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Abstract
The solution of a time-fractional vibration equation is obtained for the largemembranes using
powerful homotopy perturbation technique via Sumudu transform. The fractional derivative
is taken in Liouville-Caputo sense. The numerical experiments by taking several initial con-
ditions are conducted through some test examples. The results are discussed by taking distinct
values of the wave velocity. The results show the competency and accuracy of this analytical
scheme. The solution of fractional vibration equation by HPSTM for various orders of mem-
ory dependent derivative is compared with the published work and is discussed using figures
and tables. The tables confirm that the absolute error between the succeeding approximations
is negligible which confirm convergence of the obtained solution. The HPSTM scheme is
competent also when the exact solution of a nonlinear differential equation is unknown and
reduces time as well as size of the computation. It is useful for both small and large parame-
ters. The outcomes disclose that the HPSTM is a reliable, accurate, attractive and an effective
scheme.

Keywords Fractional order vibration equation · Homotopy perturbation Sumudu transform
method: (HPSTM) · Liouville–Caputo fractional order derivative
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w (r, t) Probability density function of particle at time t at position r
c Wave velocity of vibrations
N Set of natural numbers
Dα
t Liouville–Caputo α–order operator

α Order of the Liouville–Caputo fractional derivative
L1 (a, b) A set of integrable functions in (a, b)
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R Set of real numbers
S Sumudu transform operator
R Linear differential operator
N Nonlinear differential operator
h (x, t) Source term
w0 (r, t) Initial condition
X , Y Banach Spaces
T : X → Y Contraction nonlinear mapping
Hm (u (x, t)) He’s polynomials

Introduction

Now a days, there are several computational models for microscopic and macroscopic sys-
tems. The membranes create the main components in acoustics and the music such as the
components of microphones, speakers and the related devices [1]. To investigate the design
of hearing aids, the knowledge of large membrane vibration [2] is vital. The vibration of
membranes plays a major role in analysis of wave mechanics in two dimensions and wave
propagation, bio-engineering etc. In bio-engineering, several human tissues are anticipated
as the membranes. The vibrational features of eardrum is valuable to understand the hearing.
The equation of vibration is used to designate the vibration of membranes [3].

The integer order vibration equation [4] is,

1

c2
∂2w(r, t)

∂t2
= ∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r
; r ≥ 0, t ≥ 0, (1)

with initial settings:

w(r, 0) = ϕ(r),
∂w(r , 0)

∂t
= cξ(r), 0 ≤ r ≤ 1, 0 ≤ t ≤ 1. (2)

wherew(r , t) signifies probability density function [5] of particle at time t at position r.Also,
c is wave velocity of vibrations.

Fractional order derivatives describe hereditary and the memory related properties of var-
ious real-life processes and materials [6]. The analysis of fractional differential equations
(FDE) [7–11] in mathematical physics, vibration, signal processing, visco-elasticity, chem-
ical engineering [12], seismic wave propagation [13], modelling of diseases [14, 15] etc.
is a growing field of interest for the researchers. In the literature, there exist operational
matrix method [3], decomposition method [4], homotopy perturbation scheme (HPM) [5],
variational iteration scheme [16] etc. to solve the vibration equation. The homotopy analysis
method (HAM) offers a simple mode to confirm convergence of the solution [17–19]. HAM
was first introduced by Liao [20] for solving the differential equations. The HPM was first
introduced by Ji-huan He [21, 22]. It is a united form of perturbation method and the homo-
topy in topology. It has been applied [23, 24] to solve problems in various fields. But these
methods have some limitations such as massive computation with more time consumption
[25]. So, they necessitate to be linked with a transform operator.

The hybrid methods using integral transforms [26, 27] are useful to get a solution of
nonlinear FDE. Homotopy analysis transform method (HATM) is a united form of the HAM
and Laplace’s transformation. In [1, 28], the researchers used the HATM to solve fractional
vibration equation. The homotopy perturbation Laplace transform method (HPTM) is also a
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collective form of HPM and Laplace’s transformation. In [28], Goyal et al. found the solution
to the coupled FDE using HPTM. The reliability of scheme is also vital than modeling
dimensions of equations [29, 30].

