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Abstract
In the present article, we considered a class of nth order impulsive neutral differential equa-
tions. The study on the oscillatory and asymptotic behavior of solutions for the higher-order
neutral differential equation is theoretical and practical. Various techniques appeared for these
studies. We reduced this class into a class of non-impulsive neutral differential equations by
using suitable substitutions. Through a comparison strategy involving first-order differential
equations, we studied the oscillatory and asymptotic behavior of solutions. Sufficient condi-
tions are obtained for asymptotic as well as oscillatory bounded solutions. Several examples
have illustrated the effectiveness of the requirements.

Keywords Neutral differential equations · Higher order · Impulsive conditions · Oscillation
criteria · Asymptotic behavior
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Introduction

The differential equations having the higher-order derivatives with and without delay are
called neutral differential equations. Higher-order neutral differential equations are used
to model many mathematical phenomena in natural science and technology. Initially, the
existence and uniqueness of solutions for different types of neutral equations have been
studied. In recent years, extensive considerations have been given to their oscillatory nature
by many researchers [1,3,5,11,12,17,18,22,23,28,33,34,36] and in the last few decades the
characteristics of such neutral equations with even/odd order have been studied [18,22,37].
The asymptotic and oscillation properties of higher-order neutral equationswith some relaxed
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conditions on coefficients are investigated in [1,3].Yildiz et al. [33,34] have consideredneutral
type nonlinear higher-order functional differential equations with oscillating coefficients.
Basic definitions and results on oscillation for neutral type differential equations are given
in [2].

It is a well-known fact that the motions on the earth are not always uniform as vari-
ous kinds of resistance appear during the motions. If high-intensity forces act for a short
duration, then the motions caused by these forces are called impulsive motions. In math-
ematical models, these types of motions are described by impulsive differential equations.
The differential equations with impulsive effect can be used to simulate those discontinuous
processes in which impulses occur. So, it becomes an important tool to handle the natural
function of mathematical models and phenomena such as in optimal control, electric circuit,
biotechnology, population dynamics, fractals, neural network, viscoelasticity, and chemical
technology. One of the main advantages of the impulses can be seen in the paper of Sugie
and Ishihara [26]. They provided the model in which the mass point might oscillate with
impulsive effect; however, the mass point didn’t oscillate without an impulsive effect. For
more work on impulsive impact, refer to the article of Feng et al. [6] as well as Raheem and
Maqbul [24].

In 1989, some researchers started to investigate the oscillatory nature of differential equa-
tions with impulses and were at the initial stage of its development. Later on, authors
in papers [6,8–10,18] have extended the study of oscillation to parabolic and hyperbolic
impulsive partial differential equations. The oscillatory and asymptotic nature of the solu-
tions for a higher-order delay differential equation with impulses were examined by some
researchers using comparison results with associated delay differential equations without
impulses[7,19,37]. We have often seen that even non-impulsive neutral delay differential
equations may have solutions of oscillatory nature due to some additional controls.

In literature, we noticedRiccati techniques arewidely used to obtainKamenev, and Philos-
type oscillation criteria [6,27,31]. Oscillation theory extended to the first-order impulsive
differential equations with variable delays in [11]. Several results for third-order delay dif-
ferential equations were discussed by Tiryaki and Aktas [29]. For the oscillation results on
second and fourth-order dynamical systems, refer to the paper [12,38]. Oscillatory and non-
oscillatory solutions play a significant role in many applied problems in natural sciences and
engineering. The research on oscillation and asymptotic behavior of impulsive differential
equation is emerging as an important area of study and is developing rapidly [4,20,25,30,35].

After considering the above formulations,we study the oscillation and asymptotic behavior
of solutions for higher-order neutral differential equations with impulsive conditions. We
converted the impulsive differential equations into non-impulsive differential equations by
using suitable substitutions. Moreover, we reduced the nth order neutral differential equation
into the first-order equation using generalized Riccati transformation. It allows using the
comparison theorems to establish the oscillation results. The obtained conditions are sufficient
for asymptotic as well as oscillatory bounded solutions. Philos-type oscillation criteria are
proved for taking n as an even integer.

