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Abstract
A study is made of incident P- waves between four coplanar Griffith cracks, which are
located symmetrically in the midplane of an infinite elastic medium. A two-dimensional
elastic wave equation is considered for an isotropic medium. The Fourier integral transform
has been applied to convert the fundamental problem to an integral equation problem. We
have utilized the finite Hilbert transform technique and Cook’s result to solve five integral
equation. This work’s main objective is to investigate the dynamic stress intensity factors and
crack opening displacement at the cracks’ tips. The study of these physical quantities (SIF,
COD) predicts possible arrest of the damages within a specific range of wave frequency by
monitoring the applied load. For low frequency, we have shown the graphs of SIF and COD
for various types of isotropic materials and concluded that crack propagation could arrest
quickly within a specific range of frequency. We presented a parametric study to explore the
influence of crack growth and propagation.

Keywords Mode-I Griffith crack · Isotropic media · P-wave · Stress intensity factor · Crack
opening displacement

Introduction

Fracturemechanics and the studyof crackpropagation canbe considered as an exciting branch
in elastic theory. It is an essential tool used to develop mechanical components’ performance
in the current area of materials science. Cracks or inclusions are present practically in all
structural materials, either as natural defects or fabrication processes. In 1957, Irwin first
provided the stress intensity factor concept, a quantity that denotes the state of stress at the
tip of the crack. The stress singularity near the edge of the finite damage is vital because
of the practical application. Fortunately, for most cases, the cracks are so small that their
presence does not significantly impact the material’s strength. But in those cases where the
cracks are exceptionally large enough or in the future, they may become so due to fatigue,
stress corrosion cracking, etc. It is essential to concentrate on them to determine the strength
of the materials. The theory and problems related to crack geometry in isotropic materials
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have emerged as a vital research area in recent times, mostly due to the rapid growth in
construction engineering.

Consequently, the study of diffraction of P-waves about finite cracks has become vital to
ensure safe and robust structures. The crack problem in fracture mechanics has a wide range
of civil engineering applications for designing load-bearing components for vehicles, power
generation, and transmission. It has a highly request for industrial engineering in creating
metal and polymer-forming processes, machining, etc.

Initially, the authors consider the single dynamic crack due to mathematical difficulties in
calculating the solutions for multiple damages. For that reason, the research was confined to
a limited area. At first, Jain and Kanwal [1] are recovered that complexity and solved their
problems by taking multiple cracks in an elastic medium. After that, the problem containing
single or two cracks in an isotropic elastic medium is suggested by Loeber and Sih [2], Mal
[3], Srivastava et al. [4, 5], Bostrom [6], Das and Ghosh [7], Dhaliwal et al. [8, 9], Pramanik
et al. [10] and many others. Infinite elastic medium’s diffraction issues on two coplanar
Griffith cracks were apparent up by Jain and Kanwal [11]. They considered the diffraction of
normally incident p-waves by two parallel rigid strips fixed into an isotropic medium. It has
derived the estimated formula for the displacement, stress tensor field. In a single strip, the
limiting result has been provided for the first time in this area. Lowengrub [12] considered
the problem of a pair of coplanar cracks at the interface of two bonded dissimilar isotropic
elastic half-planes. They applied the Fourier transform technique to obtain a simultaneous
set of triple integral equations containing a kernel. Many authors studied multiple crack’s
diffraction problems, but most of the issues were either implicate diffraction of shear waves
or infinite media [13]. Srivastava et al. [14] discussed a more difficult and complex problem
about boundaries in the media. They solved this problem using shear waves’ interaction
with Griffith crack interface situated of multi bonded dissimilar elastic half-spaces. Stress
propagation through periodic cracks in between two bonded different antithetical orthotropic
half-planes is discussed by Garg [15]. The work is shown that the determination of the
stress and displacement fields in the tip of periodic collinear cracks at the interface region
of two different half-planes through the transformation method. Munshi and Mandal [16]
suggested diffraction of p-waves by edge crack in an infinitely long elastic strip. The Fourier
transform technique had been employed to obtain the expression of the integral equation
and finally solved. Das et al. [17] addressed the problem of symmetric edge cracks in an
orthotropic strip under normal loading by seeking the solution of a pair of simultaneous
integral equations with Cauchy type singularities. The problem by the diffraction of P-waves
by an asymmetric position of a single crack is discussed by Basak [18]. The crack was located
in an infinite orthotropic strip through two boundaries. A Fredholm integral equation of the
second kind has been found, and finally, these equations are solved to get the analytical
expression of the stress intensity factor. The dispersion of p waves by edge crack in an
infinite orthotropic strip is solved by Nandi [19]. The unknown stress distribution outside
the crack has been calculated by imposing Fourier transform, and finally, normal stress at a
distant point is derived and plotted against various parameters. Nandi et al. [20] proposed
the work of interaction of three coplanar interfacial cracks at the interface of two dissimilar
elastic mediums for incident antiplane shear waves. The system of four integral equations is
obtained by utilizing the transformation technique. This set of equations are solved by using
the Hilbert transform and Cooke’s result. The physical quantities are accepted and presented
graphically for different materials. Palas et al. [21] investigated the interfacial crack problem
of diffraction of P-waves by a Griffith crack. In the case of normal incidence, the boundary
conditions are slightly changed to solve the displacement equation. The perturbation method
is used and find the expressions of SIF and COD to plot the graphs to show the influence
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Fig. 1 Geometry of the problem

