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Abstract
Reaction–diffusion systems are seen in not only many fields of science but also social behav-
iorus. In this work, Schnakenberg, Brusselator and Lengyel–Epstein models are considered
that are the best known the chemical reaction–diffusion models and are also seen in a large
scale of applications in biological or biochemical processes. Due to its importance in science
and applications, for the consideredmodels, till now the numerical and approximate solutions
are obtained whereas the exact solutions in the explicit form were not obtained literature to
our knowledge. Our main aim is to fill this gap by revealing their exact solutions. To obtain
the exact solutions, the ansatz-based methods are considered in a novel way. The obtained
results have a major role in the literature so that the considered models are seen in a large
scale of applications not only chemical but also biological or biochemical processes.

Keywords Schnakenberg model · Brusselator model · Lengyel–Epstein model · Exact
solutions

Introduction

In the real life, both classical and fractional mathematical models are important to explain
the processes [18–31]. The most used one is Reaction–diffusion systems that are used to
model many physical, chemical, biological, environmental and even sociological processes
[1]. In examining the chemical reaction–diffusion models, Schnakenberg, Brusselator and
Lengyel–Epstein models are the most seen ones. These models are also known as Tuning-
type models which have been used for generating patterns in both chemical and biological
systems [1]. Additionally, these models are important to include modern thermodynamics
analysis, so they are hypothetical sets of chemical reactions. As a result of this reactions
cause limit cycle oscillations and propose a qualitative description of biochemical oscillators.
Reaction–Diffusion equations occurred naturally in systems formed by the interaction of
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many components and are widely used to describe various biological, chemical and physical
systems. The classical reaction–diffusion equation or alias self-diffusion equation is

∂u

∂t
� D∇2u + R(u) (1)

where u � u(x, t) represents density/concentration of a substance, D is the diffusion coef-
ficient, ∇2u and R(u) are the diffusion and the reaction terms, respectively [2]. The general
two-component system is given by the following system;{

ut � Du∇2u + F(u, v)

vt � Dv∇2v + G(u, v)
(2)

where Du and Dv are the diffusion coefficients, F(u, v) and G(u, v) are the reaction terms.
Additionally, two-component systems (Eq. (2)) are more useful than one-component i.e.
reaction–diffusion equation (Eq. (1)) so, it is modified for a much larger range of possible
phenomena.

In examining the chemical reaction–diffusion models, firstly Schnakenberg model [3] is
a two-species model for trimolecular reactions.

A ⇀↽ U , B → V , 2U + V → 3U .
The model, constructed by the law of mass action, is given by the following system;{

ut − Du∇2u � α − u + u2v

vt − Dv∇2v � β − u2v
(3)

where u � u(x, t) and v � v(x, t) represents concentration, Du and Dv are the diffusion
coefficients of the chemicals U and V , respectively. α and β are constants and represent
the concentration of the A and B, the right sides of each equation of Eq. (3) are reaction
terms. Although Eq. (3) is the model of the chemical process, it is used to model the spatial
distribution of a morphogen in biology [4].

If there are four chemical reactions.
A → U , B +U → V + D, 2U + V → 3U , U → E ,
the corresponding model is known as Brusselator model that is generally given as{

ut − Du∇2u � α − (β + 1)u + f (u)v

vt − Dv∇2v � βu − f (u)v
(4)

where Du and Dv are the diffusion coefficients and u � u(x, t) and v � v(x, t) represents
concentration of the chemicalsU and V , respectively.α andβ are positive fixed concentration
of the A and B, and right sides of each equation of Eq. (4) are reaction terms that f (u) is a
nonnegative and nondecreasing function.When f (u) � u2, the existence of a global solution
to Eq. (4) was obtained by Rothe [1, 5]. For more general nonlinearities f (u), the existence
of global solution to Eq. (4) is given by the assumption Du � Dv[1].

Equation (3) and Eq. (4) are derived from simple reactions where an autocatalytic process
is present, the only difference between them is how many chemical reactions occur in the
process [1, 6].

Lengyel–Epsteinmodel corresponds a special reaction that is the chlorite–iodide–malonic
acid and starch reaction (CIMA) in an open unstirred gel reactor [1, 7]. It is reaction scheme
is given as.
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

MA + I2 → I M A + I− + H+

ClO2 + I− → 1

2
I2 + ClO−

2

ClO−
2 + 4I− + 4H+ → Cl− + 2I2 + 2H2O

.

As it is seen reaction scheme, different from first two models, there are five reactants. But
the model is established on the time evolution of the concentrations of

[
I−]

and
[
ClO−

2

]
which are represented by u � u(x, t) and v � v(x, t), respectively [7]. Lengyel–Epstein
model is given by Eq. (5): ⎧⎪⎨

⎪⎩
ut − ∇2u � α − u − 4uv

1 + u2

vt − d∇2v � β
(
u − uv

1 + u2

) (5)

where α,β > 0 are rate constants that dependent on feed concentrations, d is the diffusion
coefficient and the right sides of each equation of Eq. (5) are reaction terms.