Necessary lemmas and fundamental assumptions are provided in “Preliminaries and
Assumptions” section.Main results are obtained in “MainResults” section for the problem (1)
by using generalized Riccati transformations and comparison theorems. And in “Frequency-
Amplitude Formulation” section, the applicability of the main results is demonstrated by
several examples.
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Here, we established the oscillation results for the following model of impulsive neutral
differential equation of order n:

⎧
⎨

⎩

v(n)(x) + k(x)u(η2(x)) = 0, x �= xp,
u(r)(xp) − u(r)(x−

p ) = dpu(r)(x−
p ), r = 0, 1, 2, . . . , n − 1,

p = 1, 2, 3, . . . ,
(1)

where v(x) = u(x) + αu(η1(x)), η1(x) ≤ x, η2(x) ≤ x, x > x0, α > 0, dp > 0, v(r)(x)
denote the r th (r ≥ 1) order derivatives.

Preliminaries and Assumptions

Throughout the paper, we consider the following assumptions:

(C) ηr : (x0,∞) → R, r = 1, 2 are continuous functions with the following conditions:

(i) ηr (x) ≤ x, η1(η2(x)) = η2(η1(x))
(ii) η′

r (x) = 1 and η′′
r (x) = 0

(iii) lim
x→∞ ηr (x) = ∞.

Lemma 1 U (x) = ∏

x0<xp≤x
(1 + dp)−1u(x) satisfies

V (n)(x) + k(x)£(x)U (η2(x)) = 0, (2)

where

V(x) = U (x) + α
∏

η1(x)<xp≤x

(1 + dp)
−1U (η1(x)) (3)

and

£(x) =
∏

η2(x)<xp≤x

(1 + dp)
−1

if and only if u(x) satisfies (1) on the interval (x0,∞) .

Proof LetU (x) = ∏

x0<xp≤x
(1+dp)−1u(x) satisfies (2). Then wewill show that u(x) satisfies

(1) on the interval (x0,∞).
Obviously,

u(x) =
∏

x0<xp≤x

(1 + dp)U (x) and v(x) =
∏

x0<xp≤x

(1 + dp)V(x).

Thus

v(n)(x) =
∏

x0<xp≤x

(1 + dp)V
(n)(x).

Using (2), we get

v(n)(x) =
∏

x0<xp≤x

(1 + dp)

⎡

⎣−k(x)
∏

η2(x)<xp≤x

(1 + dp)
−1U (η2(x))

⎤

⎦
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= −k(x)
∏

x0<xp≤η2(x)

(1 + dp)U (η2(x)).

Therefore, for x �= xp, we have

v(n)(x) + k(x)u(η2(x)) = 0.

Also, we obtain

u(r)(x) =
∏

x0<xp≤x

(1 + dp)U
(r)(x), r = 0, 1, 2, . . . , n − 1,

which implies that

u(r)(xp) = (1 + dp)u
(r)(x−

p ), r = 0, 1, 2, . . . , n − 1.

This shows that u(x) satisfied (1).
Conversely, we assume u(x) = ∏

x0<xp≤x (1 + dp)U(x) satisfies (1). Then we will show
that U(x) satisfies (2) on (x0,∞).

As V(x) = ∏

x0<xp≤x
(1 + dp)−1v(x), we have

V (n)(x) =
∏

x0<xp≤x

(1 + dp)
−1v(n)(x).

Using (1), we obtain

V (n)(x) = −k(x)
∏

x0<xp≤x

(1 + dp)
−1u(η2(x))

= −k(x)
∏

η2(x)<xp≤x

(1 + dp)
−1U(η2(x))

= −k(x)£(x)U(η2(x)).

Now, we can easily show that U(r)(x−
p ) = U(r)(xp). This shows that U(x) satisfied (2). �	

Lemma 2 [19] A non zero solution u(x) of (1) is oscillatory on (x0,∞) if and only if the
corresponding solution U(x) = ∏

x0<xp≤x (1 + dp)−1u(x) of (2) is oscillatory on (x0,∞).

Moreover, lim x → ∞u(x) = 0 if and only if lim
x→∞U(x) = 0.

Lemma 3 [5] Let the nth order derivative of V(x) has a constant sign and not identically
zero on a subinterval of [x0,∞). If V(x) and its derivatives up-to order n−1 are of constant
sign in [x0,∞), then there exists an integer q > 0 and τ ≥ x0 such that 0 ≤ q ≤ n − 1, and
(−1)n+qV(x)V (n)(x) > 0,

V(x)V (r)(x) > 0 for r = 0, 1, 2, . . . , q − 1 when q ≥ 1

and

(−1)q+rV(x)V (r)(x) > 0 for r = q, q + 1, . . . , n − 1 when q ≤ n − 1

on [τ,∞).