of various orthotropic materials constants. Naskar et al. [22] discussed the dynamic stress
intensity factor for the problem of P waves interaction on a Griffith in an infinite isotropic
media. For a time-dependent solution, numerical Laplace inversion has been applied using
Zakian’s Algorithm. Palas [23] is solved a problem of semi-infinite crack interaction by p-
waves in a semi-infinite elastic half-space. The Wiener–Hopf technique method is employed
to reduce the difficulties in boundary conditions. The SIF and COD were plotted by different
crack layer distance values from the surface to crack depth. Impact of Cattaneo–Christov heat
flux model in the flow of variable thermal conductivity fluid over a variable ticked surface
is addressed by Hayat et al. [24]. A comparative study of Casson fluid with homogeneous-
heterogeneous reactions has been solved by Khan et al. [25].

Though many research works have been done on the interaction or diffraction of various
body waves due to finite and semi-infinite cracks between different mediums, maximum
research problems considered either the interaction of shear waves or p-waves by the cracks
in orthotropic medium. As per the best of our knowledge, the issue included the interaction of
longitudinalwaves by four collinearGriffith carks in isotropicmediumhas not been suggested
before.

This work deals with P-waves’ interaction between four collinear Griffith cracks sym-
metrically positioned in an infinite elastic medium. The Fourier integral transformation is
employed to convert the problem for solving a group of five integral equations, which have
been further reduced to the solution of integrodifferential equations.After applying theHilbert
transform technique, the integrodifferential equations are solved to calculate the SIF andCOD
for a small frequency. The graphs of SIF and COD show the nature of these two physical
quantities against frequency. We tried to show the influence of material properties on the SIF
and plotted the graphs against different crack lengths. This result is very much applicable to
bridges, roads, and buildings fractures to reduce the damages.

Formation of the Problem

The elastic waves are diffracted by the cracks positioned in an infinite homogeneous isotropic
elastic medium. The cracks are supposed to inhabit the location d1 ≤ |x1|≤ d2, d3 ≤ |x1|≤
d,−∞ < z1 < ∞, y1 � ±0. The normalization method is applied on all crack lengths
by ‘d’ and substitution of x1

d � x, y1
d � y, z1

d � z, d1
d � a, d2

d � b, d3
d � c, the crack

position can be written as a ≤ |x |≤ b, c ≤ |x |≤ 1,−∞ < z < ∞, y � ±0 (Fig. 1), the
cartesian coordinate system (x, y, z) is referred. The problem geometry is displayed in the
below figure, Fig. 1.
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Fig. 2 P-waves propagation

Fig. 3 Mode-I crack: Horizontal Movement

In the direction of the y-axis, the incident time-harmonic body waves are moving. In
longitudinal waves, the medium’s displacement passes in the same direction or the opposite
direction to the direction of wave propagation. The propagation of waves has been shown in
the following figure Fig. 2

The crack mode is shown in Fig. 3, where the tensile stress is normal to the crack plane.
In the homogeneous isotropic medium, the Navier equation of motion for the elastic wave

is taken ρ ∂2u
∂t2

� (λ + 2μ)��.u − μ� × �u, where the symbols have their usual meanings.
For isotropic medium longitudinal waves, the governing equation takes the following form

∂2φ1

∂x2
+

∂2φ1

∂y2
+ k21φ1 � 0,

∂2ψ1

∂x2
+

∂2ψ1

∂y2
+ k22ψ1 � 0 (1)

where ki � dω/ci , (i � 1,2), the dilatational and shear wave speeds are defined by the

notationsc1 �
√

λ+2μ
ρ

, c2 �
√

μ
ρ
and the Lame’s constant are λ and μ with ρ being the

density of the material. The notation d is an arbitrary constant, and ω is the wave frequency.
The dimensionless displacement components are defined as u and v correspondingly in

the direction of x , y. The relation between displacement components and potential functions
(φ1 and ψ1 are called the scalar and vector potentials) are defined as

u � ∂φ1

∂x
− ∂ψ1

∂y
, v � ∂φ1

∂y
+

∂ψ1

∂x
(2)

In fracture mechanics, the diffracted wave generated due to incident longitudinal wave
is essential at the crack’s tip. It dramatically affects the stress intensity factor, so we have
considered the diffracted wave analysis. The diffracted field satisfies the equation Eq. (1).

