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Abstract
In this paper,we propose a nonlinear fractional-ordermodel in order to explain and understand
the outbreaks of foot-and-mouth disease. The proposed model rely on the Caputo operator.
We computed the basic reproduction number and demonstrated that it is an important met-
ric for extinction and persistence of the disease. Utilizing reported foot-and-mouth disease
data for Zimbabwe and the nonlinear least-squares curve fitting method we estimated the
model parameters. Meanwhile, we performed an optimal control study on the use of animal
vaccination and culling of infectious animals as disease control measures against foot-and-
mouth disease. Our findings showed combinations of optimal vaccination and culling rates
that could lead to the effective management of the disease.

Keywords Mathematical modelling · Fractional calculus · Epidemiological models ·
Foot-and-mouth disease · Optimal control theory

Mathematics Subject Classification 92B05 · 93A30 · 93C15

Introduction

Mathematical models have proved to be useful tools for enhancing the understanding of
several phenomena in science and engineering [1–8]. One of the mathematical concept that
has been widely used to study science and engineering phenomena is arguably the concept
of differentiation [9]. Through this concept researchers are able to construct mathematical
formulas called differential equations, which are then used to infer the dynamics of any
chosen phenomena in science and engineering. These differential equations can either be
in integer form or non-integer form (fractional-order derivatives). Recently many scientists
have argued that due to complexities that characterize science and engineering phenomena
non-integer derivatives aremore efficient to capture the dynamics of these events compared to
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integer-order derivatives [9]. One of the main reason being put forward by researchers is that
fractional-order models can effectively account for memory influences which are inherent in
science and engineering phenomena [9–11].

The main goal of this study is to develop and analyze a fractional-order foot-and-mouth
diseasemodel. Foot-and-mouth disease (FMD), a highly contagious livestock disease that can
be transmitted directly and indirectly, remains a major challenge in many sub-Saharan Africa
countries such as Zimbabwe, Botswana and Zambia [12,13]. Owing to its economic conse-
quences understanding the spread and control of foot-and-mouth disease in these countries
has become increasingly important. Since the 2001 FMD outbreak in the United Kingdom
(UK), modeling the transmission dynamics of FMD has been an interesting topic for a num-
ber of scientists [12–21]. Mushayabasa et al. [13] proposed a non-autonomous model to
study the effects of seasonal variations on the dynamics of FMD. Their study demonstrated
that seasonal variations have a strong influence of FMD dynamics. Bravo de Rueda et al.
[16] formulated a dynamical model to quantify the transmission of foot-and-mouth disease
virus (FMDV) caused by an environment contaminated with secretions from infected calves.
Their work revealed that a contaminated environment contributes considerably to the trans-
mission of FMDV, hence they suggested that farmers need to make use of hygiene measures
in order to reduce indirect transmission of the virus. Tessema et al. [18] utilize a delay
ordinary differential equation model to characterize the effects of prophylactic vaccination,
reactive vaccination, prophylactic treatment and reactive culling on the spread of FMD. The
researchers noted that implementing a combination of strategies during an FMD outbreak
can play a crucial role in minimizing the spread of the disease in the community.

The aforementioned studies and those cited therein greatly improved the existing knowl-
edge on FMD transmission and control, however, majority of the existing models were based
on integer differentiation andwebelieve that integer differentials do not satisfactorily describe
memory and hereditary properties which are inherent in FMD dynamics. Therefore, there is
need for researchers to construct a fractional-order model to understand FMD transmission
dynamics. To the best of our knowledge, such a model is still lacking. In this paper, we pro-
pose a novel FMDmodel that makes use of Caputo fractional order derivative. The fractional
derivatives have several different kinds of definitions, among which the Riemann–Liouville
fractional derivative and the Caputo fractional derivative are two of the most important ones
in applications [22]. Since the Caputo operator makes use of local initial condition which
have known physical interpretations, it is preferred over the Riemann–Liouville operator
[23]. Furthermore the Caputo derivative is in case of homogeneous initial values, deemed
equivalent to both the Grünwald–Letnikov definition and Riemann–Liouville [24] hence for
brevity we only consider the application of the Caputo derivative.

This paper is organized as follows: In section “Preliminary Results”, we present basic
definitions of fractional calculus. In section “Model Formulation”, we proposed a novel FMD
model based on the Caputo fractional order derivative. In section “Dynamical Behavior of the
Model”,we studied the dynamical behavior of the proposedmodel. In particular,we computed
the basic reproduction number and anayzed the global stability of the model equilibrium
points. In section “Estimation ofModel ParametersUsingRealData”,we estimated themodel
parameters, utilizing FMD data for Zimbabwe. In section “Optimal Control Problem”, the
extended the proposed model to incorporate optimal control theory. In section “Concluding
Remarks”, we present main conclusions of this work and unravel areas of future research.
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Preliminary Results

We begin with some important definitions from theory of fractional calculus.

Definition 1 (See [25]). Suppose that α > 0, t > a, α, a, t ∈ R. The Caputo fractional
derivative is given by

C
a Dα

t f (t) = 1

�(n − α)

∫ t

a

f n(ξ)

(t − ξ)α+1−n
dξ, n − 1 < α, n ∈ N.

Definition 2 (See [25]). For a function f ∈ L1([t0, T ]) the Riemann–Liouville (RL) integral
of order α > 0 and the origin t0 is defined as:

Jα
t0 f (t) = 1

�(α)

∫ t

t0
(t − τ)α−1 f (τ )dτ, ∀t ∈ (t0, T ], (1)

where L1([t0, T ]) denotes the set of Lebesgue integrable functions on [t0, T ] and �(x) is the
Euler gamma function.

Theorem 1 (See [26]). Let α > 0, n−1 < α < n ∈ N. Suppose that f (t), f ′(t), . . . , f (n−1)

(t) are continuous on [t0,∞) and the exponential order and that C
t0 Dα

t f (t) is piece-wise
continuous on [t0,∞). Then

L{C
t0 Dα

t f (t)} = sαF(s) −
n−1∑
k=0

sα−k−1 f (k)(t0),

where F(s) = L{ f (t)}.
Theorem 2 (See [27]). Let C be the complex plane. For any α > 0 β > 0, and A ∈ C

n×n,
we have

L{tβ−1Eα,β(Atα)} = sα−β(sα − A)−1,

for Rs > ‖A‖ 1
α , where Rs represents the real part of the complex number s, and Eα,β is the

Mittag–Leffler function [28].

Theorem 3 (See [29]). Let x(·) be a continuous and differentiable function with x(t) ∈ R+.
Then, for any time instant t ≥ t0, one has

C
t0 Dα

t

(
x(t) − x∗ − x∗ ln x(t)

x∗

)
≤

(
1 − x∗

x(t)

)
C
t0 Dα

t x(t), x∗ ∈ R
+, ∀α ∈ (0, 1).