Lemma 4 [18] Let V be a function defined in Lemma 3. If limx→∞ V(x) �= 0, then for every
μ ∈ (0, 1), there exists xμ ∈ [τ,∞) such that

|V(x)| ≥ μ

(n − 1)! x
n−1|V (n−1)(x)|
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on [τμ,∞).

Lemma 5 [18] Let V be a function defined in Lemma 3. If V (n−1)(x)Vn(x) ≤ 0, then for any
constant ν ∈ (0, 1) and sufficiently large x, there exists a constant M > 0 satisfying

|V (1)(νx)| ≥ Mxn−2|V (n−1)(x)|.
Lemma 6 [18] If U is a positive solution of (2), then corresponding function

V(x) = U(x) + α
∏

η1(x)<xp≤x

(1 + dp)
−1U(η1(x)),

satisfies V(x) > 0, V (n−1)(x) > 0, V (n)(x) < 0 eventually.

Main Results

Theorem 7 If first order neutral differential inequality:

[Y (x) + αY (η1(x))]′ + μ

(n − 1)! J (x)£(x)ηn−1
2 (x)Y (η2(x)) ≤ 0,

where

J (x) = min{k(x), k(η1(x))}
has no eventually positive solution then every non zero solution of (1) is oscillatory.

Proof Let on contrary U(x) be an eventually positive solution of (2). From (2), we have

V (n)(x) + αV (n)(η1(x)) + J (x)£(x)

⎡

⎣U(η2(x)) + α
∏

η1(η2(x))<xp≤η2(x)

(1 + dp)
−1

U(η2(η1(x)))] ≤ 0.

Using (3), we get

V (n)(x) + αV (n)(η1(x)) + J (x)£(x)V(η2(x)) ≤ 0. (4)

From Lemma 4, we have

V(η2(x)) ≥ μ

(n − 1)!η
n−1
2 (x)V (n−1)(η2(x)).

Using above inequality, we get

V (n)(x) + αV (n)(η1(x)) + μ

(n − 1)! J (x)£(x)ηn−1
2 (x)V (n−1)(η2(x)) ≤ 0. (5)

If we assume Y (x) = V (n−1)(x), then first order neutral differential inequality

[Y (x) + αY (η1(x))]′ + μ

(n − 1)! J (x)£(x)ηn−1
2 (x)Y (η2(x)) ≤ 0,

has an eventually positive solution which is a contradiction to the condition of theorem.
Applying Lemma 2, result follows. �	
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Corollary 8 Let n be an even integer and there exists a constant K > 0 such that
∏

η1(x)<xp≤x

(1 + dp)
−1 ≤ K .

If first order differential inequality:

Y ′(x) + μ(1 − αK )ηn−1
1 (x)k(x)£(x)

(n − 1)! Y (x) ≤ 0,

has no eventually positive solution, then every bounded solution of (1) is oscillatory.

Proof Let U(x) be a bounded and non-oscillatory solution of (2). We may assume that U(x)
is eventually positive. Since U(x) > 0 is bounded, V(x) is also bounded and V(x) > 0
eventually. As n is even and V(x) is bounded, by using Lemma 3, we have q = 1 i.e.

(−1)(1+r)V(x)V (r)(x) > 0, r = 1, 2, . . . , n − 1.

In particular V ′(x) > 0. From (3), we have

U(x) ≥ (1 − αK )V(x).

Using above inequality in (2), we get

V (n)(x) + (1 − αK )k(x)£(x)V(η2(x)) ≤ 0. (6)

Using Lemma 4, we get

V(η1(x)) ≥ μ

(n − 1)!η
n−1
1 (x)V (n−1)(η1(x)).

As V (n−1)(x) is decreasing, we have

V(η1(x)) ≥ μ

(n − 1)!η
n−1
1 (x)V (n−1)(x).

Using above inequality in (6), we get

V (n)(x) + μ(1 − αK )ηn−1
1 (x)k(x)£(x)

(n − 1)! V (n−1)(x) ≤ 0.

