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Abstract
In this paper, we consider Lane–Emden problems which have many applications in sciences.
Mainly we focus on two special cases of Lane–Emden boundary value problems which
models reaction–diffusion equations in a spherical catalyst and spherical biocatalyst. Here
we propose a method to obtain approximate solution of these models. The main reason for
using this technique is high accuracy and low computational cost compared to some other
methods.Numerical results are shownusing tables andfigures.Accuracy of the computational
method is shown by comparing numerical results by analytical methods.

Keywords Lane–Emden boundary value problem · Spherical catalyst · Spherical
biocatalyst · Legendre scaling functions · Collocation method

Introduction

Lane–Emden type equation is a problem which has a singularity at the origin. In the neigh-
bourhood of the singular point t � 0, the analytical solutions of this type of equation re
always possible [1]. The Lane–Emden type equation is given as follows [2–6]:

x ′′(t) +
θ

t
x ′(t) + g(x(t)) � 0, 0 ≤ t ≤ 1, θ > 0. (1)

with

x ′(0) � a1 and x(1) � a2. (2)

where x(t) denote the unknown function on [0, 1] and x ′(0) denote the derivative of x(t) at
time t � 0. a1 and a2 are constants.

Harendra Singh and Abdul-Majid Wazwaz have contributed equally to this work.

B Harendra Singh
harendra059@gmail.com

Abdul-Majid Wazwaz
wazwaz@sxu.edu

1 Department of Mathematics, Post Graduate College Ghazipur, Ghazipur, U. P. 233001, India

2 Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40819-021-00993-9&domain=pdf


65 Page 2 of 11 Int. J. Appl. Comput. Math (2021) 7 :65

This equation describes many phenomena of chemistry, physics and astrophysics [7, 8].
This equation also shows variation of concentration or temperature inmany field of chemistry,
physics, bio-mathematics [9–11].

Spherical Catalyst Equation

In a spherical catalyst the chemical species dimensionless concentration is modelled by
Lane–Emden boundary value problem and is given as [12, 13]:

x ′′(t) +
2

t
x ′(t) − ρ2x(t) exp

(
αμ(1 − x(t))

1 + μ(1 − x(t))

)
� 0, (3)

with

x ′(0) � 0 and x(1) � 1. (4)

In above equation, x denote the concentration, t denote the dimensionless distance, μ

denote the dimensionless activation energy, α denote the dimensionless heat of reaction and
ρ denote the Thiele modulus [12, 13].

The following are the dimensionless parameters and variables,

t � r

R
, x � CA

CAs
, α � E

RgTs
, μ � −(�H)DCAs

KTs
, ρ2 � Kref R2

D
.

The concentration of reactant A is denoted by CA and CAs inside and on the surface
of pellet respectively, effective diffusivity is denoted by D, E and �H represent activation
energy and the heat of reaction respectively, Kref represent the reaction constant, K represent
the effective thermal conductivity, r represent the radial distance, R represent the radius of
the catalytic pellet, Rg represent the universal gas constant and Ts represent the temperature
at the surface.

The spherical pellet effectiveness factor τ is given as

τ � 3

ρ2

dx

dt

∣∣∣∣
t�1

.

Spherical Biocatalyst Equation

In a spherical biocatalyst the chemical species dimensionless concentration is modelled by
Lane–Emden boundary value problem and is given as [14]:

x ′′(t) +
2

t
x ′(t) − ρ2 (1 + μ)x(t)

1 + μx(t)
� 0, (5)

with boundary conditions

x ′(0) � 0,

x(1) � 1.
(6)

The dimensionless parameters and variables are,

t � r

R
, x � CA

CAs
, μ � CAs

Km
, ρ2 � − rAS R2

DDAS
.

In this paper, we first consider a spherical catalytic pellet having a single reaction non-
isothermally in it. In a spherical catalyst the chemical species concentration is modelled
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by the Lane–Emden equation. We also study a spherical biocatalyst pellet having a single
reaction non-isothermally in it.

The solutions for the spherical catalyst and spherical biocatalyst models can be obtained
using many methods. In [15], authors solved these models using analytical method. Danish
et al. [16], used OHAM to solve these models analytically. The author in [12] used the varia-
tional iterationmethod to find the analytical solutions of these spherical catalyst and spherical
biocatalyst models. Recently, Singh in [17], proposed the OHAM to solve analytically these
models. In [18], a numerical treatment using third order approximation was used to solve
these models. Saadatmandi et al. [14], solved these models numerically. In present paper, we
suggest an algorithm with the use of Legendre scaling functions (LSFs) and the collocation
method to solve these models. In this method, first unknown function is approximated using
finite dimensional approximations. By use of this approximations the spherical catalyst and
spherical biocatalyst models are converted into a system of algebraic equations. By collo-
cating these equations we obtain the approximate solution of these models. This method
has many applications in differential equations [19–31]. Numerical results are demonstrated
using figures and tables. Results are also compared with some recently developed analytical
method.

Preliminaries and operational matrix

Here we describe some basic definitions. The LSFs. in one dimension are defined by

εk(t) �
{√

2k + 1Sk(2t − 1), for 0 ≤ t < 1,
0, otherwise.

(7)

where Sk(t) is Legendre polynomials of order k on the interval [−1, 1], and given by;

Sk(t) �
i∑

k�0

(−1)i+k
(i + k)!

(i − k)! (k!)2
tk . (8)

The collections {εk(t)} form an orthonormal basis for L2[0, 1]. The kth degree LSF is
given by

εk(t) � (2k + 1)
1
2

i∑
k�0

(−1)i+k
(i + k)!

(i − k)! (k!)2
tk . (9)

A function f ