × 10−2 3.4 × 10−2 7.9 × 10−2

5 1.6 × 10−4 6.2 × 10−5 3.7 × 10−4 6.2 × 10−5

8 7 × 10−8 1.9 × 10−8 1.2 × 10−5 1.8 × 10−7

9 4.9 × 10−8 2.4 × 10−8 3.5 × 10−7 7.2 × 10−6

CPU time CK

3.985 7.4 × 10−2

32.797 1.6 × 1−4

69.436 2.1 × 10−8

82.406 4.24 × 10−8

Fig. 1 Graph of the error at K=2, 5, 8 and 9
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Example 3 Suppose that the following V–FIE

V (y) = h(y) +
y∫

0

y tV (t)dt +
1∫

0

(y − t) V (t)dt . (15)

The exact solution of this equation is V (y) = y
1
2 , where

h(y) = −2

5
y

7
2 − 2

3
y + y

1
2 + 2

5
.

Table 3 lists The numerical results obtained by the proposed method for K = 8, 12 and 9
and different values of ν1 and ν2. The absolute errors of this method are plotted in Figure 2.
We observe from the Figure that the convergence is exponential.

Table 3 Results of absolute
errors for various values of K , ν1
and ν2

ν1 ν2 K E K E K E

1 1 8 0.13 12 9.6 × 10−2 16 7.6 × 10−2

2 1 0.13 9.6 × 10−2 8 × 10−2

3 −2 0.13 9.6 × 10−2 8 × 10−2

2 −1 0.13 9.6 × 10−2 8 × 10−2

CPU time CK

11.438 3.4×10−2

45.14 2 × 10−2

77.937 2.1×10−3

Fig. 2 Graph of the absolute error at K=8, 12, 16 and different values of ν1 and ν2
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Example 4 Suppose that the following V–FIE [27]

V (y) = h(y) +
ln(y+1)∫

0

ey+t V (t)dt −
1∫

0

ey+ln(t+1)V (ln (t + 1))dt . (16)

The exact solution of this equation is V (y) = e−y , where

h(y) = e−y + ey (1 − ln (y + 1)) .

In Table 4, we compare our results with the others and notice that the absolute error in the
proposed method is better than the others for large values K . The errors of this method are
displayed at K = 2, 5, 8 and 9 in Figure 3. It is clear from the Figure that the absolute errors
decrease drastically with increasing the number of steps.

Table 4 Comparison between the
absolute errors with various
values of K

K GLC TC [25] T P [26] LC [30]

2 5 × 10−3 3.3 × 10−3 3.6 × 10−2 3.3 × 10−2

5 9.7 × 10−7 4.3 × 10−7 3.1 × 10−4 4.3 × 10−7

8 6.4 × 10−11 6 × 10−8 5.6 × 10−7 5.8 × 10−7

9 2.1 × 10−12 8.8 × 10−8 1.4 × 10−7 1.9 × 10−5

CPU time CK

4.015 5 × 10−3

54.64 9.7 × 1−7

112.937 6.19 × 10−11

128.611 2.09 × 10−12

Fig. 3 Graph of the error at N=2, 5, 8 and 9
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Conclusions

This work aims to solve V–FIEs using the collocation based on the operational matrix of the
generalized Lucas polynomials. By this method, the main problem is reduced the V–FIEs
for four examples to a system of linear algebraic equations which significantly simplifies
the problem, these equations are solved by Mathematica software. Then evaluate the errors.
Numerical results are compared with those obtained by other techniques [25,26,30] to verify
the accuracy of this method. The spectral results, that are obtained, point that this algorithm
is high adequacy, viable and easy in applications. We discuss the convergence and error
analysis. Thismethod can solve applications in different fields in science such asmathematics,
chemistry, physics, biology, fluid, engineering, mechanics, by using fractional differential
equations and integral equations.
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