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Abstract
This problem deals with the power-law fluid flow with thermally stable stratification in a
non-Darcy porous medium over a convectively heated truncated cone and this work is very
useful in actual and applied circumstances due to presence of non-linear Boussinesq approx-
imation. The combined thermal diffusivity is taken as the addition of molecular diffusivity
and diffusivity related to mechanical dispersion. Local non-similarity technique and spec-
tral local linearization method are applied to solve the governing equations. A convergence
test for this scheme is performed and validation of methodology is given by comparing the
results in special cases with already established results. It is noted that the proposed combined
scheme is an efficient algorithm with faster convergence and it acts as an alternative tool for
regular numerical techniques to solve non-linear boundary value problems that occur fre-
quently in industrial and engineering applications. The major conclusion of this study is that
the magnitude of skin friction coefficient and Nusselt number are very much influenced with
the presence and absence of Biot number, thermal stratification and thermal dispersion for
the power-law fluids and strongly depend on the non-linear density temperature parameter.

Keywords Non-similarity solutions · Spectral local linearization method · Stratified
power-law fluid · Non-Darcy porous medium · Convectively heated truncated cone

Introduction

A medium (or material) which contains voids is termed as porous medium and its skeletal
portion is usually called the frame ormatrix. In general, a fluid (liquid or gas) is typically filled
in these pores and any porous medium is normally distinguished by porosity described in
terms of ratio of void space volume over total volume (between 0 and 1). Examples of porous
media are very wide, ranging from natural substances (e.g., soil, rocks and biological tissues)
to artificial substances (e.g., cements, ceramics) and different properties of these materials
are only rationalized by treating them as porous media. Porous medium concept is used
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in different areas of engineering and applied science, for example, petroleum, construction
or material science, filtration, geo-mechanics, soil mechanics, acoustics, etc. Flow of fluids
(Newtonian or non-Newtonian) through porousmatrix exerts a huge amount of interest among
researchers and has emerged as a separate area of research. For example, it can be helpful
in controlling environment pollution by finding moisture and temperature distribution in
agricultural lands. Liu et al. [1] provided the finite element approach and its theoretical
predictions for non-linear boundary value problem which is utilized to formulate the non-
Fickian flow of fluid in porous media. Therefore, development and analysis of various fluid
models are given to study the flow properties in non-Darcy porous media in different books
(Ref. [2–4]).

The viscosity in two type of power-law fluids, shear thinning (pseudoplastic) and shear
thickening (dilatant), decreases and increaseswith stress respectively.Due towide application
of power-law fluids in modern science and technology, Shenoy [5] and Cheng [6] studied
influences of important parameters for applicable geometries. Mandal et al. [7] provided a
numerical solution for the fluid models of pulsatile blood flow between an irregular stenosed
arterial segment which is very useful in the areas related to medical science and research. The
role of local production of thermal energy through viscous stress mechanism of power-law
fluid flow due to buoyancy forces is studied by Khidir et al. [8]. Kairi [9] has shown that
the increment in the radius of slender paraboloid in a porous medium reduces the Nusselt
number for all shear thickening and thinning fluids.

Due to significance of the thermal stratification and its involvement in the major applica-
tions as heat exchangers used in domestic hot water tank, the study of thermal stratification in
different porous media concepts has gained notable importance in modern times. The exper-
imental and analytical results related to thermal stratification in lakes are given by Dake
and Harleman [10]. From Knudsen and Furbo [11], one can get ideas about the use of heat
exchangers in the storage tank and solar collector. In view of these applications, Narayana et
al. [12] and Cheng [13] conducted independent studies on the free convective flow over ver-
tical flat plate and vertical wavy surface, respectively, with dilatant and pseudoplastic fluids
and concluded that the total Nusselt number value for wavy surface is more in comparison to
the smooth surface. On the other hand, thermal dispersion effect plays a vital role due to iner-
tial effect existence in a non-Darcy porous medium. In non-uniform geometries, particularly
in the packed beds, flow of fluid through curvy paths led to the thermal dispersion at the pore
level of the involved porous media. Several researchers, to point out few, Cheng [14] and
Plumb [15], analysed different fluid flows and heat transfer with thermal dispersion. Hong

et al. [16] treated
χdu∞

α
= χ Peχ as Ds and then explained the flow analysis theoretically.