The discussion of problem is symmetric with respect to y-axis, it is enough to study the
half space x ≥ 0. For a crack subjected to uniform normal stress −p0, the conditions to be
specified for y � o are

σyy(x, 0) � −p0, xε I2, I4 (3)

v(x, 0) � 0, xε I1, I3, I5 (4)

σxy(x, 0) � 0, x < ∞ (5)
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where p0 is a fixed constant which has been found by using the relation between stress and
displacement is given by dσyy � (λ + 2μ)( ∂u

∂x + ∂v
∂y )− 2μ∂u

∂x . The authors Mandal et al. [26]
are calculated the value of p0. The intervals are showing the boundaries I1 � [0, a], I2 �
(a, b), I3 � [b, c], I4 � (c, 1), I5 � [1,∞).

Once the equation in (1) is solved to obtain φ1 and ψ1, using Fourier transform technique
and separation of variables. The solutions of Eq. (1) are

φ1(x, y) � 2

π

∫ ∞

0
A1(ζ )e

−α|y|cos(ζ x)dζ (6)

ψ1(x, y) � 2

π

∫ ∞

0
A2(ζ )e

−β|y|sin(ζ x)dζ (7)

A1(ζ ) and A2(ζ ) are the unknown variables with Fourier transformed variable ζ . The
following relations express the notation α and β

α �
√

ζ 2 − k21, ζ > k1

� −i
√
k21 − ζ 2, k1 > ζ

β �
√

ζ 2 − k22, ζ > k2

� −i
√
k22 − ζ 2, k2 > ζ

Using the functional values of φ1 and ψ1 in Eq. (2), the expressions for displacement
components are readily obtained as

u(x, y) � 2

π

∫ ∞

0

[
−e−α|y| + 2αβ(2ζ 2 − k22)

−1e−β|y|]ζ A1(ζ )sin(ζ x)dζ (8)

v(x, y) � 2

π

∫ ∞

0

[
−e−α|y| + 2ζ 2(2ζ 2 − k22)

−1e−β|y|]αA1(ζ )cos(ζ x)dζ (9)

The time factor eiωt is repressed throughout the analysis but to be understood. The stresses
associated with the displacement field of Eqs. (8), (9) are

dσxy � 2μ

π

∫ ∞

0
2αζ

[
e−α|y| − e−β|y|]A1(ζ )sin(ζ x)dζ (10)

dσyy � 2μ

π

∫ ∞

0

[
(2ζ 2 − k22)e

−α|y| − 4αβζ 2(2ζ 2 − k22)
−1e−β|y|]A1(ζ )cos(ζ x)dζ (11)

dσxx � −2μ

π

∫ ∞

0

[
(2α2 + k22)e

−α|y| − 4αβζ 2(2ζ 2 − k22)
−1e−β|y|]A1(ζ )cos(ζ x)dζ (12)

The solutions are given by equations Eqs. (8–12) may also be used for generalized plane
stress by (1 + 2ν)E/(1 + ν)2 and ν/(1 + ν) where E is Young’s modulus and ν is a Poisson
ratio. In Eqs. (8), (9), the unknown functions A1(ζ ) and A2(ζ ) can be evaluated from the
boundary condition (5), which remain to be specified. The third boundary condition (5) leads
to the relation between these two constants in the following way.

A2(ζ ) � 2αζ

2ζ 2 − k22
A1(ζ ) (13)

The Eqs. (3) and (4) can be used to arrive at the system of dual integral equations where
ϕ(ζ ) is the unknown function.