The models taken into consideration have been extensively investigated both analyti-
cally and numerically in recent years [1, 8–10]. In addition, homotopy perturbation method,
homotopy analysis method and Adomian decomposition method are considered to obtain
approximate solutions of the models [4, 11, 12]. But, the exact solutions of the considered
models were not obtained in the explicit form in the literature to our knowledge. Therefore,
our main aim is to fill this gap by revealing their exact solutions. The exact solutions will
be obtained via combination of Bernoulli approximation method and Hermite approxima-
tion method [15–17]. Each method is the modification of the well-known auxiliary equation
method. Applying the combination of methods has been the first time in the literature. The
obtained results have a major role in the literature so that the considered models are seen in
a large scale of applications both in chemistry and biology. Additionally, the costs can be
reduced by using the obtained results.

Briefly, the exact solutions of the considered chemical models are not seen in the literature
to our knowledge. Most of the works in the literature include experimental and numerical
solutions. By means of novel methodology, the exact solutions of the models will be given
in the explicit form. This is advantage for the interpretation of diffusion coefficients or feed
concentrations. In the following parts, firstly the brief of the consideredmethodology is given
and then, the exact solutions are proposed for each model.

Methodology

For the system, the combination ofBernoulli approximationmethod [15] andHermite approx-
imation method [17], each of the methods are seen as a modification of the well-known
auxiliary equation method [13, 16].

Pi
(
x, y, t, ui , (ui )x , (ui )t , (ui )xx , (ui )xt , (ui )t t , ...

)
, i � 1, 2, ... nonlinear partial dif-

ferential system (NPDS) is considered and reduced by using the wave transformation
ξ � x + μy − ct , c �� 0, μ �� 0 into the nonlinear ordinary differential system Ni(
ξ, ui , u′

i , u
′′
i , u

′′′
i , ...

)
, i � 1, 2, .... The obtained solutions are invariant with respect to

translation in space. The ansatzes are assumed to be as finite sum of the solution of the auxil-
iary equations ui (ξ) � ∑Mi

j�0 ai j z(ξ) j , (i � 1, 2, ..) where Mi is determined via balancing
principle [14] for each equation in the system and ai j are unknown parameters which are
determined as a result of nonlinear algebraic system. In this work,
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• The classical Bernoulli differential equation dz(ξ)
dξ

� Pz(ξ) + Qzk(ξ) where P and Q

are parameters, which will be determined as a solution of nonlinear algebraic system, and
k > 1 is an integer. Its solution is z(ξ) � P exp(Pξ)

−Q exp(Pξ)+PC3
for k � 2 andC3 is an integration

constant.
• Hermite differential equation d2ω

dζ 2
� 2ζ

(
dω
dζ

)
+ λω(ζ ) � 0 and its solution is

ω(ξ) � C1KummerM

(
1

2
+

λ

4
,
3

2
, ξ2

)
ξ + C2KummerU

(
1

2
+

λ

4
,
3

2
, ξ2

)
ξ

where C1 and C2 are integration constants, are considered as the auxiliary equations.

Results and Discussion

In this section, the models taken into consideration are solved via the new approach which is
a combination of two well-knownmethods. The analytical solutions in the explicit formwere
not obtained literature to our knowledge; these solutions will be the first in the literature. Our
main aim is to fill this gap by revealing their exact solutions.

The SchnakenbergModel

The Schnakenberg model that is generally given as

{
ut � Du∇2u + α − u + u2v

vt � Dv∇2v + β − u2v
(6)

where Du and Dv are the diffusion coefficients of the chemicals U and V , respectively. α

and β are constants and represent the concentration of the A and B.
Using the wave transformation ξ � x + μy − ct , c �� 0, μ �� 0, the system is reduced

into the following system;

{ −cu′ − Du
(
1 + μ2)u′′ − α + u − u2v � 0

−cv′ − Dv

(
1 + μ2)u′′ − β + u2v � 0

(7)

With the balancing principle, the ansatzes are determined as u(ξ) � g0 +g1z(ξ)+g2z2(ξ)

and v(ξ) � h0 + h1ω(ξ) where gi (i � 0, 1, 2) and h j ( j � 0, 1) are parameters and will be
determined as a result of the algebraic system, z(ξ) and ω(ξ) are solutions of Bernoulli and
Hermite differential equation, respectively. For the first equation of Eq. (7), Bernoulli type
differential equation for k � 2 and Hermite differential equation for the second equation
of Eq. (7) are considered as an auxiliary equation. Substituting the considered ansatzes and
auxiliary equation in the system, the nonlinear algebraic equation system is obtained respect
to the powers of z(ξ) and ω(ξ). As a result, many solution sets are obtained that some of
them gives trivial solutions, some of them are constant solutions. The useful solution sets are
given in Table 1.