Model Formulation

In this section, proposed is a fractional order foot-and-mouth disease model under the Caputo
operator. Themodel system consists of eight state variables, of which seven variables account
for cattle in different epidemiological stages of the disease, and these are susceptible animals
S(t), animals vaccinated with a low efficacy vaccine V (t), animals vaccinated with a highly
effective vaccine U (t), latently infected animals L(t), clinically infected animals I (t), FMD
carriers (asymptomatically infected animals) A(t), and recovered animals R(t). Therefore at
any time t the total population of cattle N (t) in a closed farm is N (t) = S(t)+U (t)+V (t)+
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L(t) + I (t) + A(t) + R(t). Meanwhile, an additional compartment P(t) that represents the
concentrationof theFMDVin the environment is incorporated.Thus, the proposed framework
is summarized by the following system of equations:

c
t0 Dα

t S(t) = �α − (βα
1 I + βα

1 θ A + βα
2 P)S − (vα + μα)S + αα

1 V + αα
2 U ,

c
t0 Dα

t V (t) = σvα S − (1 − ε1)(β
α
1 I + βα

1 θ A + βα
2 P)V − (μα + αα

1 )V ,
c
t0 Dα

t U (t) = (1 − σ)vα S − (1 − ε2)(β
α
1 I + βα

1 θ A + βα
2 P)U − (μα + αα

2 )U ,
c
t0 Dα

t L(t) = (βα
1 I + βα

1 θ A + βα
2 P)(S + (1 − ε1)V + (1 − ε2)U ) − (γ α + μα)L,

c
t0 Dα

t I (t) = γ α L − (cα + φα + μα)I ,
c
t0 Dα

t A(t) = f φα I (t) − (μα + ψα)A(t),
c
t0 Dα

t R(t) = (1 − f )φα I (t) + ψα A(t) − μα R(t),
c
t0 Dα

t P(t) = ηα I + κηα A − δα P.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

The model is formulated under the following assumptions:

(i) All new animals are recruited into the farm at a constant rate � and they are assumed
to be susceptible to infection. Albeit, FMD is a highly contagious disease with severe
economic consequences, disease related mortality is often very low and more often
infected cattle generally clear the systemic infection within 8–15 days [30]. Based on
this assertion, we have ignored disease-relatedmortality rate in the proposed framework.
However, we have assumed that natural mortality rate occurs at a similar and constant
rate μ day−1 in all epidemiological classes. Therefore, it is estimated that the average
lifespan of cattle is equivalent to 1/μ days.

(ii) In the proposed model, it is assumed that there are animals from which live-virus can be
recovered 28 days post infection and defined as FMDcarriers also known as persistently-
infected. Albeit, the role of such animal on FMD dynamics is still a matter of debate,
here we have considered that they are infectious and are also capable of shedding the
virus into the environment. This suggestion is based on the study of Parthiban et al. [30].
Thus, disease transmission is assumed to occur through directmeans between uninfected
animals and infectious (both symptomatic and carriers) at a rate β1. Moreover, clinically
infected animals and carriers are assumed to excrete the virus into the environment at
rates η and κη, respectively. Here, κis a modification factor meant to compare the infec-
tivity and virus excretion between clinically infected and FMD carriers. The pathogen
excreted into the environment is assumed to decay at a rate δ day−1. In addition, it is
assumed that uninfected animals can be infected by the virus in the environment at rate
β2.

(iii) Upon infection, animals progress to the latent/exposed stage where they incubate the
disease for 1/γ days before they start to display clinical signs of the disease. As high-
lighted earlier, infected animals are assumed to clear the systemic infection after 1/φ
days which ranges between 8 and 15 days. Moreso, prior studies have shown that in
ruminants there is always a fraction say f fromwhich live-virus can be recovered 28 days
post infection and this usually ranges between 15 and 50% of the recovered animals.
Furthermore, it has been estimated that it may take approximately 3.5 years for these
animals to completely clear the virus. Therefore, 1/ψ models the average duration an
FMD carriers takes to clear the virus. Animals recovered from the infection are usually
immune unless the host population is very large [31]. Based on this assertion, in this
study we have ignored the reinfection of recovered animals.

(iv) FMD has no cure, however, a couple of preventative and control measures that can be
used to restrict the spread of FMDV exists, and these are vaccination of susceptible
animals, slaughtering of clinically infected animals, movement restrictions as well as
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slaughtering of both susceptible and infected animals-the rational being to reduce ani-
mals density which leads to reduced animal contacts. Here, it is assumed that susceptible
animals are vaccinated at a constant rate v day−1. Furthermore, clinically infected ani-
mals are assumed to be detected and culled at a rate c day−1. Since the proposed model
is considered to be for a farm in resource limited settings, we neglected culling of FMD
carriers since identification of these animals requires expensive tools which we believe
livestock keepers in such settings cannot afford. In addition, we neglected slaughtering
of animals with a view to reduce animal density based on the fact that in resource limited
settings there is lack of infrastructure and resources (human and finances) to carry out
the work as well as finances to compensate farmers who will lose their herds during
such disease control program.

(v) Nevertheless animal vaccination is arguably the best FMDV preventative strategy [32],
it is worth noting that the efficacy of the vaccine depends on a number of factors such
as the vaccine used and the source of procurement. In the proposed model we assumed
that a fraction σ receive an ineffective vaccine and the remainder (1 − σ) a highly
effective vaccine. The efficacy of ineffective and effective vaccines is modeled by ε1
and ε2, respectively, with 0 < ε1 < ε2 < 1. Furthermore, animals vaccinated with an
ineffective and effective lose vaccine induced immunity at rates α1 and α2, respectively.
This assertion is based on the fact that most farmers may not afford the cost of high
quality vaccines.

Figure 1 presents the model flow diagram. In model system (2), recovered animals, R(t),
do not influence the dynamics of the disease, that is, all the otherequations in this model

Fig. 1 Transmission diagram of foot-and-mouth disease
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do not depend on variable R(t), and without loss of generality this second last equation can
be ignored. Hence the dynamics of the disease can be explored from the following reduced
system

c
t0 Dα

t S(t) = �α − (βα
1 I + βα

1 θ A + βα
2 P)S − (v + μα)S + αα

1 V + αα
2 U ,

c
t0 Dα

t V (t) = σvα S − (1 − ε1)(β
α
1 I + βα

1 θ A + βα
2 P)V − (μα + αα

1 )V ,
c
t0 Dα

t U (t) = (1 − σ)vα S − (1 − ε2)(β
α
1 I + βα

1 θ A + βα
2 P)U − (μα + αα

2 )U ,
c
t0 Dα

t L(t) = (βα
1 I + βα

1 θ A + βα
2 P)(S + (1 − ε1)V + (1 − ε2)U ) − (γ α + μα)L,

c
t0 Dα

t I (t) = γ α L − (cα + φα + μα)I ,
c
t0 Dα

t A(t) = f φα I (t) − (μα + ψα)A(t),
c
t0 Dα

t P(t) = ηα I + κηα A − δα P.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

Dynamical Behavior of theModel

This section is devoted on understanding the dynamical behavior of the proposed model (3)
aspects that will be considered are the biological feasibility of model solutions as well as the
local stability of the model steady states.

