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Abstract

In this article, the solution for Volterra—Fredholm integral equation (V=FIE) is investigated
numerically by using the generalized Lucas polynomials. We approximate the solution of
this equation as a base of the collocation method. This method depends on the operational
matrices of these polynomials. These expansions and the properties of the generalized Lucas
polynomials help us to solve the V-FIE. First, we approximate the unknown function and
its integration in terms of the generalized Lucas polynomials with unknown coefficients.
Then, by substituting these approximations into the equation and using the properties of
these polynomials together with the collocation method, the problem is reduced to a system
of algebraic equations in the expansion coefficients of the solution, which can be simply
solved. An error estimate and convergence of the numerical solution for the generalized Lucas
expansion are proved extensively. Eventually, some examples are included and compared with
other methods to show the accuracy and validity of the proposed method.
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Introduction

One of the most important methods that evaluate the numerical solutions of the differential
equations is the spectral method. We express the solution as the expansion of polynomials.
Numerical schemes are used to solve and investigate different kinds of fractional differen-
tial equations such as [1-3] using Jacobi operational matrix for solving linear multi-term
fractional differential equations, the space-fractional order diffusion equation and fractional
reaction-subdiffusion equation with variable order. [4] solutions of third and fifth-order dif-
ferential equations by using Petrov-Galerkin methods, [5] solutions of fractional differential
equations by using shifted Jacobi spectral approximations. The numerical solution of the
nonlinear time-fractional telegraph equation using the neutron transport process [6]. Numer-
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ical evaluation of the time-fractional Klein—Kramers model is obtained by incorporating
the subdiffusive mechanisms [7]. Solving the modified time-fractional diffusion equation
using a meshless method [8]. The most used spectral methods are the Galerkin, Collocation,
and Tau methods: Numerical solution of fractional reaction—subdiffusion problem using
an improved localized radial basis-pseudospectral collocation method [9]. [10,11] numer-
ical solutions of fractional Telegraph equation by using Legendre-Galerkin algorithm and
Legendre Wavelets spectral tau algorithm. [12] solution of fractional rheological models and
Newell-Whitehead—Segel equations using shifted Legendre collocation method. [13] numer-
ical solution of differential eigenvalue problems by using tau method. Solving fractional
advection-dispersion problems using Chebyshev method and tau-Jacobi algorithm [14,15].
[16] numerical solutions of time-fractional Klein—Gordon equations by clique polynomials.
[17-19] using generalized Lucas (tau and collocation) method for solving multi-term frac-
tional differential equations and fractional pantograph differential equation. [20] numerical
solutions for coupled system of fractional differential equations using generalized Fibonacci
tau method.

Recently, the approximate solutions of the integral equations are evaluated by differ-
ent methods. These methods help to solve different kinds of integral equations with small
error and a small number of unknowns: numerical solution of nonlinear fractional integro-
differential equations with variable order derivative using the Bernstein polynomials and
shifted Legendre polynomials [21-23]. Specially, solutions of Volterra—Fredholm integral
equations: Solving nonlinear mixed Volterra—Fredholm integral equations using variational
iteration method [24]. [25,26] solutions using Taylor collocation and Taylor polynomial meth-
ods, [27] solutions using Legendre collocation method. Solutions using Chebyshev method
and second kind Chebyshev [28,29], [30] solutions using Lagrange collocation method. [31]
solutions by continuous-time and discrete-time spline collocation methods. [32] solving using
Hybrid function method, [33] using the Adomian decomposition method. In this article, we
numerically study the Volterra—Fredholm integral equations and apply the operational matri-
ces based on the generalized Lucas polynomials. We compared the obtained results with
the Taylor collocation (7 C) method [25], the Taylor polynomial (T P) method [26], and the
Lagrange collocation (LC) method [30]. The best of our work is the first to use the general-
ized Lucas collocation method for solving Volterra—Fredholm integral equation. This method
is certainly will verify high accurate results and fortunately takes shorter times.