By adopting the similar representations, Kairi and Murthy [17] conducted the study of free
convective flows of dilatant or pseudoplastic fluids with thermal stratification and dispersion.
Numerical study for the same fluid flow but without prescribing the temperature and con-
centration on the vertical surface, is presented by Srinivasacharya et al. [18] and concluded
that the obtained similarity solutions are valid only for small values of X - location (i.e.
0 < X < 1). Later, Vasu et al. [19] performed an entropy generation analysis for stratified
flow along vertical surface (for elaborative discussions, see the citations therein).

In recent times, various real life flow applications are dealt in emerging scientific and
technological areas and the nature of these flows are very complex, consequently the study
related to heat transfer mechanism is also very tough. So convective boundary conditions are
very important for this kind of flows, usually occurring in nuclear reactors, solar collectors
etc. The similarity solutions of free convective power-law fluid flow past a convectively
heated vertical surface are obtained by Ece and Buyuk [20]. Yao et al. [21] discussed the
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convective transport along shrinking and/or stretching wall problem. Many thermal systems
operated at very high temperatures suffer the lose of its linear nature of density-temperature
relation given by ρ − ρ∞ + ρ∞β0(T − T∞) = 0 (For more details, one can refer Pop
and Ingham [3]). This gives the idea of non-linear Boussinesq approximation or non-linear

convection where it has ρ − ρ∞ + ρ∞β0(T − T∞)
[
1 + β1(T−T∞)

β0

]
= 0 (Refer Partha [22]

and its citations). A strong influence of this non-linearity is noticed on different fluid flow
problems. The impact of dispersion on the non-linear convective flow of incompressible shear
thickening and thinning fluids is investigated by RamReddy et al. [23] and it is concluded
that the velocity and local Nusselt number are increased when the increment takes place in
Ds parameter. But a detailed idea regarding the rates of flow as well as heat transfer of these
dilatant and pseudoplastic fluids is yet to emerge.

Many engineering and industrial problems e.g., processing of melted plastics at a large
level, edible items or slurries and polymers etc., require free convective power-law fluid flow
from truncated cones subjected to the convective boundary condition in porous media. But
from available literature, it is observed that this model is not studied so far although results
of these kind of studies can serve as a useful productive tool to solve important engineering
and industrial problems. There are some works available in the literature, namely, Na and
Chiou [24], Gorla et al. [25], Cheng [26,27] but these papers are only related to power-law
fluid flow over truncated cone maintained at uniform wall temperature and/or subject to
uniform heat flux conditions. This motivates us to analyze the above-said fluid flow problem
in detail as it helps us to study various effects like: (i) ratio of internal thermal resistance of
truncated cone surface to the thermal resistance of boundary layer in terms of Biot number,
and (ii) effectiveness of non-uniform pore level velocity over temperature field within the
specific porous medium in terms of thermal dispersion parameter. So, in this article, the
natural convective flow over truncated cone in a power-law fluid saturated non-Darcy porous
medium is mathematically modelled and then the associated governing equations are solved
using non-similarity technique and spectral local linearization method. Later, the results are
graphically analyzed in detail along with their proper physical significance and real life
applications as seen in the cooling of magmatic intrusion or radioactive sub-surface storage
location which involve convective transport theory.

Mathematical Formulation and Analysis

Figure 1 displays a mathematical configuration to study the natural convective flows related
to thermally stratified dilatant and pseudoplastic fluids along a convectively heated truncated
cone. The non-Darcian type of porous medium is taken in this analysis. The coordinate
axes x and y are in the parallel and perpendicular directions to the truncated cone and x0
is the distance between its leading edge and origin O . Here, x̄ = x − x0 is considered as
modified streamwise coordinate, T f is the fluid temperature and T∞(x̄) = T∞,0 + A∗ x̄ is
the temperature of the linearly stratified ambient medium which generates a stable thermal
stratification. The stratification intensity is controlled by a parameter A∗. This steady, two
dimensional and laminar fluid flow is in thermodynamic equilibrium with porous medium.
Also, to neglect boundary effect and apply the Forchheimer flow model, permeability of the
medium is taken less with moderate flow intensity. In addition, there is notable significance
of large changes in the temperatures of ambient medium and surface of the truncated cone.