∫ ∞

0
ζ [1 + H (ζ )]ϕ(ζ )cos(ζ x)dζ � −π

2

p0
μ

, xε I2, I4 (14)
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∫ ∞

0
ϕ(ζ )cos(ζ x)dζ � 0, xε I1, I3, I5 (15)

The functions φ(ζ ) and H (ζ ) are expressed as

ϕ(ζ ) � 2α(k21 − k22)

2ζ 2 − k22
A1(ζ )

H(ζ ) � 4αβζ 2 − (2ζ 2 − k22)
2

2αζ
(
k22 − k21

) − 1 → 0asζ → ∞

Solution

The trivial solution of the above Eqs. (14, 15) are defined by the following way

ϕ(ζ ) � 1

ζ

∫ b

a
f (t2)sin(ζ t)dt +

1

ζ

∫ 1

c
g(s2)sin(ζ s)ds (16)

The unknown functions are f (t2) and g(s2), which will be determined by utilizing the
boundary conditions. The function φ(t) is considered in such a way that the Eq. (15) is
satisfied automatically, and the Eq. (14) is produced 1√

x−1
type of singularity at the crack’s

tip, which is physically consistent with the problem. To find the expressions of f (t2) and
g(s2), we are using a result that is discussed in (Gradshteyn and Ryzhik [27]). The result is
defined by

∫ ∞

0

sin(t y)cos(xy)

y
dy �

{
π
2 , t > x
0, x > t

By putting the above expression in Eq. (15) under Eq. (16) leads to the conditions
∫ b

a
f (t2)dt � 0 (17)

∫ 1

c
g(s2)ds � 0 (18)

Now, we are using the following result (Gradshteyn and Ryzhik [27])∫ ∞

0

sin(t y)sin(xy)

y
dy � 1

2
log| t + x

t − x
|

and

sin(ζ t)sin(ζ x)

ζ 2 �
∫ x

0

∫ t

0

vwJ0(ζv)J0(ζw)√
(t2 − v2)(x2 − w2)

dvdw.

in Eq. (14) to get the simple expression. After a long algebraic calculations, it can be written
in the following way
∫ b

a

t f (t2)

t2 − x2
dt +

∫ 1

c

sg(s2)

s2 − x2
ds � q − d

dx

∫ b

a
f (t2)dt

∫ x

0

∫ t

0

vwL(v,w)dvdw√
(t2 − v2)(x2 − w2)

− d

dx

∫ 1

c
g(s2)ds

∫ x

0

∫ s

0

vwL(v,w)dvdw√
(s2 − v2)(x2 − w2)

, xε I2,

(19)
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where q � −π
2

p0
μ

L(v,w) �
∫ ∞

0
ζH (ζ )J0(ζv)J0(ζw)dζ (20)

The function J0() is the zero-order Bessel function.
It is to be noted that L(v,w) is represented by the eq’s semi-infinite integral. (14) has

a slow rate of convergence. Applying a contour integration technique (Mandal and Ghosh
[28]), the semi-infinite integral has therefore been converted to the following finite integrals
by considering γ � k1

k2
< 1 and ζ � k2ξ

(21)

L(v,w) � −i
k22
2

∫ γ

0

4ξ2
√

γ 2 − ξ2
√
1 − ξ2 + (2ξ2 − 1)2

(1 − γ 2)
√

γ 2 − ξ2
J0(k2ξv)H (1)

0 (k2ξw)dξ

− i
k22
2

∫ 1

γ

4ξ2
√
1 − ξ2

1 − γ 2 J0(k2ξv)H (1)
0 (k2ξw)dξ,w > v

The Bessel function J0 and the Hankel function H (1)
0 are extended as series and applied

for small frequency. The product of these two functions are explained as

J0(k2ξv)H (1)
0 (k2ξw) � 2i

π
logk2 + [1 +

2i

π
(ν + log

ξw

2
)]

and applying in Eq. (21), we obtain

L(v,w) � 2

π
Pk22logk2 + O(k22) (22)

where

P � 1

2

∫ γ

0

4ξ2
√

γ 2 − ξ2
√
1 − ξ2 + (2ξ2 − 1)2

(1 − γ 2)
√

γ 2 − ξ2
dξ +

1

2

∫ 1

γ

4ξ2
√
1 − ξ2

1 − γ 2 dξ (23)

The selecting of the expressions of f (t2) and g(s2) in Eq. (16) are depending on the kernel
function see in Eq. (22). According to the kernel, the functions f (t2) and g(s2) are expanded
in the following way.

f (t2) � f0(t
2) + k22logk2 f1(t

2) + O(k22)

g(s2) � g0(s
2) + k22logk2g1(s

2) + O(k22) (24)

Utilizing the above functions f (t2), and g(s2) and the expression of L(v,w) (Eq. 22) in
Eq. (19) and compare the coefficients of powers of k2 from both sides, and we get

∫ b

a

t f0(t2)dt

t2 − x2
+

∫ 1

c

sg0(s2)ds

s2 − x2
� q, xε I2, I4 (25)