Biological Feasibility of Model of Solutions

According to Theorem 3.1 and Remark 3.2 of [33], the solution of system (3) is unique for
t > 0. We thus need to show that the solutions to (3) are non-negative for positive initial
conditions.

Theorem 4 Let X (t) = (S(t), V (t), U (t), L(t), I (t), A(t), P(t))T be the unique solution of
system (3) for t ≥ 0. Then the solution X(t) remains in R

7+.

Proof
c
t0 Dq

t S|S=0 = �α + αα
1 v + αα

2 Uμα ≥ 0,
c
t0 Dα

t V |V =0 = σvα S ≥ 0,
c
t0 Dα

t U |U=0 = (1 − σ)vα S ≥ 0,
c
t0 Dα

t L|L=0 = (βα
1 I + βα

1 θ A + βα
2 P)(S + (1 − ε1)V + (1 − ε2)U ) ≥ 0,

c
t0 Dα

t I |I=0 = γ α L ≥ 0,
c
t0 Dα

t A|A=0 = f φα I ≥ 0,
c
t0 Dα

t P|P=0 = ηα I + κηα A ≥ 0.

Thus, one can conclude that the results presented imply that the vector field given by the right
hand side of (3) on each coordinate plane is either tangent to the coordinate plane or points
to the interior of R7+. Hence, the domain R

7+ is a positively invariant region. Moreover, if
the initial conditions of system (3) are non-negative then it follows that the corresponding
solutions of model (3) are non-negative. 
�
Theorem 5 Let X (t) = (S(t), V (t), U (t), L(t), I (t), A(t), P(t))T be the unique of the
model (3) for t ≥ 0. Then, the solution X (t) is bounded above, that is, X (t) ∈ � where �

denotes the feasible region and is given by

� =
{(

S(t), V (t), U (t), L(t), I (t), A(t), P(t)

)
∈ R

7+
∣∣∣0 ≤ Ñ (t) ≤ C, 0 ≤ P(t) ≤ C̃

}
.
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where

Ñ (t) = S(t) + V (t) + U (t) + L(t) + I (t) + A(t),

C = max

{
Ñ (0),

�α

μα

}
and C̃ = max

{
P(0),

(ηα + κηα)C

δα

}
.

Proof For model (3) to be biologically meaningful all model solutions need to be positive.
Hence for biological relevance there is need to demonstrate that all solutions of model system
(3), which have been shown to be positive in Theorem 4 are bounded. Since all solutions of
model system (3) have been shown to be positively invariant (Theorem 4) then it follows that
the possible lower bound for these solutions is zero. Thus, in what followswewill concentrate
on the upper-bound for these solutions. Let Ñ (t) = S(t)+V (t)+U (t)+ L(t)+ I (t)+ A(t).
It follows that

c
t0 Dα

t Ñ (t) = c
t0 Dα

t S(t) +c
t0 Dα

t V (t) +c
t0 Dα

t U (t) +c
t0 Dα

t L(t) +c
t0 Dα

t I (t) +c
t0 Dα

t A(t)

≤ �α − μα Ñ (t).

Taking the Laplace transform leads to

sαL(Ñ (t)) − sα−1 Ñ (0) ≤ �α

s
− μαL(Ñ (t)).

Combining like terms and arranging leads to

L(Ñ (t)) ≤ �α s−1

sα + μα
+ Ñ (0)

sα−1

sα + μα

= �α sα−(1+α)

sα + μα
+ Ñ (0)

sα−1

sα + μα
.

Applying the inverse Laplace transform leads to

Ñ (t) ≤ L−1
{
�α s−1

sα + μα
+ Ñ (0)

sα−1

sα + μα

}
+ L−1

{
Ñ (0)

sα−1

sα + μα

}

≤ �αtα Eα,α+1(−μtα) + Ñ (0)Eα,1(−μtα)

≤ �α

μα
μαtα Eα,α+1(−μtα) + Ñ (0)Eα,1(−μtα)

≤ max

{
�α

μα
, Ñ (0)

}
(μα tα Eα,α+1(−μv tα) + Eα,1(−μtα))

= C

�(1)
= C,

where C = max

{
�α

μα , Ñ (0)

}
. Thus, Ñ (t) is bounded from above. We now proceed the

equation for the pathogen population. Thus from the last equation of system (3) we have

c
t0 Dα

t P(t) = ηα I + κηα A − δα P ≤ (ηα + κηα)C − δα P.

By following the similar approach as before, one can easily deduce that

0 ≤ P ≤ C̃,

where C̃ = max{ (η
α + κηα)C

δα
, P(0)}. Hence, one can conclude that the solution X (t) is

bounded above. 
�
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The Basic Reproduction Number

The basic reproduction number, often denoted,R0 is an integral metric for infectious disease
models. Through it one can determine the power of the infection to invade the community.
Moreover,model parameters (whichmore often represent transition between epidemiological
stages or factors, such as disease control measures) can be determined. This section is devoted
to the computation of R0. However, before we compute R0 there is need to determine the
disease free equilibrium (DFE). TheDFE is a steady state of model system (3) which signifies
the absence of the disease in that community, that is, E = I = A = P = 0. Using direct cal-
culations one can easily deduce that this steady state is equivalent to (S0, V 0, U 0, 0, 0, 0, 0),
where

S0 = �α(μα + αα
1 )(μα + αα

2 )

μα[μα(μα + vα) + αα
1 (μα + (1 − σ)vα + αα

2 ) + αα
2 (μα + σvα)] ,

V 0 = �ασvα(μα + αα
2 )

μα[μα(μα + vα) + αα
1 (μα + (1 − σ)vα + αα

2 ) + αα
2 (μα + σvα)] ,

U 0 = �αvα(1 − σ)(μα + αα
1 )

μα[μα(μα + vα) + αα
1 (μα + (1 − σ)vα + αα

2 ) + αα
2 (μα + σvα)] .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Applying the next-generation method of van den Driessche and Watmough [34] results in

R0 = Rdir
0 + Rind

0

=
(

βα
1 γ α[S0 + (1 − ε1)V 0 + (1 − ε2)U 0]

(γ α + μα)(cα + μα + φα)

)(
1 + f θφα

μα + ψα

)

+
(

βα
2 ηαγ α[S0 + (1 − ε1)V 0 + (1 − ε2)U 0]

δα(γ α + μα)(cα + μα + φα)

)(
1 + f κφα

μα + ψα

)
.

where Rdir
0 and Rind

0 are interpreted as the average number of new infections reproduced
via the direct and indirect routes respectively.

Global Stability of theModel Steady States

In this section, we will utilize Lyapunov functionals to investigate the globally (uniformly)
asymptotically stable of the steady states of model system (3).