It is also presumed that the thickness of momentum and thermal boundary layer is very
less compared to the local radius of truncated cone. The approximation r = x sinA [See
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Fig. 1 Geometry used in the problem

Singh et al. [28]] shows the relation between truncated cone radius and local radius at a point
situated in the boundary layer which implies x0 < x < ∞ as the region in which governing
equations and boundary conditions are valid. Hence, these assumptions are practical and
more relevant.

So, the governing equations along with boundary conditions associated with this fluid
flow model can be written as

∂(ru)

∂x
+ ∂(rv)

∂ y
= 0 (1)

∂un

∂ y
+ bK ∗

ν

∂u2

∂ y
= K ∗g∗

ν

{
[β0 + 2β1(T − T∞(x̄))]

∂T

∂ y

}
cosA (2)

u
∂T

∂x
+ v

∂T

∂ y
= ∂

∂ y

(
α∗

∂T

∂ y

)
(3)

v = 0, −km
∂T

∂ y
= h f (T f − T ), at y = 0

u → 0, T → T∞(x̄) as y → ∞ (4)

where g∗ is the acceleration due to gravity, h f is the convective heat transfer coefficient, km
is the thermal conductivity, ν is the kinematic viscosity, A is the inclination of angle, T is the
temperature, b is the empirical constant and (u, v) are the Darcian velocities. A quantity α∗ is
obtained by taking the sum of αd = χud (thermal diffusivity) and α (molecular diffusivity )
as per Plumb [15], whereχ is themechanical dispersion coefficient and d is the pore diameter.
Next, β0 and β1 are the 1st and 2nd order thermal expansion coefficients respectively. When
n = 1 (the power-law index), the fluid becomes Newtonian and for n > 1 and n < 1, the
fluid is dilatant and pseudoplastic respectively. K ∗ denotes the modified permeability of the
porous medium which is a function of n (See [29] and [30] for more details).

The stream functionψ is introduced in such away that it satisfies the equation of continuity

(1) i.e., u = 1

r

∂ψ

∂ y
, v = −1

r

∂ψ

∂x
. The non-dimensional relations utilized to get the non-

dimensional form of Eqs.(2)-(4) are
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ξ = x̄

x0
, η = y

x̄
Ra

1
2 , f (ξ, η) = Ra− 1

2

α r
ψ(ξ, η), θ(ξ, η) = T (ξ, η) − T∞(x − x0)(

T f − T∞,0
)

(5)

where Ra = x̄

α

(
ρ β0 g∗ K ∗ cos A (T f − T∞,0)

μ

) 1
n

is the local modified Darcy-Rayleigh

number.
Using these transformations (5) in the Eqs. (1) to (3), the non-dimensional form of the

above equations become
[
n

(
f ′)n−1 + 2Gr∗ f ′] f ′′ = (2 α1θ + 1)θ ′ (6)

θ ′′ + (
f ′ θ ′′ + f ′′ θ ′) Ds +

(
ξ

ξ + 1
+ 0.5

)
f θ ′ − ST ξ f ′ = ξ f ′ ∂θ

∂ξ
− ξ

∂ f

∂ξ
θ ′ (7)

The boundary conditions (4) in their transformed forms can be written as

2 ξ (ξ + 1)

(
∂ f

∂ξ

)

η=0
+ (3 ξ + 1) f (ξ, 0) = 0,

θ ′(ξ, 0) − Bi ξ
1
2 [θ(ξ, 0) − 1 + ST ξ ] = 0,

f ′(ξ, η) → 0, θ(ξ, η) → 0 as η → ∞.

(8)

Here prime indicates the differentiation in respect of η and Gr∗ = b K ∗

ν

(
αRa

x̄

)2−n

, α1 =
β1

β0
(T f − T∞,0), Ds = χdRa

x̄
, ST = A∗x0

(T f − T∞,0)
, Bi = h f

√
x0

km

(
x̄

Ra

) 1
2

represent

the modified Grashof number, non-linear density-temperature parameter, thermal dispersion
parameter, thermal stratification parameter and Biot number respectively. When ξ → 0 (i.e.,
x → x0), this problem is converted to flow problem past a vertical plate. Similarly, when
x0 = 0, ξ becomes very large which is utilized to obtain the same problem with full cone as
a geometry.