∫ b

a

t f1(t2)dt

t2 − x2
+

∫ 1

c

sg1(s2)ds

s2 − x2
� −2P

π
[
∫ b

a
t f0(t

2)dt +
∫ 1

c
sg0(s

2)ds], xε I2, I4 (26)

and the conditions (17, 18) under the expansions (24) lead to
∫ b

a
fi (t

2)dt � 0i � 0, 1 (27)
∫ 1

c
gi (s

2)ds � 0i � 0, 1 (28)
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The Hilbert transform technique has been applied in Eq. (25). We obtained the following
expression

∫ b

a

t f0(t2)dt

t2 − x2
� π

2
F1(x)xε I2 (29)

where

F1(x) � −[
p0
μ

+
2

π

∫ 1

c

sg0(s2)ds

s2 − x2
] (30)

Cooke’s result [29] is applied to obtain the solution of the integral Eq. (29) is found to be

f0
(
t2

) � − p0
μ

√
t2 − a2√
b2 − t2

− 2

π

√
t2 − a2√
b2 − t2

∫ 1

c

√
s2 − b2√
s2 − a2

sg0
(
s2

)
ds

s2 − t2
+

D1√
(t2 − a2)(b2 − t2)

(31)

And D1 is a fixed constant, which is calculated by using Eq. (27) for i � 0.
The singular integral equation is produced by substitution of the value of f0(t2) from

Eq. (31) in Eq. (25) for xε I4∫ 1

c

√
s2 − b2√
s2 − a2

sg0(s2)ds

s2 − x2
� π

2
F2(x)xε I4 (32)

where

F2(x) � − p0
μ

+
D1

x2 − a2

The finiteHilbert Transform technique is applied to find the solution of the integral Eq. (32)
in the form

(33)

g0(s
2) � − p0

μ

√
(s2 − a2)(s2 − c2)

(s2 − b2)(1 − s2)
+

√
1 − a2

c2 − a2
D1

√
s2 − c2√

(s2 − a2)(s2 − b2)(1 − s2)

+
D2

√
s2 − a2√

(s2 − b2)(s2 − c2)(1 − s2)

where the unknown fixed constant is D2 to be determined by using Eq. (28) for i � 0.
Now substituting the value of g0(s2) from Eq. (33) into the Eq. (31) and integrating, f0(t2)

is obtained in the following form

(34)

f0(t
2) � − p0

μ

√
(t2 − a2)(c2 − t2)

(b2 − t2)(1 − t2)
+

√
1 − a2

c2 − a2
D1

√
c2 − t2√

(t2 − a2)(b2 − t2)(1 − t2)

− D2
√
t2 − a2√

(b2 − t2)(c2 − t2)(1 − t2)

To get the analytical expressions of g1(s2) and f1(t2), we applied the same procedure
using the above result.

(35)

f1(t
2) � −4PR

π2

√
(t2 − a2)(c2 − t2)

(b2 − t2)(1 − t2)
+

√
1 − a2

c2 − a2
E1

√
c2 − t2√

(t2 − a2)(b2 − t2)(1 − t2)

− E2
√
t2 − a2√

(b2 − t2)(c2 − t2)(1 − t2)
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(36)

g1(s
2) � −4PR

π2

√
(s2 − a2)(s2 − c2)

(s2 − b2)(1 − s2)
+

√
1 − a2

c2 − a2
E1

√
s2 − c2√

(s2 − a2)(s2 − b2)(1 − s2)

+
E2

√
s2 − a2√

(s2 − b2)(s2 − c2)(1 − s2)

where E1 and E2 are the unknown constants to be found from the Eq. (27) and Eq. (28) (for
i � 1) respectively and

R � − p0
μ
[I ba + I 1c ] +

⎡
⎣

√
1 − a2

c2 − a2
D1 + D2

⎤
⎦M

I ji �
∫ j

i

t
√
(t2 − a2)(c2 − t2)dt√
(b2 − t2)(1 − t2)

M � c2 − b2√
(c2 − a2)(1 − b2)

[
�(

π

2
,
b2 − a2

c2 − a2
, p) + �(

π

2
,
1 − c2

1 − b2
, p) − F(

π

2
, p)

]

p �
√
(1 − c2)(b2 − a2)√
(1 − b2)(c2 − a2)

where the functions F(), �() are defined as elliptic integrals of the first and third kind, the
unknown fixed constants Di and Ei (i � 1, 2) will be found by Eq. (27) and Eq. (28)

Di � p0
μ
Ci , Ei � 4PR

π2 Ci , i � 1, 2 where

C1 �
⎡
⎣ Jba K

1
c + J 1c K

b
a

Jba L
1
c + J 1c L

b
a
]

√
c2 − a2

1 − a2
,C2 � [

Lb
aK

1
c − L1

c K
b
a

Jba L
1
c + J 1c L

b
a

⎤
⎦,

J j
i �

∫ j

i

√
t2 − a2dt√

(c2 − t2)(b2 − t2)(1 − t2)

K j
i �

∫ j

i

√
(t2 − a2)(c2 − t2)dt√
(b2 − t2)(1 − t2)

, L j
i �

∫ j

i

√
c2 − t2dt√

(b2 − t2)(t2 − a2)(1 − t2)

On substituting the values of Di and Ei (i � 1,2), in the Eqs. (33)-(36), it yields

fi−1(t
2) � −Ai

⎡
⎣1 − C1

t2 − a2

√
1 − a2

c2 − a2
+

C2

c2 − t2

⎤
⎦

√
(t2 − a2)(c2 − t2)

(b2 − t2)(1 − t2)
, (i � 1, 2)

(37)

gi−1(s
2) � −Ai

⎡
⎣1 − C1

s2 − a2

√
1 − a2

c2 − a2
− C2

s2 − c2

⎤
⎦

√
(s2 − a2)(s2 − c2)

(s2 − b2)(1 − s2)
, (i � 1, 2)

(38)

where

A1 � p0
μ

, A2 � 4PR

π2
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Quantities of Physical Interest

The normal stress σyy(x, 0) on the plane y � 0 outside the crack (|x |> 1) is found. The
stress field’s singular character may find by solving for σyy(x, 0). Therefore, it is clear that
the normal stress outside the crack has a square root singularity at the crack tip. The values of
functions f (t2) and g(s2) are inserting in the expression of the stress component in Eq. (11).
After some algebraic manipulation, the stress intensity factors are found at the crack tip
points x � a, x � b, x � c, and x � 1 denoted by Na, Nb, Nc, and N1. The state of stress
at the crack tips is determined by a quantity called the stress intensity factor (SIF), which is
defined by

Na � lim
x→a−[

√
a − xσyy(x, 0)

p0
]0<x<a (39)

In this problem, the SIF can find as

SI F � C1√
2a(b2 − a2)

[1 − 4P

π2 Nk22logk2] + O(k22) (40)

Similarly, we can find the stress intensity factors of remaining crack tips (x � b, x � c,
and x � 1) as

(41)

Nb � lim
x→b+

[√
x − b σyy (x, 0)

p0

]

b<x<c

�
[√(

b2 − a2
) (
c2 − b2

)

2b
(
1 − b2

) − C1

√ (
c2 − b2

) (
1 − a2

)

2b
(
b2 − a2

) (
c2 − a2

) (
1 − b2

)

+C2

√
b2 − a2

2b
(
c2 − b2

) (
1 − b2

)
] [

1 − 4P

π2 Nk22 logk2

]
+ O

(
k22

)

(42)

Nc � lim
x→c−

[√
c − x σyy (x, 0)

p0

]

b<x<c

� C2

√
c2 − a2

2c
(
c2 − b2

) (
1 − c2

)
[
1 − 4P

π2 Nk22logk2

]
+ O

(
k22

)

N1 � lim
x→1+

[√
x − 1 σyy (x, 0)

p0
]x>1 �

[√(
1 − a2

) (
1 − c2

)

2
(
1 − b2

)

− C1

√
1 − c2

2
(
1 − b2

) (
c2 − a2

)

− C2

√
1 − a2

2
(
1 − b2

) (
1 − c2

) ]
[
1 − 4P

π2 Nk22 logk2

]

+ O
(
k22

)

(43)

where

N �
[
I ba + I 1c

]
−

⎡
⎣

√
1 − a2

c2 − a2
C1 + C2

⎤
⎦M
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Another quantity of physical interest is the crack opening displacement (COD) defined
by

�v(x, 0) � v(x, 0+) − v(x, 0−) �
⎧
⎨
⎩
2
∫ b
x f (t

2)dt, a ≤ x ≤ b

2
∫ 1
x g(s

2)ds, c ≤ x ≤ 1
(44)

The equations Eq. (37) and Eq. (38) are used to obtain the expressionCOD. Since the prob-
lem is symmetric with respect to the x-axis thereforewewrite the crack opening displacement
(COD) for as

(45)

�v(x, 0) � −2
[
A1 + A2k

2
2logk2

] ∫ b

x

√
(t2 − a2)(c2 − t2)

(b2 − t2)(1 − t2)

×
⎡
⎣1 − C1

t2 − a2

√
1 − a2

c2 − a2
+

C2

c2 − t2

⎤
⎦ dt, a ≤ x ≤ b

and

(46)