Theorem 6 For system (3), whenever R0 ≤ 1, the disease-free equilibrium point is globally
(uniformly) asymptotically stable.

Proof Consider the following Lyapunov functional:

W (t) = a1L(t) + a2 I (t) + a3A(t) + a4P(t),
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where a1, a2, a3 and a4 are positive constants and are defined as follows:

a1 = βα
1 γ α

(γ α + μα)(cα + μα + φα)

(
1 + f θφα

μα + ψα

)

+ βα
2 ηαγ α

δα(γ α + μα)(cα + μα + φα)

(
1 + f κφα

μα + ψα

)
,

a2 = βα
1 γ α

(cα + μα + φα)

(
1 + f θφα

μα + ψα

)

+ βα
2 ηαγ α

δα(γ α + μα)(cα + μα + φα)

(
1 + f κφα

μα + ψα

)
,

a3 = βα
1 θδα + βα

2 κηα

δα(μα + ψα)
,

a4 = βα
2

δα
.

Based on the linearity property of FDEs we have

c
t0 Dα

t W (t) = a1
c
t0 Dα

t L(t) + a2
c
t0 Dα

t I (t) + a3
c
t0 Dα

t A(t) + a4
c
t0 Dα

t P(t)

= a1[(βα
1 I + βα

1 θ A + βα
2 P)(S + (1 − ε1)V + (1 − ε2)U ) − (γ α + μα)L]

+ a2[γ α L − (cα + φα + μα)I ]
+ a3[ f φα I (t) − (μα + ψα)A(t)]
+ a4[ηα I + κηα A − δα P].

Simplifying one gets

c
t0 Dα

t W (t) = [a1(S + (1 − ε)V + (1 − ε)U ) − 1][βα
1 I + βα

1 θ A + βα
2 P],

≤ [a1(S0 + (1 − ε)V 0 + (1 − ε)U 0) − 1][βα
1 I + βα

1 θ A + βα
2 P]

= [R0 − 1][βα
1 I + βα

1 θ A + βα
2 P]. (4)

Hence, ifR0 ≤ 1, we have c
t0 Dα

t W (t) ≤ 0. Furthermore, letQ be the largest invariant subset
of the set

X =
{
(S(t), V (t), U (t), L(t), A(t), I (t)|DαW (t) = 0

}
.

Wenowclaim thatQ = {E0}. In fact,whenR0 < 1, it follows from (4) that X = {(S(t), V (t),
U (t), L(t), A(t), I (t)|S(t) = S0, V (t) = V 0, E(t) = 0, A(t) = 0, I (t) = 0}, which leads
to Q = {E0}. If R0 < 1, and X = {(S(t), V (t), U (t), L(t), A(t), I (t)|S(t) = S0, V (t) =
V 0, U (t) = 0, L(t) = 0, A(t) = 0, I (t) = 0} from the first three equations of system
(3) we have S(t) = S0, V (t) = V 0, and U (t) = U 0. Again, we have Q = {E0}. Noting
that Q is invariant, therefore by the Lasalle’s Invariance Principle [35], the DFE is globally
(uniformly) asymptotically stable whenever R0 ≤ 1. 
�
In what follows, we investigate the global (uniformly) asymptotic stability of the non-trivial
equilibrium of model system (3). We assume that this equilibrium point exists whenever
R0 > 1 and let it be denoted by E∗ = (S∗, U∗, V ∗, L∗, I ∗, A∗, P∗). Note that due to the
complexity of model system (3) we did not compute E∗.

Theorem 7 Assume that R0 > 1, then it follows that the endemic equilibrium of system (3)
is globally asymptotically stable.
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Proof By closely following Theorem 3 we propose the following Lyapunov functional

H(t) =
(

S(t) − S∗ − ln S(t)

)
+

(
V (t) − V ∗ − ln V (t)

)
+

(
U (t) − U∗ − lnU (t)

)

+
(

L(t) − L∗ − ln L(t)

)
+ w1 I ∗

(
I (t) − I ∗ − ln I (t)

)

+w2A∗
(

A(t) − A∗ − ln A(t)

)
+ w3P∗

(
P(t) − P∗ − ln P(t)

)
.

It follows that the fractional derivative of H(t) along the solutions of system (3) leads to

c
t0 Dα

t H(t) ≤
(
1 − S∗

S(t)

)
c
t0 Dα

t S(t) +
(
1 − V ∗

V (t)

)
c
t0 DαV (t) +

(
1 − U∗

U (t)

)
c
t0 Dα

t U (t)

+
(
1 − L∗

L(t)

)
c
t0 Dα

t L(t) + w1

(
1 − I ∗

I (t)

)
c
t0 Dα

t I (t)

+w2

(
1 − A∗

A(t)

)
c
t0 Dα

t A(t)

+w3

(
1 − P∗

P(t)

)
c
t0 Dα

t P(t).

Thus

c
t0 Dα

t H(t) ≤
(
1 − S∗

S(t)

)
(�α − (βα

1 I + βα
1 θ A + βα

2 P)S − (vα + μα)S + αα
1 V + αα

2 U )

+
(
1 − V ∗

V (t)

)
(σvα S − (1 − ε1)(β

α
1 I + βα

1 θ A + βα
2 P)V − (μα + αα

1 )V )

+
(
1 − U∗

U (t)

)
((1 − σ)vα S − (1 − ε2)(β

α
1 I + βα

1 θ A + βα
2 P)U

−(μα+αα
2 )U )+

(
1− L∗

L(t)

)
((βα

1 I +βα
1 θ A+βα

2 P)(S+(1−ε1)V+(1−ε2)U )

−(γ α + μα)L) + w1

(
1 − I ∗

I (t)

)
(γ α L − (cα + φα + μα)I )

+w2

(
1 − A∗

A(t)

)
( f φα I (t) − (μα + ψα)A)

+w3

(
1 − P∗

P(t)

)
(ηα I + κηα A − δα P).