Non-dimensional representations of Nusselt number Nux = − x̄

k

(k + kd)

(T f − T∞,0)

[
∂T

∂ y

]

y=0

and skin friction coefficient C f = 2

ρ u2∗

[
μ

∂u

∂ y

]

y=0
are

Nux̄

Ra
1
2

= − [
Ds f ′(ξ, 0) + 1

]
θ ′(ξ, 0),

1

2

Ra
1
2

Pr
C f = f ′′(ξ, 0) (9)

Here u∗ and μ denote characteristic velocity and dynamic viscosity respectively, ke (the
effective thermal conductivity of the medium) is the sum of kd (the dispersion thermal con-
ductivity) and k (the molecular thermal conductivity), and Pr denotes the Prandtl number.

Numerical Solutions

The flow Eq. (6) accompanied with the energy Eq. (7) and BCs(8), constitute highly com-
plex non-linear non-homogeneous system of PDEs and closed-form solutions for these kind
of systems cannot be obtained. Therefore, the Eqs. (6)– (7) together with the BCs (8) are
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solved efficiently with local non-similarity technique and spectral local linearization method
(SLLM). Combination of these methods has been proved to be appropriate and assures pre-
cise outcome for complex parabolic equations. The detailed explanations of these approaches
and their implementations are given below:

Local Non-Similarity Procedure

The approach given by Sparrow and Yu [31], named as local similarity and non-similarity
technique, is used to obtain the system of ODEs by employing the three levels of truncation.
When ξ << 1 , the preliminary approximation is found from the local similarity equa-

tions and insignificant terms involving ξ
∂

∂ξ
are removed. Consequently the local similarity

equations for the first level truncation of Eqs.(6)-(8) are
[
n

(
f ′)n−1 + 2Gr∗ f ′] f ′′ − (2α1θ + 1)θ ′ = 0 (10)

θ ′′ + (
f ′′ θ ′ + f ′ θ ′′) Ds +

(
ξ

ξ + 1
+ 0.5

)
f θ ′ − ST ξ f ′ = 0 (11)

and the corresponding BCs are

f (ξ, 0) = 0, θ ′(ξ, 0) + Bi ξ
1
2 [1 − θ(ξ, 0) − ST ξ ] = 0,

f ′(ξ, η) → 0, θ(ξ, η) → 0 as η → ∞.
(12)

The second level truncation involves the use of new variables U = ∂ f

∂ξ
, V = ∂θ

∂ξ
, by which

the local non-similarity non-linear ODEs are derived to get the previously omitted terms.
Hence, updated governing equations are boundary conditions are

[
n

(
f ′)n−1 + 2Gr∗ f ′] f ′′ − (2α1θ + 1)θ ′ = 0 (13)

θ ′′ + (
f ′′ θ ′ + f ′ θ ′′) Ds +

(
ξ

ξ + 1
+ 0.5

)
f θ ′ − ST ξ f ′ − ξ V f ′ + ξ U θ ′ = 0

(14)

(3 ξ + 1) f (ξ, 0) + 2 (ξ + 1) ξ U (ξ, 0) = 0,

θ ′(ξ, 0) + Bi ξ
1
2 [1 − ST ξ − θ(ξ, 0)] ,

f ′(ξ, η) → 0, θ(ξ, η) → 0 as η → ∞. (15)

Finally, in last truncation level, Eqs.(13)-(15) are differentiated in respect of ξ and all partial
derivatives of U and V are removed. Therefore, the final equations are

n
(
f ′)n−1

U ′′ + n(n − 1)
(
f ′)n−2

f ′′U ′ + 2Gr∗(U ′′ f ′ + f ′′U ′)
−V ′ − 2α1(θV

′ + V θ ′) = 0 (16)

V ′′ + Ds( f ′V ′′ + f ′′V ′) +
(
1

2
+ ξ

ξ + 1

)
f V ′ − f ′V + ξUV ′ − ξU ′V

+Ds(U ′′θ ′ +U ′θ ′′) +
(
1

2
+ ξ

ξ + 1

)
Uθ ′ − ST f ′ − ξ STU

′ + θ ′U + 1

(ξ + 1)2
f θ ′ =0

(17)
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with boundary conditions

3 f (ξ, 0) + (7ξ + 3)U (ξ, 0) = 0,

V ′ (ξ, 0) − Biξ
1
2 V (ξ, 0) + 0.5 Biξ− 1

2 [1 − θ(ξ, 0)] − 1.5 Biξ
1
2 ST ,

U ′(ξ, η) → 0, V (ξ, η) → 0 as η → ∞.