Consider the Volterra—Fredholm integral equation [27]

y(y) 14
NV +Ly) V() =hQ) +a / Bi(y. 1) V(1) dt+az/ﬂz(y,t) V(y(@))dt
0 0

(D
where V (y) is an unknown function. L(y), N (y), y (y), and h(y) are known and defined on the
interval [0, £],0 < y(y) < oco. B1(y, t) and By (y, t) are known functions on [0, £] x [0, £] .
o1 and «y are real constants.

The organization of this paper is as follows: Sect. 1 contains a brief history of the subject
of our work. In Sect. 2, some properties of the generalized Lucas polynomials, which will
be used in the following sections, are introduced. In Sect. 3, we describe the algorithm of
this method using the generalized Lucas polynomials for solving Volterra—Fredholm integral
equation. In Sect. 4, the convergence and error analysis are examined. We give some examples
and compared them with other techniques in Sect. 5. In the last, Sect. 6 we introduce some
conclusions.
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Properties and Used Formulas

The main aim of this section is to recall some important properties and formulas of the
generalized Lucas polynomials which will be used further [17,34-36].
The generalized Lucas polynomials {(p "2 (y) }m>0( vy and v, are non zero real numbers).
Which has the recurrence relation:
o M= vyt +v 0,07 (), m=2. 2

With initial values: gy""" (y) = 2, ¢, (y) = viy.
@m"? (v) has the Binet’s form:

m
<v1 y+,/v12y2+4u2> + <v1 y—,/v%y2+4u2>

2m
Assume that we can expand the function V (y) in terms of generalized Lucas polynomials:

m

ot (y) = m > 0. 3

V) = emen (). “

m=0

Let the approximation of V (y) be

V() ~ Vk(y) = Z en ¢ (v) = ET (), )
m=0
where
() =[og" (. o] () 02 D] (6)

and the coefficients
ET =Teg, e1, ..., ex], @)

must be determined.

The Algorithm of the Method

In this section, we use the generalized Lucas polynomials to approximate the solution of Eq.
(1). Suppose that 0 < y(y) < £. From the approximation (5), we have

Viy»m)) ~ Z em o (). ®)

m=0

From Egs. (5) and (8) then Eq (1) is rewritten as:

N() Z em om0+ L) Z em o (r ()

m=0 m=0
r(y)

=h(y) +ai f Bi(y, 1) Zem ot (1) di
0 m=0

taz / B 1) 3 e 0 () . ©)

m=0
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Let
gn(y) = NO) ¢ () + LK) 93" (v (1)
y(y) 14
—ay / Bi1(y, 1) @, (1) dt —a / Ba2(y, 1) @, (y (1)) dt.  (10)
0 0
Therefore we can write Eq. (9) in the form:
K
> em gm(y) =h(y). (11)
m=0

Where Eq. (11) has K + 1 roots. So we have a system of equations

K
D em gmi) = h(y), (12)
m=0
where )
i
Vi ?1 i=0,1,..,K
The matrix form of equation (12) is given by
G"E=H,
where
G =(gni),i,m=0,1,...K,
and

H = [h(30), h(0), ..., h(y)1".

The unknown constants can be determined by the following equation:

E= (G 'H.

Convergence and Error Analysis

In this section, we investigate the convergence and error analysis of generalized Lucas expan-
sion of V-FIE. The following theorems are satisfied:

Theorem 1 If V(y) is defined on [0, 1] and !V(i)(O)‘ < ¢, i > 0 where { is a positive
constant and if V (y) has the expansion:

Vo) =Y empn” ().

m=0
Then:
1
[vy |~ gm cosh<2|v1\_1v22 z)
D leml < T s
2) The series converges absolutely.
Proof See [17] O
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Ifex(y) = |V (y) — Vk (y)| then we have the following truncation error:
Theorem 2 Let V(y) satisfy the assumptions stated in theorem (1). Moreover ek (y) =
o0

S em opi'? () be the truncation error so:
m=K+1

5 Z(1+,/1+vf2\J2> K+1
lexk ()| < ﬁ cosh (26 (l +4/14+ vf2v2)> (1 +4/1+ v1_2v2> .

Proof See [17] ]

Now, we give an estimated value for the error of the numerical solution of Eq. (1) obtained
by the proposed method.