The Sumudu transform [31, 32, 32] has an interesting advantage of the ‘unity’ feature over
the Laplace transform which could arise with expediency when we develop the solutions of
FDE. It leads combinations into the permutations hence it is suitable for the discrete systems.
The function along with its Sumudu transform has identical Taylor coefficients other than
factor n. Watugala [33, 34] proposed the Sumudu transform. Asiru [35] proved its properties.

Singh et al. [36] proposed the homotopyperturbationSumudu transformmethod (HPSTM)
which is a graceful merger of the HPM, He polynomials and the Sumudu transform. It is
largely due to the works of Saberi-Nadjafi and Ghorbani [37]. Unlike HPM, the HPSTM is
uniformly valid for both small, large parameters and variables [38]. The benefit of HPSTM is
its power of embracing two robust computational schemes for tackling an FDE. This approach
can reduce the computation work and time as compared to existing schemes simultaneously
preserving the efficiency of results. HPSTM has already been applied for solving heat like
equations [39], fractional coupledBurger’s equations [40],MHDviscous flow [41], fractional
energy balance equation [42], Keller-Segel equation [43], etc.

Our aim is to investigate the fractional model of vibration Eq. (1) and to get its solution
by applying the HPSTM. Our paper is presented in the following manner. In Sect. 1, there is
introduction. In Sect. 2, the basic results of derivative in Liouville-Caputo sense, the Sumudu
transform and its properties are provided. In Sect. 3, the mathematical model of time depen-
dent vibration equation is discussed along with its necessity and our motivation in finding its
possible solution. In Sect. 4, the idea of HPSTM is given. In Sect. 5, its implementation on
fractional vibration equation is shown with the convergence analysis. In Sect. 6, the numer-
ical experiments by taking several initial conditions are conducted. In Sect. 7, the numerical
results are discussed using figures and tables while in Sect. 8, we summarize the conclusion.

Preliminaries

Definition 2.1 [44] A real function h(χ), χ > 0 is called in space.
a. Cζ , ζ ∈ R if there exists a real number q (> ζ ), such that h(χ) = χqh1(χ), h1(χ) ∈

C[0,∞).
Clearly, Cς ⊂ Cγ if γ ≤ ζ .
b. Cm

ζ , m ∈ N ∪ {0} if h(m) ∈ Cζ.

Definition 2.2 [44–46] If ϕ(η) ∈ L1(a, b), L1(a, b) is a set of all integrable functions in
(a, b), then, Liouville-Caputo derivative of fractional order α > 0 is defined as:

LC Dα
a+φ(η) = 1

�(n − α)

∫ η

a
(η − ς)(n−α−1)Dn

ςφ (ς)dς, (n − 1<α�n; n ∈ N),

where, Dn
η := dn

dηn
(n ∈ N0 := N ∪ {0}).

Definition 2.3 [44–46] Liouville-Caputo α-order derivative (α > 0) on space R =
(−∞, ∞) is:

LC Dα−∞+ϕ(ζ ) = 1

�(n − α)

∫ ζ

−∞
(ζ − ς)n−α−1Dn

ςϕ(ς)dς, (n − 1<α�n; n ∈ N).
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a. [46]I ζ
t h(x, t) = 1

�ζ

t∫
0
(t − s)ζ−1h(x, s)ds; ζ, t > 0

b. [46] Dυ
τ V (x, τ ) = Im−υ

τ
∂mV (x,τ )

∂τm
,m − 1 < υ ≤ m.

c. [46] Dζ
t I

ζ
t h(t) = h(t), m − 1<ζ ≤ m, m ∈ N.

d. [46] I ζ
t D

ζ
t h(t) = h(t) −

m−1∑
k=1

h(k)(0+) t
k

k! ,m − 1 < ζ ≤ m,m ∈ N.

e. [46] I β tα = �(α+1)
�(β+α+1) t

β+α

f . [46] Dβ
t t

α = �(α+1)
�(α+1−β)

tα−β

Definition 2.4 [47] Sumudu transform over a set of functions.