If we assume Y (x) = V (n−1)(x), then first order differential inequality

Y ′(x) + μ(1 − αK )ηn−1
1 (x)k(x)£

(n − 1)! Y (x) ≤ 0,

has an eventually positive solution which is a contradiction to the condition of theorem.
Applying Lemma 2, result follows. �	
Theorem 9 Let n be an even integer and η1(x)

2 ≤ η2(x). We assume that there exist real valued
continuously differentiable functions �(x, y), φ(x, y) with domain D1 = {(x, y)|x ≥ y ≥
x0 > 0}, and continuously differentiable function ρ with the domain [x0,∞) satisfying the
following conditions:

(A1) �(x, x) = 0 for x ≥ x0 and �(x, y) > 0 for x > y ≥ x0;
(A2) ∂

∂x �(x, y) ≥ 0, ∂
∂ y�(x, y) ≤ 0;

(A3) ∂�(x,y)
∂ y + �(x, y) ρ′(y)

ρ(y) = φ(x, y), (x, y) ∈ D1.
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Further, assume that

lim sup
x→∞

1

�(x, x0)

∫ x

T

[

�(x, y)ρ(y)J (y)£(y) − (1 + α)φ2(x, y)ρ(y)

2M�(x, y)ηn−2
1 (y)

]

dy = ∞. (7)

Then every bounded solution of (2) is oscillatory.

Proof Let U(x) be a bounded and non-oscillatory solution of (2). We may assume that U(x)
is an eventually positive. Since U(x) > 0 is bounded, V(x) is also bounded and V(x) > 0
eventually. As n is even and V(x) is bounded, by using Lemma 3, we have q = 1 i.e.

(−1)(1+r)V(x)V (r)(x) > 0, r = 1, 2, . . . , n − 1.

In particular, V ′(x) > 0.
From (2), we have

V (n)(x) + αV (n)(η1(x)) + J (x)£(x) [U(η2(x))

+α
∏

η1(η2(x))<xp≤η2(x)

(1 + dp)
−1U(η2(η1(x)))

⎤

⎦ ≤ 0.

Using (3), we get

V (n)(x) + αV (n)(η1(x)) + J (x)£(x)V(η2(x)) ≤ 0. (8)

Define

χ1(x) = ρ(x)
V (n−1)(x)

V
(

η1(x)
2

) . (9)

Differentiating with respect to x , we get

χ
(1)
1 (x) = ρ′(x)V

(n−1)(x)

V
(

η1(x)
2

) + ρ(x)

⎡

⎣
V (n)(x)

V
(

η1(x)
2

) −
V (n−1)(x)V (1)

(
η1(x)
2

)

2V2
(

η1(x)
2

)

⎤

⎦ . (10)

Using Lemma 5, we obtain

V (1)
(η1(x)

2

)
≥ Mηn−2

1 (x)V (n−1)(η1(x))

≥ Mηn−2
1 (x)V (n−1)(x). (11)

Using above inequality in (10), we get

χ
(1)
1 (x) ≤ ρ′(x)V

(n−1)(x)

V
(

η1(x)
2

) + ρ(x)
V (n)(x)

V
(

η1(x)
2

) − Mηn−2
1 (x)

2ρ(x)

⎡

⎣ρ(x)
V (n−1)(x)

V
(

η1(x)
2

)

⎤

⎦

2

.

Using (9), we get

χ
(1)
1 (x) ≤ ρ′(x)

ρ(x)
χ1(x) + ρ(x)

V (n)(x)

V
(

η1(x)
2

) − Mηn−2
1 (x)

2ρ(x)
χ2
1 (x). (12)
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Define another function

χ2(x) = ρ(x)
V (n−1)(η1(x))

V
(

η1(x)
2

) . (13)

Differentiating with respect to x , we get

χ
(1)
2 (x) = ρ′(x)V

(n−1)(η1(x))

V
(

η1(x)
2

) + ρ(x)

⎡

⎣
V (n)(η1(x))

V
(

η1(x)
2

) −
V (n−1)(η1(x))V (1)

(
η1(x)
2

)

2V2
(

η1(x)
2

)

⎤

⎦ .

Using (11) and (13), we get

χ
(1)
2 (x) ≤ ρ′(x)

ρ(x)
χ2(x) + ρ(x)

V (n)(η1(x))

V
(

η1(x)
2

) − Mηn−2
1 (x)

2ρ(x)
χ2
2 (x). (14)

Using (12) and (14), we get

χ
(1)
1 (x) + αχ

(1)
2 (x) ≤ ρ(x)

V (n)(x) + αV (n)(η1(x))

V
(

η1(x)
2

) + ρ(1)(x)

ρ(x)
χ1(x)

−Mηn−2
1 (x)

2ρ(x)
χ2
1 (x) + α

ρ′(x)
ρ(x)

χ2(x) − α
Mηn−2

1 (x)

2ρ(x)
χ2
2 (x).