Y _ _ vy _ Y
Theorem 3 Let ey (y) = ex(y(y)), €x = Oényag;s]((y) and €y = o;nészK(y)’ and

y(y)
Rg(y) =|INQ®) Vk() +L(y) Vk(y(y) — ay / Bi(y, 1) Vg (1) dt
0

£
—oezfﬂz(y,r) Ve ) di —h(y) |,
0

let

Mg = maxRg(y),
O<y=<¢

and if [N(y)| < Ni, [L(Y)| < L1, 1Bi(y, D] = Yy, 1620y, D) < W2 and [y (y)| < A.
Where Np, L1, W1, ¥, and A are positive constants. Then we have the following global error

estimate:
z(1+M) K+1
Nk <20 W cosh (2e (1 +/1+ vl_z\)z)) (1 +/1+ u;2v2> ,
where
o =max {Ny, Ly, |og| VA, |ag| Wal}.
Proof From Eq. (1), we have

v () V4
h() = N V) +LO) V() —a / Bi(y. 1) V(t) di — / Bay. 1) Vy (1) di.
0 0
So
v ()
Rg(y) < IN(Y) ex )|+ |L(y) ek (0] + |es / Bi(y.1) ex (1) dt
0

l
+ az/ﬂz@,r) &0 () di
0

@ Springer



178 Page60f11 Int. J. Appl. Comput. Math (2021) 7:178

From the assumptions of the theorem, we have
Rg(y) = Nilex I+ Li | e )] + lea| Wik | ex (0] + loa] W2l | e ()]
Then we obtain
Nk < N1+ L1+ log| W14 + |oz| Wol} max (g (y), ek (1)) -

From Theorem (2) , so the proof is completed. O

Numerical Examples

In this section, we introduce a numerical approach to solve Eq. (1) using the generalized
Lucas collocation (GLC) method and compare our results within [25,26,30]. Numerical
examples are presented to show the validity, effectiveness, and accuracy of the method.

Example 1 Suppose that the following V-FIE [27]

e 1
(siny) V(y)+ (cosy) V(e¥) :h(y)+/e-"+’ V(1) dt—/e”t V(e')dt. (13)
0 0

The exact solution of this equation is V (y) = y2, where

h(y) = %ey (1) +e {2- e 2+ e (-2 + )]
+¢* cosy + y?sin y.

Table 1 shows that the absolute error which obtained by the G L C method is better than that
obtained by the Taylor collocation (7 C) method [25], the Taylor polynomial (7 P) method
[26], and the Lagrange collocation (L C) method [30]. The last two columns clarify the time
used for the running program (C PU time) and the difference between two consecutive errors

(Ck).

Table 1 Comparison between
absolute errors with different Kk _¢Le reizs] P26l Lc130]

values of K 2 17x1075  76x10715 2x10715  28x 10715
3 19x10715 12x107% 28x10715 14x10714
4 18x10715 34x107 44x10715 19x10713

CPU time Ck

6.546 2x 10716
17.22 1x1°16
52.642 92 x 1015
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Example 2 Suppose that the following V-FIE [27]
2y

Y2V(y) + eV Q2y) = h(y) +/ey+’V(z)dz —/ey*?’V(zt)dt.

0
The exact solution of this equation is V (y) = sin y, where

1

0

(14)

1, 1 ' 1 5, 1 _ . .
h(y) = —Ze’ — Ze_zﬂ cos2 + 563’ cos2y — 2¢ 2V sin2 + y*siny

I3, .
+e¥ sin2y — EeS) sin2y.

In Table 2, there is a comparison between the absolute errors of the present method with
the Taylor collocation (7'C) method [25], the Taylor polynomial (7 P) method [26], and the
Lagrange collocation (LC) method [30]. In Figure 1 we illustrate the results of the present
method at K = 2, 5, 8 and 9. The Figure shows that the convergence is exponential and the

errors are better when the values of K are large.