At the endemic equilibrium of model system (3) we have the following identities:

�α = (βα
1 I ∗ + βα

1 θ A∗ + βα
2 P∗)S∗ + (vα + μα)S∗ − αα

1 V ∗ − αα
2 U∗,

σvα S∗ = (1 − ε1)(β
α
1 I ∗ + βα

1 θ A∗ + βα
2 P∗)V ∗ + (μα + αα

1 )V ∗,
(1 − σ)vα S∗ = (1 − ε2)(β

α
1 I ∗ + βα

1 θ A∗ + βα
2 P∗)U∗ + (μα + αα

2 )U∗,
(γ α + μα)L∗ = βα

1 I ∗ + βα
1 θ A∗ + βα

2 P∗)(S∗ + (1 − ε1)V ∗ + (1 − ε2)U∗),
(cα + φα + μα)I ∗ = γ α L∗,
(μα + ψα)A∗ = f φα I ∗,
δα P∗ = ηα I ∗ + κηα A∗.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Moreover, setting:

w1 = g1(I ∗, A∗, P∗)(S∗ + (1 − ε1)V ∗ + (1 − ε2)U∗)
γ L∗ ,

w2 = g1(I ∗, A∗, P∗)(S∗ + (1 − ε1)V ∗ + (1 − ε2)U∗)
f φ I ∗ ,

w3 = g1(I ∗, A∗, P∗)(S∗ + (1 − ε1)V ∗ + (1 − ε2)U∗)
g2(I ∗, A∗)

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

where g1(I , A, P) = βα
1 I +βα

1 θ A+βα
2 P, and g2(I , A) = ηα I +καηA.After some tedious

algebraic simplifications we have

c
t0 Dα

t H(t) ≤
(
2 − S

S∗ − S∗

S

)

︸ ︷︷ ︸
(1)

+αα
1 V ∗

(
2 − SV ∗

S∗V
− S∗V

SV ∗

)

︸ ︷︷ ︸
(1)

+αα
2 U∗

(
2 − SU∗

S∗U
− S∗U

SU∗

)

︸ ︷︷ ︸
(1)

+μαV ∗
(
3 − S∗

S
− V ∗

V
− SV ∗

S∗V

)

︸ ︷︷ ︸
(1)

+μαU∗
(
3 − S∗

S
− U∗

U
− SU∗

S∗U

)

︸ ︷︷ ︸
(1)

+g1(I ∗, A∗, P∗)(S∗ + (1 − ε1)V ∗ + (1 − ε2)U
∗)(

1 − P

P∗ − P∗g2(I , A)

Pg2(I ∗, A∗)
+ g2(I , A)

g2(I ∗, A∗)

)

︸ ︷︷ ︸
(2)

+g1(I ∗, A∗, P∗)S∗
(
4 − S∗

S
− L I ∗

L∗ I
− I A∗

I ∗ A
− A

A∗ − SL∗

S∗L

g1(I , A, P)

g1(I ∗, A∗, P∗)
+ g1(I , A, P)

g1(I ∗, A∗, P∗)

)

︸ ︷︷ ︸
(3)

+g1(I ∗, A∗, P∗)(1 − ε1)V ∗
(
5 − S∗

S
− SV ∗

S∗V
− − L I ∗

L∗ I
− I A∗

I ∗ A
− A

A∗ − V L∗

V ∗L

g1(I , A, P)

g1(I ∗, A∗, P∗)︸ ︷︷ ︸
(3)

+ g1(I , A, P)

g1(I ∗, A∗, P∗)

)

+g1(I ∗, A∗, P∗)(1 − ε2)U
∗

(
5 − S∗

S
− SU∗

S∗U
− − L I ∗

L∗ I
− I A∗

I ∗ A
− A

A∗ − U L∗

U∗L

g1(I , A, P)

g1(I ∗, A∗, P∗)︸ ︷︷ ︸
(3)

+ g1(I , A, P)

g1(I ∗, A∗, P∗)

)
.

For all the terms in the brackets, (1), (2), (3), one can easily verify that whenever S(t) = S∗,
V (t) = V ∗, U (t) = U∗, L(t) = L∗, I (t) = I ∗, A(t) = A∗ and P(t) = P∗, then
c
t0 Dα

t H(t) = 0.Moreover, since the arithmetic mean is greater than or equal to the geometric
mean, once can verify that terms in brackets labeled (1) are less or equal to zero, for example
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S

S∗ + S∗

S
≥ 2

√
S(t)

S∗ · S∗
S

= 2,

and it follows that; (
2 − S

S∗ − S∗

S

)
≤ 0.

Define �(x) = 1− x + ln x , for x > 0. It follows that �(x) ≤ 0, with the equality satisfied
if and only if x = 1. Using this relation we have

1 − P

P∗ − P∗g2(I , A)

Pg2(I ∗, A∗)
+ g2(I , A)

g2(I ∗, A∗)
= �

(
P∗g2(I , A)

Pg2(I ∗, A∗)

)

− ln

(
P∗g2(I , A)

Pg2(I ∗, A∗)

)
− P

P∗ + g2(I , A)

g2(I ∗, A∗)
,

≤ ln

(
P

P∗

)
− P

P∗ − ln

(
g2(I , A)

g2(I ∗, A∗)

)
+ g2(I , A)

g2(I ∗, A∗)
≤ 0.

Furthermore;

4 − S∗

S
− SL∗

S∗L

g1(I , A, P)

g1(I ∗, A∗, P∗)
+ g1(I , A, P)

g1(I ∗, A∗, P∗)
− L I ∗

L∗ I
− I A∗

I ∗ A
− A

A∗

= �

(
S∗

S

)
+ �

(
L I ∗

L∗ I

)
+ �

(
I A∗

I ∗ A

)
+ �

(
SL∗

S∗L

g1(I , A, P)

g1(I ∗, A∗, P∗)

)

+ g1(I , A, P)

g1(I ∗, A∗, P∗)
− A

A∗ − ln

(
A∗g1(I , A, P)

Ag1(I ∗, A∗, P∗)

)

≤ ln

(
A

A∗

)
− A

A∗ + g1(I , A, P)

g1(I ∗, A∗, P∗)
− ln

(
g1(I , A, P)

g1(I ∗, A∗, P∗)

)

≤ 0.

Based on the above analysiswe conclude that, ifR0 > 1we have c
t0 Dα

t H(t) ≤ 0.ByTheorem
5.3.1 in [36], solutions limit toM, the largest invariant subset of {c

t0 Dα
t H(t) = 0}.Therefore,

for all (S(t), E(t), I (t), A(t), P(t)) ≥ 0 provided that S∗, V ∗, U∗, L∗, I ∗, A∗, P∗ are non-
negative, it follows by the Lasalle’s Invariance Principle [35], that the endemic equilibrium
point is globally asymptotically stable whenever R0 > 1. 
�

Estimation of Model Parameters Using Real Data

The main goal of this section is to utilize the least squares method and the Nelder–Mead
algorithm [37] to estimate some of the model parameter. Other model parameters will be
draw from literature. In addition, we will also make use of observed FMD data for Zimbabwe
(January 2011 to June 2011) presented in Table 1. It is worth noting that FMD data for many
endemic countries remains scarce, nevertheless this data set will enable us to estimatedmodel
parameters.