Using (8), we get

χ
(1)
1 (x) + αχ

(1)
2 (x) ≤ −ρ(x)J (x)£(x) + ρ′(x)

ρ(x)
χ1(x) − Mηn−2

1 (x)

2ρ(x)
χ2
1 (x)

+α
ρ(1)(x)

ρ(x)
χ2(x) − α

Mηn−2
1 (x)

2ρ(x)
χ2
2 (x).

Multiplying by �(x, y) and integrating from T to x, we get
∫ x

T
�(x, y)ρ(y)J (y)£(y)dy

≤ −
∫ x

T
�(x, y)χ(1)

1 (y)dy − α

∫ x

T
�(x, y)χ(1)

2 (y)dy

+
∫ x

T

ρ(1)(y)

ρ(y)
�(x, y)χ1(y)dy − M

2

∫ x

T

ηn−2
1 (y)

ρ(y)
�(x, y)χ2

1 (y)dy

+α

∫ x

T

ρ(1)(y)

ρ(y)
�(x, y)χ2(y)dy − α

M

2

∫ x

T

ηn−2
1 (y)

ρ(y)
�(x, y)χ2

2 (y)dy

= �(x, T )χ1(T ) +
∫ x

T

[

φ(x, y)χ1(y) − Mηn−2
1 (y)

2ρ(y)
�(x, y)χ2

1 (s)

]

ds

+α�(x, T )χ2(T ) + α

∫ x

T

[

φ(x, y)χ2(y) − Mηn−2
1 (y)

2ρ(y)
�(x, y)χ2

2 (y)

]

dy.

Using inequality Pψ − Qψ2 ≤ P2

4Q , we get
∫ x

T
�(x, y)ρ(s)J (y)£(y)dy
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≤ �(x, T )χ1(T ) + α�(x, T )χ2(T ) +
∫ x

T

(1 + α)φ2(x, y)ρ(y)

2M�(x, y)ηn−2
1 (y)

dy,

⇒
∫ x

T

[

�(x, y)ρ(y)J (y)£(y) − (1 + α)φ2(x, y)ρ(y)

2M�(x, y)ηn−2
1 (y)

]

dy

≤ �(x, T )χ1(T ) + α�(x, T )χ2(T )

≤ �(x, x0)χ1(T ) + α�(x, x0)χ2(T ),

which gives

1

�(x, x0)

∫ x

T

[

�(x, y)ρ(y)J (y)£(y) − (1 + α)φ2(x, y)ρ(y)

2M�(x, y)ηn−2
1 (y)

]

dy < ∞,

which contradicts the condition (7). Applying Lemma 2, result follows. �	
Theorem 10 Let n be an odd integer and u(x) be an eventually positive bounded solution of
(1). Further, if there exists a constant K1 > 0 such that

max

⎧
⎨

⎩

∏

η1(x)<xp≤x

(1 + dp)
−1,

∏

η2(x)<xp≤x

(1 + dp)
−1

⎫
⎬

⎭
≤ K1

and
∫ ∞

x0
k(x)dx = ∞, (15)

then lim
x→∞ u(x) = 0.

Proof Since u(x) is eventually positive, consequently U(x) and V(x) are also eventually
positive, therefore there exists � ≥ x0 such that V(x) > 0, for x ≥ �. Let lim

x→∞V(x) = L.

Then L ≥ 0. Claim L = 0, otherwise L > 0. As n is an odd integer and V(x) is bounded,
by using Lemma 3, we have q = 0, (otherwise V(x) is unbounded) i.e.

(−1)rV(x)V (r)(x) > 0, for r = 0, 1, 2, . . . n − 1.

In particular, V ′(x) < 0 for x ≥ �. Since V(x) is decreasing for x ≥ �, we have L + ε >

V(x) > L for all ε > 0. Choose 0 < ε <
L(1−αK1)

αK1
. It is easy to see that

U(x) = V(x) − α
∏

η1(x)<xp≤x

(1 + dp)
−1U(η1(x))

≥ L − α
∏

η1(x)<xp≤x

(1 + dp)
−1V(η1(x))

≥ L − α
∏

η1(x)<xp≤x

(1 + dp)
−1(L + ε)

≥ L − αK1(L + ε) = P(L + ε) > PV(x), (16)

where P = L−αK (L+ε)
L+ε

> 0.
Therefore, from (2), we have

V (n)(t) = −k(x)£(x)U(η2(x))
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≤ −Pk(x)£(x)V(η2(x))

≤ −PK1k(x)L. (17)

Integrating from � to x, we get

V (n−1)(x) − V (n−1)(�) ≤ −PK1L
∫ x

�

k(y)dy,

⇒
∫ x

�

k(y)dy ≤ V (n−1)(�)

PK1L
.