(18)

Spectral Local LinearizationMethod (SLLM)

SLLM is initially developed byMotsa [32] to find the solutions of non-linear coupled ODEs.
The solution procedure of this problem with SLLM consists of the following three steps: (i)
first, the Eqs.(13)-(14) and Eqs.(16)-(17) are decoupled using Gauss-Seidel method and then
the well-known quasi-linearization technique is used to linearize the nonlinear components
of the decoupled equations;
(ii) next, the Chebyshev spectral collocation method is adopted to transform the set of lin-
earized ODEs into the set of algebraic equations in the matrix form;
(iii) finally, this matrix is solved iteratively using appropriate initial solutions.

f ′′
r+1 + a1,r f

′
r+1 = K1,r (19)

θ ′′
r+1 + b1,rθ

′
r+1 = K2,r (20)

U ′′
r+1 + x1,rU

′
r+1 = K3,r (21)

V ′′
r+1 + y1,r V

′
r+1 + y2,r Vr+1 = K4,r (22)

where

a1,r = n(n − 1) f ′′
r

(
f ′
r

)n−2 + 2Gr∗ f ′′
r

n
(
f ′
r

)n−1 + 2Gr∗ f ′
r

,

K1,r = θ ′
r + 2α1θr θ

′
r + n(n − 1) f ′′

r

(
f ′
r

)n−1 + 2Gr∗ f ′′
r f ′

r

n
(
f ′
r

)n−1 + 2Gr∗ f ′
r

,

b1,r = Ds f ′′
r+1 + ( 1

2 + R
)
fr+1 + ξUr

1 + Ds f ′
r+1

,

K2,r = ξ ST f ′
r+1 + ξ f ′

r+1Vr
1 + Ds f ′

r+1
,

x1,r = n(n − 1)
(
f ′
r+1

)n−2
f ′′
r+1 + 2Gr∗ f ′′

r+1

2Gr∗ f ′
r+1 + n

(
f ′
r+1

)n−1 ,

K3,r = V ′
r + 2α1θ

′
r+1Vr + 2α1θr+1V ′

r

n
(
f ′
r+1

)n−1 + 2Gr∗ f ′
r+1

,

y1,r = Ds f ′′
r+1 + ( 1

2 + R
)
fr+1 + ξUr+1

1 + Ds f ′
r+1

, y2,r = − f ′
r+1 − ξU ′

r+1

1 + Ds f ′
r+1

,

K4,r =
−Ds

(
U ′
r+1θ

′′
r+1 +U ′′

r+1θ
′
r+1

) − ( 3
2 + R

)
Ur+1θ

′
r+1 + ξ STU ′

r+1 + ST f ′
r+1 − 1

(ξ+1)2
fr+1θ

′
r+1

1 + Ds f ′
r+1

,
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with linearized boundary conditions

fr+1(ξ, 0) = −2ξ(ξ + 1)

3ξ + 1
Ur (ξ, 0),

θ ′
r+1(ξ, 0) − ξ

1
2 Bi θr+1(ξ, 0) = −Biξ

1
2 + Biξ

3
2 ST ,

Ur+1(ξ, 0) = − 3

7ξ + 3
fr+1(ξ, 0),

V ′
r+1(ξ, 0) − Biξ

1
2 Vr+1(ξ, 0) = −1

2
Biξ

−1
2 + 1

2
Biξ

−1
2 θr+1(ξ, 0) + 3

2
Biξ

1
2 ST ,

f ′
r+1(ξ, η) → 0, θr+1(ξ, η) → 0, U ′

r+1(ξ, η) → 0, Vr+1(ξ, η) → 0, as η → ∞.