�v(x, 0) � −2
[
A1 + A2k

2
2logk2

] ∫ 1

x

√
(s2 − a2)(s2 − c2)

(s2 − b2)(1 − s2)

×
⎡
⎣1 − C1

s2 − a2

√
1 − a2

c2 − a2
− C2

s2 − c2

⎤
⎦ ds, c ≤ x ≤ 1

Results and Discussions

The effect of wave number on SIF has been shown on the graphs (Figs. 4, 5, 6 and 7) using
different crack lengths. For the description of the inner and outer cracks, the internal crack’s
length is dissimilar (a � 0.2, 0.3, 0.4), and the external crack’s length is constant as like
(b � 0.6, c � 0.8). The cracks’ slope is projected against frequency k2(0.1 ≤ k2 ≤ 1) at
stress intensity factors. It is shown in Figs. 4, 5, 6 and 7. In these figures, initially, the stress
intensity factor increases with frequency and then slowly reducing. The values of SIF are
showing more for low values of inner crack and after. The stress graphs tend to linear when
it gradually increases in the distance between internal cracks.

Furthermore, when we fixed the length of the outer cracks as (a � 0.2, c � 0.8) with the
distance from internal damages, the graph we observed as like same if increases in b value
such as (0.4, 0.5, 0.6) the curvature of the stress intensity factor are also getting a boost. It
means that inner cracks and outer cracks distance being reducing.Whenwe keep non-variable
values of internal cracks like (a � 0.2, b � 0.4), we observed that the exterior cracks increase
because the stress intensity factor’s curvature increases. i.e., the length between the inner crack
and outer crack decreases. The mechanical materials’ properties play a vital role in SIF and
COD. The effect of various parametric (density, shear modulus, Young’s modulus) values
of different SIF and COD materials. To evaluate the SIF, we choose two types of steel and
aluminum (see Table 1). The peak values of the SIF of steel is higher than the aluminum peak
values. We can conclude that the importance of SIF is more for higher density materials.

The peak point of stress intensity factors is increased, but it has reduced against frequencies
and tending to zero after a particular time. This result is very consistent with the physical
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Fig. 4 SIF (Na ) versus frequency k2 with constant outside crack length; (—)Material-1; (-—-)Material-2; a �
0.2, 0.3, 0.4; b � 0.6; c � 0.8

Fig. 5 SIF (Nb) versus frequency k2 with constant outside crack length; (—)Material-1; (-—-)Material-2; a �
0.2, 0.3, 0.4; b � 0.6; c � 0.8

nature of the crack. The displayed configurations (Figs. 4, 5, 6 and 7) conclude that the values
of SIF rely on the geometry of the crack and the applied load spreading. If the applied load is
constant, then the SIF decreases with the growing values of dimensionless frequency, which
means that crack will not propagate further if the applied load does not exceed the load’s
critical value. It has been observed that fracture happens when the stress intensity factor’s
values exceed a particular limit called the critical stress intensity factor.

The COD is displayed for different crack lengths in Fig. 8; it shows that COD’s value
decreases as the value of ’x’ increases. Therefore the COD is highest at the center of the
crack, and it decreases as we move along the damage towards the crack tip and tends to zero
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Fig. 6 SIF (Nc) versus frequency k2 with constant outside crack length; (—)Material-1; (-—-)Material-2; a �
0.2, 0.3, 0.4; b � 0.6; c � 0.8

Fig. 7 SIF (N1) versus frequency k2 with constant outside crack length; (—)Material-1; (-—-)Material-2; a �
0.2, 0.3, 0.4; b � 0.6; c � 0.8

Table 1 Engineering elastic constant

Type Material Material density λ(dyne/cm2) μ(dyne/cm2)

Material-1 Steel 7.7gm/cm3 9.695 × 1011 7.617 × 1011

Material-2 Aluminum 2.7gm/cm3 6.049 × 1011 2.593 × 1011
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Fig. 8 COD vs distance for Material-1; a � 0.2, 0.3, 0.4; b � 0.6; c � 0.8

at the crack’s end (x� a). Initially, COD values are increased after reaching the highest value,
it is reduced and finally growing to zero.

The impact of crack lengths on SIF has been shown on the graphs (Figs. 9a, b and c). In
this part, we have plotted the graphs of SIF against crack lengths. We varied the inner and
outer crack lengths and plotted the graphs of SIF. Keeping the external crack length fixed (c
� 0.8), stress intensity factors at the tip (a, b) of the inner crack have been plotted against
the other crack lengths. It is observed from Fig. 9(a, b) that the stress intensity factors slowly
increase with increasing the values of crack size (c). Also, with the increase in the distance
between the inner crack and outer crack, the peak of stress intensity factors is increased
where the other crack lengths (a � 0.2, b � 0.8) are fixed. It is found that the nature of stress
intensity factors remains the same in all cases.