Taking limit as x → ∞, (15) contradicted. Hence lim
x→∞V(x) = 0. Since U(x) ≤ V(x), we

have

lim
x→∞U(x) = 0.

Therefore, by applying Lemma 2, we get

lim
x→∞ u(x) = 0.

This completes the proof. �	
Corollary 11 Condition (15) of Theorem 10 can be replaced by the following condition

∫ ∞

�

yn−1k(y)dy = ∞. (18)

Proof Multiplying (17) by yn−1 and integrating from � to x , we get
∫ x

�

yn−1V (n)(y)dy ≤ −PK1L
∫ x

�

yn−1k(y)dy,

⇒
G(t) − G(�) ≤ −PK1L

∫ x

�

yn−1k(y)dy, (19)

where

G(x) = xn−1V (n−1)(x) − (n − 1)xn−2V (n−2)(x) + (n − 1)(n − 2)xn−3V (n−3)(x)

− · · · − (n − 1)(n − 2) . . . 3.2.xV ′(x) + (n − 1)(n − 2)(n − 3) . . . 3.2V (x).

Since (−1)rV (r)(x) > 0, r = 0, 1, 2, . . . , (n − 1) for x ≥ �, G(x) > 0 for x ≥ �. From
(19), we have

−G(�) ≤ −PK1L
∫ x

�

yn−1k(y)dy.

Taking limit as x → ∞, we get
∫ ∞

�

yn−1k(y)dy ≤ G(�)

PK1L
,

which contradicts (18). Thus the proof is completed. �	
In the next section, following the idea used in papers [13–16], we elucidate the frequency-

amplitude relationship.
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Frequency-Amplitude Formulation

According to the Lemma 1, problem (1) is equivalent to the following problem:

V (n)(x) + k(x)£(x)U(η2(x)) = 0, (20)

where V , £ and U are defined in Lemma 1.
Equation (20) is of the following form:

V (n) + f (U ) = 0, (21)

where f (U ) = k(x)£(x)U(η2(x)).
We assume that all the conditions of Theorem 7 hold. Therefore every non zero solution

of (1) is oscillatory. To find frequency- amplitude relationship, we consider the following
conditions:

V (0) = A, V ′(0) = V ′′(0) = · · · = V (n−1)(0) = 0,

where A is its initial amplitude.
According to He’s frequency-amplitude formulation, we use the following trial functions:

V1(x) = A cosw1x, V2(x) = A cosw2x, . . . , Vn(x) = A coswnx,

where w1, w2, …, wn are trial frequencies.
If n is even i.e. n = 2m, m = 1, 2, 3, . . . , then the residuals are given by:

R1(x) = f (U1) − (−1)m−1wn
1 cosw1x

R2(x) = f (U2) − (−1)m−1wn
2 cosw2x

.....................................................

Rn(x) = f (Un) − (−1)m−1wn
n coswnx .

If n is odd i.e.n = 2m − 1, m = 1, 2, 3, . . . , then the residuals are given by:

R1(x) = f (U1) − (−1)m−1wn
1 sinw1x

R2(x) = f (U2) − (−1)m−1wn
2 sinw2x

.....................................................

Rn(x) = f (Un) − (−1)m−1wn
n sinwnx .

According to classic procedure of He’s frequency-amplitude, the approximate frequency of
non linear oscillator (21) can be calculated by using above residuals.

Application

Example 12 Consider the following system
⎧
⎨

⎩

[u(x) + αu(x − 2π)](6) + 3
x u(x − π) = 0, x �= xp,

u(r)(xp) − u(r)(x−
p ) = 1

p u
(r)(x−

p ), r = 0, 1, 2, 3, 4, 5,
p = 1, 2, 3, . . . .