Q = {h(p)|∃N, p1, p2 >, |h(p)|<Ne
|p|
pj if p ∈ ( - 1)j × [0,∞)},

is defined as:

S[h(p)] =
∞∫

0

h(wp)e−pdp, w ∈ (−p1, p2
)
.

Definition 2.5 [47] The Sumudu transform for the arbitrary order Liouville-Caputo deriva-

tive is: S
[
Dβ
t ω(t)

]
= p−βS[ω(t)] −

m−1∑
k=0

s(−β+k)ω(k)(0+), m − 1<β ≤ m.

Mathematical Model of Time Dependent Vibration Equation
of Fractional Order

In computational models for macroscopic andmicroscopic systems [48–57], several physical
quantities are relatedwith past so to know their physicalmodelswell by inducting thememory
effects, fractional order models of such systems gain more importance [3]. FDE accomplish
such systems with the memory effect. The non-local property is actually the key use of
working with an FDE in a model. It indicates that the future state is also dependent on past
states. Thus, the models having fractional order derivatives follow the reality. The integer
order model suggested in [4] was found unable to possess memory effect in vibrational
motion, so to contain these effects, the model of integer order is generalized to the fractional
ordermodel by transforming derivative of integer order to that of fractional order in Liouville-
Caputo sense where 1 < ≤ 2. Liouville-Caputo derivative is suitable for the differentiable
functions. It allows the conditions to include in modeling a problem.

The differential equation of arbitrary order [1, 5, 6, 16] for vibration model is given as,

1

c2
∂αw(r , t)

∂tα
= ∂2w(r , t)

∂r2
+ 1

r

∂w(r , t)

∂r
, 1 < α ≤ 2. (3)

The response expression has a parameter which states arbitrary order of the derivative. It
can be altered to get diverse responses [6]. For = 2, Eq. (3) becomes Eq. (1). Equation (3)
depicts particle motion with memory in time. The time dependent derivative proposes mod-
ulation of memory. The vibrational motion gets affected by the memory in time that scripts
the aptness of fractional modeling for the system. Thus, a comprehensive study of Eq. (3)
to find its possible solution is important. It motivated us to solve this equation by a reliable
analytical scheme HPSTM.
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Basic Idea of the HPSTM

Take a general arbitrary order non-linear non-homogeneous partial differential equation:

dαu(x, t)

dtα
+ Ru(x, t) + Nu(x, t) = h(x, t), (4)

u(x, 0) = g(x), (5)

where dα

dtα is fractional Liouville-Caputo derivative. R is linear while N is non-linear differ-
ential operator. h(x, t) is a source term.

Taking Sumudu transform on sides of Eq. (4), we get,

S

[
dαu(x, t)

dtα

]
+ S[Ru(x, t)] + S[Nu(x, t)] = S[h(x, t)] (6)

Using property of Sumudu transform in [32], we get,

S[u(x, t)] = g(x) + qαS[h(x, t)] − qαS[Ru(x, t) + Nu(x, t)], (7)

Taking inverse transform on Eq. (7),

u(x, t) = F(x, t) − S−1[qαS{Ru(x, t) + Nu(x, t)}], (8)

where, F(x, t) arise from initial condition and source term.
Now, applying the HPM,

u(x, t) =
∞∑

m=0

pmum(x, t). (9)

The nonlinear term is stated as,

Nu(x, t) =
∞∑

m=0

pmHm(u(x, t)). (10)

He’s polynomials, Hm(u(x, t)) are,

Hn(u0, u1, u2, . . . , un) = 1

n!
∂n

∂ pn

[
N

( ∞∑
m=0

pmum(x, t)