Utilizing FMD data presented in Table 1, we performed a fitting process using the least
squares method and Nelder–Mead algorithm [37]. Estimated parameter values are presented
in Table 2 and others are drawn from literature. The cumulative new monthly infections

123



Int. J. Appl. Comput. Math (2021) 7 :73 Page 13 of 24 73

Table 1 FMD cases observe in
Zimbabwe, January–June, 2011

Month January February March April May June

Cases 356 680 266 128 97 76

predicted by our model, C(t), are given by the solution (6) of the following equation:

c
t0 Dα

t C(t) = ζγ α L(t), (5)

where ζ represents the proportion of reported FMD cases. Thus, the estimation of confirmed
cumulative cases for FMD over a defined time frame tk−1 ≤ t ≤ tk (where t0 and T marks
the beginning and end of the time interval, respectively) from the model output requires to
compute:

Jα
t0 [ζγ α L(t)] f (t) = 1

�(α)

∫ t

t0
(t − τ)α−1[ζγ α L(τ )]dτ, ∀t ∈ (t0, T ]. (6)

The following initial conditions were determined upon fitting the data, S(0) = 10,000,
V (0) = U (0) = L(0) = 0, I (0) = 375, A(0) = 0 and P(0) = 2.0 × 106.

Figure 2 shows the FMD cumulative cases fit for the four different estimated values of
α, that is., α = 0.9335; 0.9340; 0.9345; 0.9350 are in colors red, blue, black and purple,
respectively. It can thus be deduced that the cumulative number of FMD cases are more for
lower values of α implying that cumulative cases are directly proportional to the strength of
memory effects. The root mean square errors for the FMD cumulative fits (RM SEC) are
67.04; 57.92; 54.93; and 58.53, respectively. It can be observed that the least RM SEC
lies between α = 0.9340 and 0.9350. Therefore, based on the proposed model together
with the data utilized, the best fractional order for the proposed model is between α =
0.9340 and 0.9350.

A graphical illustration in Fig. 3 shows the value of the root-mean-square error computa-
tions (RMSEC) concerning the derivative order. The values of the parameters at which these
errors have been obtained are presented in Table 2. FromFig. 3we can note that decreasing the
derivative order α, the error of estimation decreases until α = 0.934455. Thereafter, decreas-
ing the derivative order will increase the error. Hence we can conclude that α = 0.934455
is the appropriate derivative order for this data set. Figure 4 shows the model fit with the
derivative order α set to 0.934455.
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Model fit with  = 0.9335

Observed FMD cases

Model fit with  = 0.9340
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Model fit with  = 0.9350

Fig. 2 Fitting of FMD cumulative cases for the Caputo version of the proposed model (2) with different values
of α. Continuous trend lines represents α = 0.9335; 0.9340; 0.9345; 0.9350 are in colors red, blue, black
and purple, respectively. The observed data is illustrated in circles (color figure online)
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Table 2 Model parameters and their interpretations

Symbol Definition Baseline value Units Source

α Fractional order (or
memory strength)

0.934455 unit-less Fitting

γ Rate of progression
from latent to
infectious

0.25 day−1 [13]

η Environmental
decontamination
rate

3.0 × 105 pathogen animal−1 month−1 Fitting

δ Environmental
pathogen decay rate

0.07 day−1 [19]

β2 Indirect disease
transmission rate

5.5 × 10−10 pathogen−1month−1 Fitting

φ−1 Average infectious
period

7 days [13]

β1 Direct disease
transmission rate

6.15 × 10−5 month−1 Fitting

μ Natural mortality rate 0.001 day−1 [19]

� Recruitment rate 100 Animals day−1 [19]

θ Modification
parameter for the
transmission rate of
carrier cattle

0.1 unit-less Fitting

f Proportion of
infectious which
becomes carrier
cattle

0.45 unit-less [38]

κ Modification
parameter for
environmental
contamination rate
by carriers

0.2 unit-less Fitting

ζ Proportion of FMD
cases reported

0.65 unit-less Fitting

α1, α2 Rate of loss of
vaccine-induced
immunity

0.011, 0.0056 day−1 [13]

σ Proportion of animals
vaccinated with an
infective vaccine

0.5 unit-less [19]

v Constant vaccination
rate

0.006 day−1 [19]

c Constant culling rate
rate

0.001 day−1 [19]
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Fig. 3 The root-mean-square error computations (RMSEC) of the model estimation for different derivative
orders. The minimum error of estimation is obtained for α = 0.934455

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Time (in months)

200

400

600

800

1000

1200

1400

1600

1800

FM
D C

um
ula

tive
 Ca

ses

  Observed FMD Cases

Model fit with  = 0.93445

Fig. 4 A times series plot showing FMD cumulative cases fit for α = 0.934455

Comparative Analysis of the Efficiency of the Classical Model Versus the Caputo
Fractional-Order Model

In order to compare the efficiency of the Caputo derivative and the classical model (the integer
derivative) on prediction of new FMD cases, we estimated new FMD cases using both the
Caputo and the classical model and then computed the root sum squared of the deviations as
follows:

RSS =
√√√√ 6∑

i=1

(Real data − Estimated cases)2. (7)

Table 3 shows some important insights on the predictive powers of the Caputo fractional-
order model in relation to the classical. We can note that the root sum squared for the Caputo
fractional-order model is less than that of the classical order model. This imply that the
Caputo fractional-order model is more accurate compared to the classical order model. To
compute the efficiency rate of the Caputo fractional-order model, we closely follows that
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Table 3 Comparison of the real data with the classical (integer model) and the Caputo fractional-order deriva-
tive model

Real data Predicted cases (classical) Predicted cases (Caputo)

356 356 356

1036 928 1015

1302 1323 1322

1430 1489 1482

1527 1543 1558

1603 1557 1586

RSS 17,958 4795

approach in [39], that is,
(
17958−4795

17958

)
× 100% = 73.6%. Hence, one can conclude that the

efficiency rate of the Caputo fractional-order model is relatively high.

Optimal Control Problem

In this section, we intend to investigate some suitable time dependent strategies to attain
effective disease management.

Fractional Optimal Control of the Foot-and-Mouth Disease Model

In this section, we utilize optimal control theory to determine the impact of vaccination and
culling on controlling the spread of FMD for both epidemic and endemic scenario. Thus, the
vaccination parameter v and culling parameter c, initially modeled as constants in (3) are
now regarded as functions of time and are now known as controls. They are now represented
as functions of time and will be assigned reasonable upper and lower bounds. Precisely, the
control function v(t) measures the rate at which susceptible animals are vaccinated during
each time period and the control c(t)measures the rate at with infectious animals are detected
and destroyed during each time period.

Using the same variable and parameter names as in (3), the system of differential equations
describing our model with controls is

c
t0 Dt S(t) = �α − (βα

1 I + βα
1 θ A + βα

2 P)S − (v(t) + μα)S + αα
1 V + αα

2 U ,
c
t0 Dt V (t) = σv(t)S − (1 − ε1)(β

α
1 I + βα

1 θ A + βα
2 P)V − (μα + αα

1 )V ,
c
t0 DtU (t) = (1 − σ)v(t)S − (1 − ε2)(β

α
1 I + βα

1 θ A + βα
2 P)U − (μα + αα

2 )U ,
c
t0 Dt L(t) = (βα

1 I + βα
1 θ A + βα

2 P)(S + (1 − ε1)V + (1 − ε2)U ) − (γ α + μα)L,
c
t0 Dt I (t) = γ α L − (c(t) + φα + μα)I ,
c
t0 Dt A(t) = f φα I (t) − (μα + ψα)A(t),
c
t0 Dt P(t) = ηα I + κηα A − δα P.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

The control set is defined as

�c =
{
(v(t), c(t))

∣∣∣ 0 ≤ v(t) ≤ vmax, 0 ≤ c(t) ≤ cmax

}
.