(22)

Here n = 6, η1(x) = x − 2π, η2(x) = x − π, x > x0, α > 0, k(x) = 3
x , J (x) = 3

x ,

dp = 1
p , xp = pπ.
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Let �(x, y) = (x − y)2, ρ(y) = y.
Clearly,�(x, x) = (x−x)2 = 0 for x ≥ x0 and�(x, y) = (x− y)2 > 0 for x > y ≥ x0.
Therefore (A1) holds.
∂
∂x �(x, y) = 2(x − y) ≥ 0, ∂

∂ y�(x, y) = −2(x − y) ≤ 0, for x > y.
Therefore (A2) holds.

(A3)
∂�(x, y)

∂ y
+ �(x, y)

ρ′(y)
ρ(y)

= −2(x − y) + (x − y)2.
1

y

= (x − y)(−2y + x − y)

y

= (x − y)(x − 3y)

y
= φ(x, y).

We see that
∫ x

x0
�(x, y)ρ(y)J (y)£(y)dy

=
∫ x

x0
(x − y)2

∏

y−π<xp≤y

(
p

1 + p

)

dy

= 1

2

∫ x1

x0
(x − y)2dy + 1

3

∫ x2

x1
(x − y)2dy + 1

4

∫ x3

x2
(x − y)2dy + . . .

= (x − x0)3

6
− (x − x1)3

18
− (x − x2)3

36
− (x − x3)3

60
− . . . .

We can easily show that

lim sup
x→∞

1

�(x, x0)

∫ x

x0

[

�(x, y)ρ(y)J (y)£(y) − (1 + α)φ2(x, y)ρ(y)

2M�(x, y)ηn−2
1 (y)

]

dy = ∞.

Thus all the conditions of Theorem 9 are fulfilled, therefore every bounded solution of (12)
is oscillatory.

Example 13 Consider the following system
⎧
⎨

⎩

[u(x) + αu(x − 4π)](n) + e2xu(x − 2π) = 0, x �= xp,
u(r)(xp) − u(r)(x−

p ) = 1
p u

(r)(x−
p ), r = 0, 1, 2, 3, ..., n − 1,

p = 1, 2, 3, . . . ,
(23)

where n is any positive even integer.
Here η1(x) = x − 4π, η2(x) = x − 2π, x > x0, α > 0, k(x) = e2x , dp = 1

p , xp = pπ.

Let �(x, y) = (x − y)2, ρ(y) = e−2y .

Clearly (A1), (A2) hold.

(A3)
∂�(x, y)

∂ y
+ �(x, y)

ρ′(y)
ρ(y)

= −2(x − y) − (x − y)2.
2e−2y

e−2y

= −2(x − y)(x − y + 1)

= φ(x, y).
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Now, we can easily show that

lim sup
x→∞

1

�(x, x0)

∫ x

x0

[

�(x, y)ρ(y)J (y)£(y) − (1 + α)φ2(x, y)ρ(y)

2M�(x, y)ηn−2
1 (y)

]

dy = ∞.

Thus all the conditions of Theorem 9 are fulfilled, therefore every bounded solution of (13)
is oscillatory.

Example 14 Consider the following system
⎧
⎨

⎩

[u(x) + αu(x − 2π)](5) + x2u(x − π) = 0, x �= xp,
u(r)(xp) − u(r)(x−

p ) = 1
p u

(r)(x−
p ), r = 0, 1, 2, 3, 4,

p = 1, 2, 3, . . . .
(24)

Here n = 5, k(x) = x2, dp = 1
p , η1(x) = x − 2π, η2(x) = x − π. Clearly, there exits a

constant K1 > 0 such that

max

⎧
⎨

⎩

∏

x−2π<xp≤x

(
p

1 + p

)

,
∏

x−π<xp≤x

(
p

1 + p

)
⎫
⎬

⎭
≤ K1

and
∫ ∞

x0
k(y)dy =

∫ ∞

x0
y2dy = ∞.

Thus all the conditions of Theorem 10 are fulfilled, therefore by using Theorem 10, we get

lim
x→∞ u(x) = 0.

Conclusion

Our main emphasis is analyzing of higher-order neutral impulsive differential equations
using Riccati transformations and comparison theorems in the present work. Using these
strategies, every solution of the studied equation [i.e., problem (1.1)] oscillates under certain
assumptions. In addition to that, some sufficient conditions are obtained for bounded oscil-
latory solutions using the corresponding non-impulsive differential equation. Moreover, the
asymptotic behavior of the oscillatory solutions is also discussed.
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