)]

p=0

, n = 0, 1, 2, . . . (11)

Substituting Eq. (9) and (10) in Eq. (8),

∞∑
m=0

pmum(x, t) = F(x, t) − p

[
S−1

{
qαS

[
R

∞∑
m=0

pmum(x, t) +
∞∑

m=0

pmHm(u(x, t))

]}]
,

(12)

This is a pairing of Sumudu transform and the HPM with He polynomials.
Comparing the coefficients of alike powers of p,
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p0 : u0(x, t) = F (x, t),

p1 : u1(x, t) = −S−1[qαS{Ru0(x, t) + H0(u(x, t))}],
p2 : u2(x, t) = −S−1[qαS{Ru1(x, t) + H1(u(x, t))}],
p3 : u3(x, t) = −S−1[qαS{Ru2(x, t) + H2(u(x, t))}],

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13)

Persisting with this trend, the rest components um(x, t);m ≥ 4 can be computed.
Finally, the solution u(x, t) is determined as:

u(x, t) = lim
N→∞

N∑
m=0

um(x, t) (14)

Implementation of HPSTM on Vibration Equation of Fractional Order

Take the fractional order vibration model discussed in Sect. 3 as,
1
c2

∂αω(r,t)
∂tα = ∂2ω(r,t)

∂r2
+ 1

r
∂w(r ,t)

∂r , 1<α ≤ 2, (2)
Applying Sumudu transform, we attain,

S[w(r, t)] − qα
n−1∑
k=0

w(k)(r, 0)

s(α−k)
− qα

[
S

{
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)}]
= 0. (15)

Taking inverse Sumudu transform,

w(r, t) = F(r, t) + S−1
[
qα S

[
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)]]
, (16)

Using HPM and He’s polynomials as discussed in Sect. 4, we get,

∞∑
n=0

pnwn(r, t) = F(r, t) + p

(
S−1

[
qα S

{
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)}])
(17)

Equating the coefficients of alike powers of p,

p0 : w0(r, t) = F(r, t),

p1 : w1(r, t) = S−1
[
qαS

[
c2

(
∂2w0(r, t)

∂r2
+ 1

r

∂w0(r , t)

∂r

)]]
,

p2 : w2(r, t) = S−1
[
uαS

[
c2

(
∂2w1(r, t)

∂r2
+ 1

r

∂w1(r , t)

∂r

)]]
,

and similarly,

pn : wn(r, t) = S−1
[
uαS

[
c2

{
∂2wn−1(r, t)

∂r2
+ 1

r

∂wn−1(r , t)

∂r

}]]
,

(18)

Solution is presented by the series as

w(r , t) = lim
N→∞

N∑
m=0

wm(r , t) (19)

The focus is on convergence of the HPSTM applied to Eq. (3) in Sect. 3. Sufficient
conditions for convergence are provided. The series in Eq. (19) is generally convergent but
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some suggestions by Ji-huanHe [21] are illustrated to get the rate of convergence on nonlinear
operator.

(1) Second derivative of N (w) should be smaller as parameter can be relatively large, i.e.p →
1.
(2) Norm of L−1 ∂N

∂w
must be less than 1 for the series to be convergent.

Theorem [58]. Let X and Y be Banach spaces. Let T : X → Y be a contraction nonlinear

mapping, that is ∀ ρ,
∼
ρ ∈ X;

‖T (ρ) − T
(∼
ρ
)∥∥∥ ≤ χ‖ρ − ∼

ρ
∥∥∥, 0<χ <1,

that by Banach fixed point theorem, have fixed point u, i.e.,T (u) = u.

The sequence formed by HPM is,

Wn = T (Wn−1), Wn−1 =
n−1∑
i=0

ui , n = 1, 2, 3, . . . and,

Suppose W0 = w0 = u0 ∈ Br (u) where Br (u) = {u∗ ∈ X |‖u∗ − u‖}<r , then,

(i) ‖Wn − u‖ ≤ χn‖w0 − u‖, (i i)Wn ∈ Br (u), (i i i) lim
n→∞ Wn = u.