In developing response plans to control the spread of FMD in the community, animal man-
agers seek optimal responses that can minimize the numbers of infectious infectious animals
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over a finite time interval [0, T ], while also minimizing the efforts of vaccination and culling.
Thus, cost functional in this study is defined by

J

(
v(t), c(t)

)
=

∫ T

0

(
I (t) + A1

2
v2(t) + A2

2
c2(t)

)
dt . (9)

As we observe, in (9) the control efforts are assumed to be nonlinear-quadratic, since a
quadratic structure in the control has mathematical advantages such as: if the control set is
a compact and convex it follows that the Hamiltonian attains its minimum over the control
set at a unique point. Furthermore the coefficients Ai (i = 1, 2) are weight constants. The
weights being constant over the prescribed time frame, are a measure of the relative costs of
the interventions over a finite time horizon. The optimal control problem hence becomes that
we seek optimal functions, (v∗(t), c∗(t)), such that

J (v∗(t), c∗(t)) = min
�

J (v(t), c(t)) (10)

subject to the state equations in system (8)with initial conditions.Byutilizing thePontryagin’s
Maximum Principle [40] we have the following Hamiltonian

H(t) = I (t) + A1

2
v2(t) + A2

2
c2(t)

+λS[�α − (βα
1 I + βα

1 θ A + βα
2 P)S − (v(t) + μα)S + αα

1 V + αα
2 U ]

+λV [σv(t)S − (1 − ε1)(β
α
1 I + βα

1 θ A + βα
2 P)V − (μα + αα

1 )V ]
+λU [(1 − σ)v(t)S − (1 − ε2)(β

α
1 I + βα

1 θ A + βα
2 P)U − (μα + αα

2 )U ]
+λL [(βα

1 I + βα
1 θ A + βα

2 P)(S + (1 − ε1)V + (1 − ε2)U ) − (γ α + μα)L]
+λI [γ α L − (c(t) + φα + μα)Iγ E − (μα + c(t) + φα)I ] + λA[ f φα I (t)
−(μα + ψα)A(t)] + λP [ηα I + κηα A − δα P],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where λS , λV , λU , λL , λI , λA, and λP , represent the adjoint functions associated with the
sates S, V , U , L , I , A and P , respectively.

In addition, one can demonstrate that given an optimal control pair (v∗, c∗) and solutions
(S, V , U , L, I , A, P), of the corresponding states system (8) there exist adjoint functions
λS(t), λV (t), λU (t), λL(t), λI (t), λA(t) and λP (t) satisfying

c
t0 Dq

t λS(T − t) = (μα + v(t))λS(T − t) + (βα
1 I (T − t) + βα

1 θ A(T − t)
+βα

2 P(T − t))(λS(T − t) − λL(T − t))
−σv(T − t)λV (T − t) − (1 − σ)v(T − t)λU (T − t),

c
t0 Dq

t λV (T − t) = −αα
1 λS + (μα + αα

1 )λV + (1 − ε1)(β
α
1 I + βα

1 θ A + βα
2 P)(λV − λL),

c
t0 Dq

t λU (T − t) = −αα
2 λS(T − t) + (μα + αα

2 )λU (T − t) + (1 − ε2)(β
α
1 I (T − t)

+βα
1 θ A(T − t) + βα

2 P(T − t))(λU (T − t) − λL(T − t)),
c
t0 Dq

t λL(T − t) = (γ α + μα)λL (T − t) − γ αλI (T − t),
c
t0 Dq

t λI (T − t) = −1 + βα
1 S(T − t)(λS(T − t) − λL(T − t))

+βα
1 V (T − t)(1 − ε1)(λV (T − t) − λL(T − t))

+βα
1 U (T − t)(1 − ε2)(λU − λL)

+(μα + c(t) + φα)λI (T − t) − ηαλP (T − t),
c
t0 Dq

t λA(T − t) = βα
1 S(T − t)(λS(T − t) − λL(T − t))

+βα
1 V (T − t)(1 − ε1)(λV (T − t) − λL(T − t))

+βα
1 U (T − t)(1 − ε2)(λU (T − t) − λL(T − t)) + (c(T − t)

+μα + ψα)λA(T − t) − κηλP (T − t),
c
t0 Dq

t λP (T − t) = βα
2 S(T − t)(λS(T − t) − λL(T − t))

+βα
2 V (T − t)(1 − ε1)(λV (T − t) − λL(T − t))

+βα
2 U (T − t)(1 − ε2)(λU (T − t) − λL(T − t)) + δαλP (T − t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Fig. 5 Optimal control results demonstrating the impact of Strategy A (optimal vaccination alone) on mini-
mizing the spread of the disease in the community. We set α = 0.934455, 0 ≤ v(t) ≤ 0.09

with transversality conditions λ j (T ) = 0 for j = S, V , U , L, I , A, P . Furthermore, the
optimal controls are characterized by the optimality conditions:

v(t) = min

{
vmax,max

(
S(λS − σλV − (1 − σ)λU )

A1
, 0

)}
,

c(t) = min

{
cmax,max

(
λI I

A2
, 0

)}
.

Numerical Results and Discussion

In this section, we present some numerical results to explore the role of time depen-
dent intervention strategies on minimizing the spread of FMD. An optimization algorithm,
forward-backward sweep method [41,42] has been developed using the Runge–Kutta fourth-
order scheme to characterize the numerical solutions of the fractional optimal control problem
(FOCP). For detailed information on steps carried out to numerically solve the FOCP,we refer
the reader to [43]. Initial population considered are as follows S(0) = 10,000, V (0) = 0,
U (0) = 0, L(0) = 300, I (0) = 356, A(0) = 0, and P(0) = 2.0 × 106. Model parameters
used are in Table 2, and additional model parameters not in Table 2 are in Table 4.

Prior studies have opined that more often the cost of vaccination is usually higher than that
of culling of symptomatic animals [44], hence in our simulations we set A1 ≥ A2. Precisely,
we set A1 = 102 and 10 respectively. Moreover, the simulations presented are based on:
Strategy A (Time dependent vaccination alone, that is, there is no animal culling at all) and
Strategy B (combination of vaccination and culling). Strategy A has been proposed based
on the fact that prior studies have argued that animal culling is not a preferred intervention
strategy in many countries where animal infections are endemic [45], since farmers may not
receive compensation as most of these nations are developing countries.