Comparison

This section has discussed some results of previously published papers and compared our
results to show the correctness and validation. Most of the authors have been solved their
problems by taking two or three coplanar cracks with antiplane shear waves in the orthotropic
medium. We tried to show the expressions of solutions and graphs if we take same type of
problem either in othotropicmediumor shearwaves consideration. The following discussions
are:

The diffraction of Elastic-waves by three coplanar Griffith cracks in an Orthotropic
Medium is addressed by Sarkar et al. [30]. We suggested the diffraction of elastic-waves
by four coplanar Griffith Cracks in an Infinite Elastic Medium in the present problem. The
kernels are (Eq. (20) and Eq. (39) of Sarkar et al. [30] same and all other terms look similar
to the expression of SIF in both the works. For more correctness, we plotted the graphs by
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Fig. 9 SIF vs inner (a a � 0.2, c � 0.8, b b � 0.4, c � 0.8) and outer(c a � 0.2, b � 0.4) crack lengths (—)
Material-1; (-—-) Material-2

taking four cracks in Sarkar’s work. This graph in Fig. 5 is similar to the graphs of Sarkar
et al. [30].

Next, we have to compare our works with Sarkar et al. [28]. Interaction of elastic waves
with two coplanar Griffith cracks in an orthotropic medium is solved by Sarkar et al. [28]. In
both works, the waves’ considerations are the same, but the number of cracks and mediums is
dissimilar. They introduced the orthotropic medium but in this work is an isotropic medium-
based. The relation between the constants of isotropic and orthotropic is C11 �C22 � λ+2μ,
C12 � λ. After conversion of isotropic materials constant to orthotropic materials constant,
the expressions of SIF and COD are coming similar, and the graphs are looking like same.
In both pieces, the figures for SIF increase, and after reaching a certain point, it is decreased.

The four coplanar moving Griffith cracks in an infinite elastic medium is Das and Ghosh
[31]. We considered the diffraction of P-waves by four collinear Griffith cracks in an infinite
elastic medium in the present problem. However, the same problem in the isotropic medium
was solved by Das and Ghosh [31] by applying the integral equation method physically; it
is different from our research work. They considered a static problem, but our problem is
dynamic. Our result is related to Das and Ghosh [31], which agrees with this obtained result.
In isotropic media results for a static case, we consider the displacement equation.

(λ + 2μ)
∂2u

∂x2
+ μ

∂2u

∂y2
+ (λ + μ)

∂2v

∂x∂y
� 0

μ
∂2v

∂x2
+ (λ + 2μ)

∂2v

∂y2
+ (λ + μ)

∂2u

∂x∂y
� 0

where λ, μ is Lame’s constants. Therefore, using the above equations, the stress intensity
factors become the same as Das and Ghosh [31] obtained for static cases. For more validation
of this work, we draw the graph of COD for inner crack tip b. (Fig. 10)

This graph (Fig. 11) is similar to the diagram (Fig. 4) of Das and Ghosh [31].

123



87 Page 16 of 18 Int. J. Appl. Comput. Math (2021) 7 :87

Fig. 10 Stress intensity factor versus frequency

Fig. 11 Variation of crack opening displacement with x/b on the crack of the inner pair

Conclusions

The analytical determination of SIF, COD due to multiple crack propagation and infinite
elastic medium to P-waves incidence ware was carried out in this present study. Hilbert
transformation, Fourier transforms are imposed to reduce the complication of five singular
integral equations, which have been obtained in this work. The Goodwin and Fox method
is employed to get the final numerical solution. The numerical values of the stress intensity
factor and crack opening displacement have been displayed graphically to show the influence
of different parameters on the stress intensity factor and crack opening displacement. In all
cases, the variation of SIF and COD are found to be prominent for other isotropic materials.
The aim of the study of these physical quantities (SIF, COD) is the prediction of possible
arrest of the cracks within a specific range of frequency bymonitoring applied load so that we
can avoid the fracture. If the composites model is considered practically for an experiment,
the crack can obstruct accordingly. This study may continue on an earthquake to reduce the
damages to the earth’s surface buildings. Protection of structures and critical infrastructures
from seismic hazards will be one of the main targets in civil engineering. The proposed work
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will provide sufficient outlay for designing and developing solid mechanics with crack and
improving the seismology area to reduce the earthquake’s damages.
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