Numerical Experiments

Here, the applicability of the HPSTM is illustrated via some examples.
Test Example 1. Consider the fractional vibration equation,

1

c2
∂αw(r, t)

∂tα
= ∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r
, 1<α ≤ 2,

with initial condition,w0(r, t) = r2 + c t r.
Taking Sumudu transform of above equation, we get

S[w(r, t)] = r2 + c t r

u
+ uαS

[
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)]
, (20)

Now, by taking inverse Sumudu transform, we get,

w(r, t) = r2 + c t r + S−1
[
uα S{c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)
}
]
, (21)

Applying the HPM on Eq. (21),

∞∑
n=0

pnwn(r, t) = r2 + c t r + p

(
S−1

[
uα S

{
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)}])
, (22)

Equating the coefficients of alike powers of p,

p0 : w0(r, t) = r2 + c t r,

p1 : w1(r, t) = c2 tα (c t + 4 r (1 + α))

r �(2 + α)
,

p2 : w2(r, t) = c5 t1+2 α

r3 �(2 + 2α)
,
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Fig. 1 Behaviour of solution w(r , t) at α = 2 by HPSTM for (a) Example 1 (b) Example 2 (c) Example 3

p3 : w3(r, t) = 9 c7 t1+3 α

r5 �(2 + 3α)
,

and, so on. Hence, subsequent iterations wm (r , t), m ≥ 4 can be found.
Thus, the series solution is obtained as given by Eq. (19) as:

w(r , t) = lim
N→∞

N∑
m=0

wm(r , t).

Test Example 2. Consider the equation,

∂αw(r, t)

∂tα
= c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)
, 1<α ≤ 2,

with initial condition, w0(r, t) = r + c t r.
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Fig. 2 Behaviour of solution w(r , t) Vs. t by HPSTM for distinct ‘c’ at α = 2 in (a) Example 1 (b) Example
2 (c) Example 3

Taking Sumudu transform of above equation, we get

S[w(r, t)] = r + c t r

u
+ uαS

[
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)]
(23)

Taking the inverse transform,

w(r, t) = r + c t r + S−1
[
uα S

{
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)}]
(24)

Applying the HPM on Eq. (24),

∞∑
n=0

pnwn(r, t) = r + c t r + p

(
S−1

[
uα S

{
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)}])
(25)

Equating the coefficients of alike powers of p,

p0 : w0(r, t) = r + c t r,

p1 : w1(r, t) = c2 tα (1 + c t + α)

r �(2 + α)
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Fig. 3 Behavior of solution w(r , t) Vs. t by HPSTM for distinct values of α n (a) Example 1 (b) Example 2
(c) Example 3

p2 : w2(r, t) = c2 t2 α (1 + c t + 2 α)

r3 �(2 + 2α)
,

p3 : w3(r, t) = 9 c6 t3 α (1 + c t + 3 α)

r5 �(2 + 3 α)
,

and, so on. Hence, subsequent iterations wm (r , t), m ≥ 4 can be found.
Thus, the series solution is obtained as:

w(r , t) = lim
N→∞

N∑
m=0

wm(r , t).

Test Example 3. Consider the equation,

∂αw(r, t)

∂tα
= c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)
, 1 < α ≤ 2,

with initial condition, w0(r, t) = √
r + c t√

r
.