Therefore, substituting the obtained parameters into the ansatzes the analytical solutions
are obtained that is the first attempt. Additionally, the considered methodology has not seen
in the literature to our knowledge.
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The Brusselator Model

The Brusselator model that is generally given as{
ut � Du∇2u + α − (β + 1)u + f (u)v

vt � Dv∇2v + βu − f (u)v
(8)

where Du and Dv are the diffusion coefficients of the chemicalsU and V , respectively. α and
β are positive fixed concentration of the A and B, f (u) is a nonnegative and nondecreasing
function and assumed as f (u) � u2 [1, 5].

Using the wave transformation ξ � x + μy − ct , c �� 0, μ �� 0, the system is reduced
into the following system;{−cu′ − Du

(
1 + μ2)u′′ − α + (β + 1)u − u2v � 0

−cv′ − Dv

(
1 + μ2)u′′ − βu + u2v � 0

(9)

With the balancing principle, the ansatz is determined as u(ξ) � g0+g1ω(ξ) and v(ξ) � h0+
h1z(ξ)where gi (i � 0, 1) and h j ( j � 0, 1) are parameters and will be determined as a result
of the algebraic system, z(ξ) and ω(ξ) are solutions of Hermite and Bernoulli differential
equation, respectively. For the first equation of Eq. (9), Hermite differential equation and
Bernoulli type differential equation for k � 2 for the second equation of Eq. (9) are considered
as an auxiliary equation. Substituting the considered ansatzes and auxiliary equation in the
system, the nonlinear algebraic equation system is obtained respect to the powers of z(ξ) and
ω(ξ). As a result, many solution sets are obtained that some of them gives trivial solutions,
some of them are constant solutions and lots of them have complex structure so not need to
give here. Therefore, useful solution set is given as.

C1 � 0, α � 0, β � 0, λ � 0, Dv � − c

2P

g0 � −g1C2ξKummerU

(
1

2
,
3

2
, ξ2

)
, h1 � Q

(
h0g1C2ξKummerU

( 1
2 ,

3
2 , ξ

2
)
+ 1

)
Pg1C2ξKummerU

( 1
2 ,

3
2 , ξ

2
) .

The Lengyel–Epstein Model

The model is established on the time evolution of the concentrations of
[
I−]

and
[
ClO−

2

]
which are represented by u and v, respectively [7],⎧⎪⎨

⎪⎩
ut � ∇2u + α − u − 4uv

1 + u2

vt � d∇2v + β
(
u − uv

1 + u2

) (10)

where α,β > 0 are rate constants that dependent on feed concentrations, d is the the diffusion
coefficient.

Using the wave transformation ξ � x + μy − ct , c �� 0, μ �� 0, the system is reduced
into the following system;{ −c

(
1 + u2

)
u′ − (

1 + μ2)(1 + u2
)
u′′ − α

(
1 + u2

)
+

(
1 + u2

)
u − 4uv � 0

−c
(
1 + u2

)
v′ − d

(
1 + μ2)(1 + u2

)
u′′ − β

(
1 + u2

)
u + βuv � 0

(11)

With the balancing principle, the ansatzes are determined as u(ξ) � g0 + g1ω(ξ) and v

(ξ) � h0+h1z(ξ)where gi (i � 0, 1) and h j ( j � 0, 1) are parameters andwill be determined
as a result of the algebraic system, z(ξ) and ω(ξ) are solutions of Hermite and Bernoulli
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differential equation, respectively. For the first equation of Eq. (11), Hermite differential
equation and Bernoulli type differential equation for k � 2 for the second equation of
Eq. (11) are considered as an auxiliary equation. Substituting the considered ansatzes and
auxiliary equation in the system, the nonlinear algebraic equation system is obtained respect
to the powers of z(ξ) andω(ξ). As a result, many solution sets are obtained that some of them
gives trivial solutions, some of them are constant solutions and lots of them have complex
structure so not need to give here. Therefore, the useful solution sets are given by Table 2.

Substituting the parameters into the ansatz, the exact solutions are obtained. The obtained
results new in the literature to our knowledge and they have a major role in the literature so
that the considered models are seen in a large scale of applications not only chemistry but
also in biology.

Conclusion

Reaction–diffusion systems are used to model many physical, chemical, biological, environ-
mental and even sociological processes [1]. In examining the chemical reaction–diffusion
models, Schnakenberg, Brusselator and Lengyel–Epstein models are the most seen ones.
These models are also known as Tuning-type models which have been used for generating
patterns in both chemical and biological systems [1]. The exact solutions are not seen in
the literature to our knowledge (all works in the literature are experimental and numerical
solutions). The exact solutions of the considered models are obtained via the novel approach
i.e. the combination of Bernoulli approximation method [15] and Hermite approximation
method [17], each of the methods are seen as a modification of the well-known auxiliary
equation method [13, 16]. The obtained results have a major role in the literature so that the
considered models are seen in a large scale of applications not only chemistry but also in
biology. For the future works, as seen in the literature, the fractional type of models can be
considered.
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