Aswe can observe, the number of exposed, infectious and carriers decrease in the presence
of time dependent intervention strategy than in the absence of the same. In particular, we have
noted that in the presence of time dependent vaccination alone approximately 3 253 infections
will be recorded compared to 4636when there is no time dependent vaccination, over a period
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Table 4 Effects of α on cumulative infections and costs

α Cumulative
infections
observed with-
out optimal
control

Cumulative
infections
observed with
optimal con-
trol

Cumulative infections
averted

Total cost J

0.8 8.9542 × 104 2.5240 × 104 6.4301 × 104 2.00940 × 103

0.9 7.7607 × 103 2.1216 × 103 5.6391 × 103 2.0436 × 103

1.0 8.76215 × 102 2.6558 × 102 6.10 × 102 2.5609 × 103

of 200 days. Thus, the time dependent vaccination has likelihood of averting approximately
1383 infections, over a period of 200 days and the associated cost is approximately J =
$7106.60.

With combined controls (Fig. 6), we can note that the population of exposed, infectious
and carriers decrease significantly for both time dependent and non-dependent controls. As
we can observe, with optimal vaccination and culling the numbers of exposed, infectious
and carriers will be reduced to levels close to zero, suggesting that combined time dependent
vaccination and cullinghas the potential to eradicate the diseasewhenever there is anoutbreak.
Furthermore, we have also observed that, over a 200 day period, 3595 infections will be
recorded in the absence of time dependent controls and approximately 974 infections in the
presence of optimal vaccination and culling, suggesting that combined optimal control may
avert approximately 2621 infections. The associated cost in this case will be approximately
J = 2146.90. In addition, in Fig. 6d we can observe that with combined controls, the control
profile for v(t) stays at its maximum for a relatively short period (approximately 50 days),
before it gradually drops to its minimum, than under strategy A. From these results we can
conclude that with combined controls, optimal vaccination may need to be maintained at
its maximum intensity for approximately 50 days, thereafter the intensity can be reduced
gradually and after 150 days it may be ceased. However, optimal culling may need to be
maintained at maximum intensity for approximately 180 days and can be gradually reduced
thereafter, until the final time horizon.

Simulation results in Fig. 7 show that the memory property of fractional derivatives,
the order of α has an effect on the estimated number of infections and the associated cost.
For α = 0.8, we can note that both the vaccination and the culling controls may need
to be maintained at their maximum intensity for effective disease management. Detailed
information on the impact of α on the spread and control of FMD is presented in Table 4.

We can observe from Table 4, that cumulative infections with and without combined
optimal controls decreases as α → 1. This can be attributed to the fact that when the
derivative order α is reduced from 1, the memory effect of the system increases, and therefore
the infections grows slowly, as we can observe from all illustrations in Fig. 7, for α = 0.8,
the population levels for all the subgroups will not converge to the disease-free equilibrium.
However, for α = 0.9 and 1.0, all the population levels will converge to the disease-free
equilibrium, over a 200 day time horizon.
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Fig. 6 Optimal control results demonstrating the impact of Strategy B (optimal vaccination and culling)
on minimizing the spread of the disease in the community. We set α = 0.934455, 0 ≤ v(t) ≤ 0.09 and
0 ≤ c(t) ≤ 0.1

Fig. 7 Optimal control solutions showing the effects of α on the dynamics of the disease under strategy B.
Note that the trend lines presented here, represents the dynamics of the disease in the presence of optimal
control, there are no trend lines without optimal control. We set 0 ≤ v(t) ≤ 0.09 and 0 ≤ c(t) ≤ 0.1
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Concluding Remarks

In this paper, we have proposed and analyzed a fractional-order foot-and-mouth disease
(FMD) model. The proposed mathematical modeling framework incorporates relevant
biological and ecological factors, vaccination effects, vaccine failure, direct and indirect
transmission of the disease. In addition, the framework incorporates virus shedding by FMD
carriers. The motivation to consider a fractional order is based on the fact that fractional order
systems possess memory which is one of the main features of epidemiological infections.
Model parameters of the proposed framework were estimated using the FMD data for Zim-
babwe, January–June 2011. Moreover, we extended the basic framework to understand the
implications of optimal vaccination and culling.

Our analytical results show that the disease-free equilibrium of the proposed model is
globally asymptotically stable whenever the reproduction number is less than unity. However,
when the basic reproduction number is greater than unity the model admits an endemic
equilibrium which is also globally asymptotically stable. Making use of FMD dataset for
Zimbabwe (January 2011–June 2011) and the least squares method we estimated some of
themodel parameters while somewere drawn from literature. On fitting themodel to data, we
observed that a value of α = 0.934455 gives a better fit. Further, we perform a comparative
analysis on the efficiency of the Caputo fractional-order model and the classical (integer-
order) model, to estimate new FMD cases. We noted that the Caputo fractional-order model
is 73.6% accurate compared to the classical model. Although, fractional-order models are
known to bemore accurate than classical ones, it is worth noting that the efficiency rate varies
based on the size of the dataset and uncertainties in model parameters.

Meanwhile, we performed an optimal control study on the use of animal vaccination and
culling of infectious animals as disease control measures against foot-and-mouth disease.
We proposed two control strategies, Strategy A and B, which we believe are feasible for
developing countries where the disease is endemic. Strategy A involves optimal vaccination
alone and Strategy B is based on combining animal vaccination and culling of clinically
infected animals. As one can observe, strategy A excludes culling of clinically animals,
thus this strategy was proposed based on the fact that prior studies have argued that animal
culling is not a preferred intervention strategy in many countries where animal infections
are endemic [45], since farmers may not receive compensation as most of these nations
are developing countries. Under strategy B, optimal vaccination is combined with optimal
culling of infectious animals. It is also worth noting that culling of uninfected animals has
also not been included in the proposed model since prior studies have also argued that this
strategy is not preferred by farmers in developing nations. Our optimal control simulations
considered a 200-day time period. Simulation results for strategy A showed that in the
presence of optimal vaccination the cumulative number of infections decreases but the disease
may not be eradicated. However, when optimal vaccination is combinedwith optimal culling,
we observed that the disease may be eradicated after approximately 150-days. Further, we
explored the effects of the memory property of fractional derivatives, the order of α on the
cumulative infections and the associated cost. We noted that for α < 1, the cumulative
infections will be high and as α → 1 they will decrease. In particular, we have noted that
for α = 0.8, combined optimal vaccination and culling may lead to effective management of
the disease if both controls are maintained at their maximum intensities for a relatively long
duration compared to α = 0.9. Moreover, we also observed that for α = 0.8, the disease
may not be eradicate during a 200 day period.
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Last but not least, our model can be enhanced to capture other important features such as
seasonal effects and animal movements. Furthermore, some of the numerical computations
were performed using the Runge–Kutta method of fourth order. However, other efficient
methods like the homotopy perturbation technique [3], the optimal variation iteration method
[47], the computational economical methods such as the one proposed in [46] andmanymore
other reliable methods such as the one suggested by [4], may also be applied to the presented
optimal control problem to possibly get better results.
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