Taking Sumudu transform of above equation, we get

S[w(r, t)] =
(
√
r + c t√

r
)

u
+ uαS

[
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)]
(26)
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Fig. 4 Comparison of solution by HPSTM and methods in [1, 3–6, 16] at α = 1.5 for Example 1

Fig. 5 Comparison of solution by HPSTM and methods in [1, 5] at α = 1.5 for Example 2
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Taking inverse transform,

w(r, t) = √
r + c t√

r
+ S−1

[
uα S

{
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)}]
(27)

Applying the HPM on Eq. (27),

∞∑
n=0

pnwn(r, t) = √
r + c t√

r
+ p

(
S−1

[
uα S

{
c2

(
∂2w(r, t)

∂r2
+ 1

r

∂w(r , t)

∂r

)}])
(28)

Equating coefficients of alike powers of p,

p0 : w0(r, t) = √
r + c t√

r
,

p1 : w1(r, t) = c2 tα (r + c t + r α)

4 r5/2 �(2 + α)
,

p2 : w2(r, t) = c4 t2 α {25 c t + 9 r (1 + 2 α)}
16 r9/2 �(2 + 2 α)

,

p3 : w3(r, t) = 9 c6 t3 α{225 c t + 49 r (1 + 3 α)}
64 r

13
2 �(2 + 3 α)

,

and, so on. Hence, subsequent iterations wm (r , t), m ≥ 4 can be found.
The series solution is obtained as:

w(r , t) = lim
N→∞

N∑
m=0

wm(r , t)

Numerical Results and Discussion

Figures 1a–c depict the behavior of HPSTM solution w(r , t) of Eq. (3) at the order α = 2
of the derivative for Examples 1, 2 and 3 respectively. They have been drawn for α = 2 to
show the nature of the unknown solution of the vibration model. Figure 2a–c describe the
behavior of solution w(r , t) with time t for distinct values of wave velocity c of vibrations
at α = 2 in Examples 1, 2 and 3 respectively. Figure 3a–c illustrate the behavior of solution
w(r , t) with time t for the fractional order α = 1.7, 1.8, 1.9 and 2 in Examples 1, 2 and
3 respectively. They reveal that probability density function w(r , t) of the particle increases
with increase in time t but decreases if order α of the derivative increases. This is in total
agreement with the point discussed in Sect. 3. Figure 4 shows the comparison of solution
by HPSTM and methods in [1, 3–6, 16] at α = 1.5 for Example 1. Figure 5 illustrates the
comparison of solution by HPSTM and methods in [1, 5] at α = 1.5 for Example 2. Figure 6
depicts the comparison of solution by HPSTM and methods in [3, 4] at c = 0.1 and α = 2
for Example 3. Figure 7a–c depict the absolute error between consecutive approximations at
α = 1.5 in Examples 1, 2 and 3 respectively which clearly indicates that the gained solutions
are convergent. Also, the tabular comparison of results with published work is shown in
Tables 1, 2 and 3 at distinct values of arbitrary order α. So, the solution by the HPSTM at
different grid points is in a good pact. The Tables 4, 5 and 6 confirm that the error between
successive approximations is negligible and becomes zero as the number of iterations are
increased. Hence, we conclude that the HPSTM also works for those models of fractional
order that do not possess an exact solution.
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Fig. 6 Comparison of solution by HPSTM and methods in [3, 4] at c = .1, α = 2 for Example 3

Conclusion

In this pioneer work, the HPSTM is efficaciously used to inspect the time fractional vibration
equation. The outcomes disclose that the derived results are trustworthy and the obtained
solution is convergent. The numerical simulations endorse the high accuracy of our results
as compared to those obtained by other schemes in published work so far. This scheme is
capable of lessening the time and the size of computation. It is easier to use for both small
as well as large parameters. The obtained solutions are bounded and positive. It is exciting
to observe that the HPM works efficiently when coupled with Sumudu transform due to its
‘unity’ feature. Also, the non-linear term can easily be handled via the Sumudu transform.
It is heartening to note that HPSTM also work competently when the exact solution is not
known. Hence, this scheme is highly effective, accurate, systematic, logical and attractive.
It can be useful to study and find solutions of a wide range of fractional order mathematical
models of physical, biological and social importance.
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Fig. 7 Error between consecutive approximations at α = 1.5 for (a) Example 1 (b) Example 2 (c) Example 3