(23)

The matrix representation of Eqs.(19)-(22) can be given as

A1 F = B1

A2 � = B2

A3 U = B3

A4 V = B4

where

A1 = D2 + diag(a1,r )D, B1 = K1,r

A2 = D2 + diag(b1,r )D, B2 = K2,r

A3 = D2 + diag(x1,r )D, B3 = K3,r

A4 = D2 + diag(y1,r )D + diag(y2,r )I, B4 = K4,r

where I is (Nx +1)th order identity matrix and F, �, U and V are the vectors containing
f , θ , U and V values evaluated at the Gauss - Lobatto (collocation) points. The subsequent
systemof algebraic equationswhich are represented in thematrix formalongwith theBCs(23)
are solved iteratively by making use of appropriate initial approximations to analyze the fluid
flow behaviour.

Results and Discussion

This section includes the discussion of results attained by solving Eqs.(6)–(7) along with
BCs(8) using the combined methods explained above for various physically reliable values
of different parameters. All computations involved in this paper are done in MATLAB by
taking 50 collocation points in η-direction (i .e. Nx = 50) and Lx = 10 is fixed in the η-
direction to get the asymptotic nature at infinity. The convergence property is shown by using
the following expressions for the error in fluid velocity and fluid temperature at (r + 1)th

level

E f = max || fr+1,i − fr ,i ||∞, 0 ≤ i ≤ Nx ,

Eθ = max ||θr+1,i − θr ,i ||∞, 0 ≤ i ≤ Nx .

Figures 2a–3b display the variations in the norm of residual error with iterations for Eqs.
(13) and (14) with different ξ . The residual error is decreased with increase in iterations and
its very less quantity in all the cases shows the convergence and accuracy of the method.
Hence, the validation of this spectral local linearisation method is concluded.
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Fig. 2 Residual errors over iterations for Newtonian fluid when Ds = 1.0, α1 = 0.1, Gr∗ = 0.01, Bi = 1.0,
ST = 0.01

Fig. 3 Residual errors over iterations for non-Newtonian fluid when Ds = 0.5, α1 = 0.1, Gr∗ = 0.01,
Bi = 1.0, ST = 0.01

Further, to check the accuracy of computations and the exactness of formulation, results of
this problem in the case of wall temperature condition (θ(ξ, η) = 1 as Bi → ∞) for vertical
plate (i.e. ξ → 0) when Ds = 0, α1 = 0 and ST = 0, are also compared with the results
of Plumb and Huenefeld [33] and the exact results (see Nakayama et al. [34] and citations
therein) for the Newtonian fluid case. These comparisons are coinciding at a large extent as
displayed in Table1. The results of this problem when ξ → 0, n = 1, α1 = 0, ST = 0 and
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Table 1 Comparative analysis of
−θ ′(ξ, 0) for different values of
Gr∗ when ξ → 0, Ds = 0,
α1 = 0, ST = 0, Bi → ∞ and
n = 1 (Newtonian fluid)

Gr∗ Present Exact Plumb [33]

0 0.44390437 0.4439 0.44390

0.01 0.44231590 0.4423 0.44232

0.1 0.42968906 0.4297 0.42969

1 0.36616650 0.3662 0.36617

10 0.25748252 0.2513 0.25126

100 0.16190872 0.1519 0.15186

Table 2 The non-dimensional
velocities, temperatures, Nusselt
number and skin friction
coefficients for various values of
ξ when Gr∗ = 1.0, Ds = 0.5,
α1 = 1.0, Bi = 1.0, ST = 0.01
and n=0.8 (psudoplastic fluids)

ξ f ′(ξ, 0) θ(ξ, 0)
Nux̄

Ra
1
2

1

2

Ra
1
2

Pr
C f

0.1 0.4497 0.4778 0.2019 -0.1734

0.2 0.5169 0.5375 0.2592 -0.2155

0.3 0.5513 0.5727 0.2965 -0.2447

0.4 0.5730 0.5984 0.3235 -0.2683

0.5 0.5894 0.6185 0.3474 -0.2877

0.6 0.6033 0.6341 0.3628 -0.3035

0.7 0.6200 0.6428 0.3838 -0.3128

Table 3 The non-dimensional
velocities, temperatures, Nusselt
number and skin friction
coefficients for various values of
ξ when Gr∗ = 1.0, Ds = 0.5,
α1 = 1.0, Bi = 1.0, ST = 0.01
and n=1.2 (dilatant fluids)