Table 2 .Maxir.num absolute K GLC TC [25] TP [26] LC [30]
errors with various values of K
2 7.4 x 1072 7.9 x 1072 3.4 x 1072 7.9 x 1072
5 1.6 x 1074 6.2 x 1075 3.7x 1074 6.2 x 1075
8 7 x 1078 1.9 x 1078 12x 1073 1.8 x 1077
9 49 %1078 24%1078 3.5%x 1077 72 %1070
CPU time Ck
3.985 7.4 x 1072
32.797 1.6x 174
69.436 2.1 %1078
82.406 424 x 1078
T T T T T
0.1 f— ]
L 2 — S 1 o
i N = e e
" [ \ \ — N=3
w'r :___:“:-:_ — ) | 1 — M-8
1 — N=0

Fig. 1 Graph of the error at K=2, 5, 8 and 9

@ Springer



178 Page8of11 Int. J. Appl. Comput. Math (2021) 7:178

Example 3 Suppose that the following V-FIE

1

y
V() =h(@y) + / ytV(t)dt + / (y—t) V(dt. (15)
0 0

. . . 1
The exact solution of this equation is V (y) = y2, where

h(y) = lzy% - %y +y+ 2
5 3 5
Table 3 lists The numerical results obtained by the proposed method for K = 8, 12 and 9
and different values of v; and v,. The absolute errors of this method are plotted in Figure 2.

We observe from the Figure that the convergence is exponential.

Table 3 Results of absolute

. . w K E K E K E
errors for various values of K, vy
and v 1 1 8 013 12 96x1072 16 7.6x1072
2 1 0.13 9.6 x 1072 8 x 1072
3 -2 0.13 9.6 x 1072 8 x 1072
2 -1 0.13 9.6 x 1072 8 x 1072
CPU time Ck
11.438 3.4 %1072
45.14 2% 1072
77.937 2.1x1073
@1 _g T T T I_
A
ool Y -
I‘:‘I‘\
1R e
noorf 1) — ] — N=R
e e | N
wl 4 — nN=1s
w3} J
1 1 1 1 Y 1 " 1 n L n 1
L) 0.2 (1K) 184 1.0

Fig.2 Graph of the absolute error at K=8, 12, 16 and different values of vy and vy
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Example 4 Suppose that the following V-FIE [27]

In(y+1) 1
V(y) = h(y) + f TV (n)dt —/ey+1“<f+1>V(1n (t + )dtr. (16)
0 0

The exact solution of this equation is V(y) = e~”, where

h(y)=e 7+’ (1 —-In(y+1)).

In Table 4, we compare our results with the others and notice that the absolute error in the
proposed method is better than the others for large values K. The errors of this method are
displayed at K = 2, 5, 8 and 9 in Figure 3. It is clear from the Figure that the absolute errors

decrease drastically with increasing the number of steps.

Table 4 Compari.son bgtween the K GLC TC [25] TP [26] LC [30]
absolute errors with various
values of X 2 5x1073 33x10°3  36x102 33 x 1072
5 9.7 x 1077 43 x 1077 3.1x 1074 43 x 1077
8 6.4 x 10711 6 x 1078 5.6 x 1077 58 x 1077
9 2.1 x 10712 8.8 x 1078 1.4 x 1077 1.9 x 1075
CPU time Ck
4.015 5% 1073
54.64 9.7 x 177
112.937 6.19 x 10711
128.611 2.09 x 10712
T e = . N PR st . e U
.00 r\“lf,-“ e j ,ﬂ/ 1‘“*.-'
) T
Wop — —l
s T 5 ]
\f \/ » ’ s
w r 1 -
L -5 — N=3
! F— N:S\
W
' — MW=

10-12 Lo

0.0

Fig.3 Graph of the error at N=2, 5, 8 and 9
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Conclusions

This work aims to solve V-FIEs using the collocation based on the operational matrix of the
generalized Lucas polynomials. By this method, the main problem is reduced the V-FIEs
for four examples to a system of linear algebraic equations which significantly simplifies
the problem, these equations are solved by Mathematica software. Then evaluate the errors.
Numerical results are compared with those obtained by other techniques [25,26,30] to verify
the accuracy of this method. The spectral results, that are obtained, point that this algorithm
is high adequacy, viable and easy in applications. We discuss the convergence and error
analysis. This method can solve applications in different fields in science such as mathematics,
chemistry, physics, biology, fluid, engineering, mechanics, by using fractional differential
equations and integral equations.
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