Table 2 Comparison of results in Example 2 at c = 5, r = 6, at = 1.5 and 2

t α Solution by the HPSTM Solution by the methods in
[1, 5]

Absolute error between
the solution by HPSTM
and the methods in [1, 5]

0.2 1.5 12.397633 12.393637 0.003996

2 12.111344 12.111344 0

0.4 1.5 19.483520 19.444664 0.038856

2 18.560015 18.560015 0

0.6 1.5 27.469767 27.306178 0.163589

2 25.526848 25.526871 0.000023

0.8 1.5 36.723332 36.253258 0.470074

2 33.212233 33.212664 0.000431

1 1.5 47.895362 46.896428 0.998934

2 41.851853 41.856135 0.004282
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Table 3 Comparison of the results in Example 3 at c = 0.1, = 2

r t Solution by
the HPSTM

Solution by
Operational
Matrix method
[3]

Absolute error
between
solution by
HPSTM and
methods in [3]

Solution by
the method
in [4]

Absolute error
between
solution by
HPSTM and the
methods in [4]

0.2 0.492513 0.4900 0.002513 0.4925 0.000013

0.4 0.696518 0.6910 0.005518 0.6965 0.000018

0.6 0.853057 0.8318 0.021257 0.8531 0.000043

0.8 0.985025 0.9727 0.012325 0.9850 0.000025

1 1.101291 1.1763 0.075009 1.1013 0.000009

Table 4 Absolute error between successive iterations, when exact solution is unknown, at c = 0.1 for distinct
values of order α in Example 1

r t Solution by the HPSTM

α = 1.50 α = 1.75

|w2-w1| |w3-w2| |w2-w1| |w3-w2|

0.2 8.59 × 10−5 7.89 × 10−9 2.66 × 10−5 5.34 × 10−10

0.4 2.43 × 10−4 1.60 × 10−8 8.97 × 10−5 1.51 × 10−9

0.6 4.46 × 10−4 2.42 × 10−8 1.82 × 10−4 2.78 × 10−9

0.8 6.87 × 10−4 3.24 × 10−8 3.02 × 10−4 4.28 × 10−9

1 9.61 × 10−4 4.06 × 10−8 4.46 × 10−4 5.99 × 10−9

Table 5 Absolute error between successive iterations, when exact solution is unknown, at c = 0.1 at distinct
values of order α in Example 2

r t Solution by the HPSTM

α = 1.50 α = 1.75

|w2-w1| |w3-w2| |w2-w1| |w3-w2|

0.2 1.04 × 10−3 1.54 × 10−5 3.29 × 10−4 1.19 × 10−6

0.4 1.49 × 10−3 1.58 × 10−5 5.55 × 10−4 1.69 × 10−6

0.6 1.83 × 10−3 1.59 × 10−5 7.53 × 10−4 2.08 × 10−6

0.8 1.49 × 10−3 1.60 × 10−5 9.35 × 10−4 2.41 × 10−6

1 1.04 × 10−3 1.61 × 10−5 1.10 × 10−3 2.69 × 10−6
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Table 6 Absolute error between successive iterations, when exact solution is unknown, at c = 0.1 at distinct
values of order α in Example 3

r t Solution by HPSTM

α = 1.50 α = 1.75

|w2-w1| |w3-w2| |w2-w1| |w3-w2|

0.2 1.88 × 10−3 6.37 × 10−5 6.0 × 10−4 5.02 × 10−6

0.4 1.90 × 10−3 4.65 × 10−5 7.15 × 10−4 5.04 × 10−6

0.6 1.91 × 10−3 3.85 × 10−5 7.92 × 10−4 5.05 × 10−6

0.8 1.92 × 10−3 3.33 × 10−5 8.51 × 10−4 5.06 × 10−6

1 1.93 × 10−3 3.02 × 10−5 9.01 × 10−3 5.07 × 10−6
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