ξ f ′(ξ, 0) θ(ξ, 0)
Nux̄

Ra
1
2

1

2

Ra
1
2

Pr
C f

0.1 0.4896 0.4561 0.2137 -0.1626

0.2 0.5494 0.5194 0.2728 -0.2017

0.3 0.5830 0.5551 0.3126 -0.2277

0.4 0.6062 0.5798 0.3430 -0.2474

0.5 0.6239 0.5986 0.3677 -0.2632

0.6 0.6382 0.6138 0.3884 -0.2764

0.7 0.6501 0.6265 0.4063 -0.2877

Bi → ∞, are tuned with the findings of Murthy and Singh [35], who investigated the impact
of thermal dispersion parameter in natural convection. Further, the behavior of temperature
and velocity profiles along with the skin friction coefficient and heat transfer rate for various
values of streamwise coordinate ξ is given in tabular form for pseudoplastic fluid and dilatant
fluid in Table2 and Table3 respectively. From these results, it is self evident that the solutions
are not similar. This flowmodel reveals some interesting observations regarding heat transfer
and boundary layer in the practically feasible range of important parameters and these are
very useful in various emerging applications.

Impact of Biot Number (Bi)

The variations in the non-dimensional velocities, temperatures, heat transfer rates and skin
friction coefficients for different Bi are portrayed graphically in Figs. 4a–4d where all other
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parameters are given fixed values. Bi is defined as the proportion of internally heated resis-
tance in the truncated cone surface to the boundary layer heated resistance. Figure4a depicts
the fluid velocity increments with higher values of Bi and dilatant fluid is more influenced in
comparison of pseudoplastic fluid. In Fig. 4b, the influence of Bi on temperature profiles is
displayed which shows that the higher values of temperature are obtained with the increment
in Biot number. It is clear from this figure that the temperature is more for both the fluids
when the surface is subjected to wall temperature condition (i.e., θ(ξ, 0) = 1 − ξ ST which
is obtained when Bi → ∞) in comparison to the convectively heated surface (as shown
in Boundary condition (8)). The variations in Nusselt number with non-linear convection
parameter α1 for various values of Biot number are shown in Fig. 4c. There is domination
of dilatant fluid over pseudoplastic fluid and higher rate of heat transfer is noticed with
increment in Bi . Similarly, in Fig. 4d, the changes in skin friction coefficient with α1 for
different values of Bi are displayed. Less negative values are obtained for dilatant fluid with
an increment of Bi and this negativity increases with Biot number increment. This type of
analysis where the temperature of surface is fixed in later stage, may be very useful in many
applications because if the surface temperature is fixed initially, it may further result into
damage of materials involved in the experiment or even in industry.

Impact of Thermal Stratification Parameter (ST)

In the Figs. 5a–5d, the significance of ST on non-dimensional velocities of the fluid flow, tem-
peratures, heat transfer rates and skin friction coefficients are depicted. There are decrements
in the velocity and temperature profiles in the case of increasing values of stable stratification
(i.e., for ST > 0) for both dilatant and pseudoplastic fluids. Due to ST increment, density of
the fluid is increased which results the decrement in the convective flow and so the velocity
profiles are decreased and the effect is less for pseudoplastic fluid. Also, in the presence of
ST , the temperature variation between the surface of the truncated cone and the marginal
fluid decreases, which thickens the thermal boundary layer resulting into temperature profile
decrement. In Fig. 5c, the impact of stratification on Nusselt number with α1 is shown for
dilatant and pseudoplastic fluids. Increase in ST values results into the decrement of Nusselt
number for both the fluids. Nusselt number is noticed to be less in the case of pseudoplastic
fluids. Fig. 5d shows the impact of stratification on the skin friction coefficient with α1 and
increment in ST makes skin friction values less negative for dilatant and pseudoplastic fluids
and there is rapid variation with α1 values.

Impact of Thermal Dispersion Parameter (Ds)

The variations in the non-dimensional velocities, temperatures, Nusselt number and skin
friction coefficients are depicted in Figs. 6a–6d. Thermal dispersion raises the potency of
non-uniform pore level velocities on the temperature field in a certain porous medium. In
addition, the importance of integrated variations in temperature and velocity profiles to the
heat transportation can also be seen with the help of thermal dispersion. It is found from the
Fig. 6a that there is increment in velocities when thermal dispersion parameter is present in
the case of dilatant and pseudoplastic fluids. Likewise, Fig. 6b portrays that there is again
increment in the temperature profiles for non-zero values of Ds. Due to higher flow velocities
in the porous medium, thermal dispersion dominates molecular diffusion. Hence, a detailed
analysis must be given about its impact on heat transfer properties in this study. In view of
this, the impact of Ds with α1 on Nusselt number is shown in Fig. 6c. With enhanced values
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Fig. 4 The a non-dimensional velocity, b non-dimensional temperature, c non-dimensional Nusselt number
and d non-dimensional skin friction coefficient profiles for different values of n and Bi

of Ds, the heat transfer is also enhanced for both dilatant and pseudoplastic fluids. The values
for dilatant fluid are found to be more. The influence of Ds on the skin friction coefficient
with α1 is displayed in Fig. 6d. When Ds is increased, less negative skin friction is observed
for the two fluids. The magnitude of Ds is higher for pseudoplastic fluids than dilatant fluids.

Impact of Non-Linear Convection Parameter (˛1)

The effect ofα1 on the dimensionless velocities and temperatures are displayed in Figs. 7a–7b.
The non-linear convection parameter shows a non-linear relationship between temperature
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Fig. 5 The a non-dimensional velocity, b non-dimensional temperature, c non-dimensional Nusselt number
and d non-dimensional skin friction coefficient profiles for different values of n and ST

and density. Physically, α1 > 0 refers the expression T f > T∞, so the truncated cone
surface gives significant amount of heat to the fluid flow region. The presence and absence
of α1 is taken to analyse its influence when other parameters are assigned specific values.
Fig. 7a displays that the presence of α1 makes velocity to increase and this effect is less for
pseudoplastic fluid. Fig. 7b displays the temperature decrements in the presence ofα1 for both
the fluids and these decrements are found to be more in the case of pseudoplastic fluid. As
α1 increases, from Figs. 4c–4d and Figs. 6c–6d, it is evident that the Nusselt number and skin
friction are less affected for pseudoplastic fluids than dilatant fluids in the presence/absence
of either convective boundary condition or thermal dispersion. With the increment in α1, the
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Fig. 6 The a non-dimensional velocity, b non-dimensional temperature, c non-dimensional Nusselt number
and d non-dimensional skin friction coefficient profiles for different values of n and Ds

Nusselt number is identified to be more for pseudoplastic fluids when compared to dilatant
fluids with/without ST as displayed in Fig. 5c. The behaviour of skin friction coefficient is
noticed to be opposite to that of the Nusselt number as shown in Fig. 5d with the enhancement
in the parameter α1.

Conclusion

The impacts of Biot number, thermal dispersion and non-linear convection on the thermally
stratified power-law fluid over the truncated cone situated in a non-Darcy porous medium,

123



Int. J. Appl. Comput. Math (2021) 7 :99 Page 15 of 17 99

Fig. 7 The a non-dimensional velocity and b non-dimensional temperature distributions for different values
of n and α1

are discussed in this work. The consideration of these effects increased the number of non-
dimensional parameters and hence increased the non-linear complexity of this problem. So,
the governing equations are handled by local non-similarity and spectral local linearization
approaches. These kinds of analyses play very important part in the area of polymericmixtures
maintained at very high temperatures, aerosol technology etc., and these all are related to
temperature-dependent density. In future work, one can try to solve boundary layer equations
related to this model for fractional order cases by following the papers [36,37] which involve
a method free from restrictive cases or linearization and it may provide the exact solution
in terms of a uniformly convergent series. The decisive observations for this work can be
itemized as:

• The velocities, temperatures and Nusselt number are increased for larger Bi but the skin
friction coefficient is reduced for pseudoplastic and dilatant fluids.

• Thermal stratification parameter influences temperature, velocity and rate of heat transfer
in a similar way and all these face decrement with higher values of ST . But, the different
trend is seen in the skin friction coefficient case.

• The effect of Ds on the temperature, velocity, heat transfer rate and skin friction coeffi-
cient is all positive as all these profiles are increased with its presence.

• The impact of non-linear convection parameter α1 on velocity and temperature profiles is
opposite in nature as its presence gives increment in the velocity profiles, and decrement
in the temperature profiles.
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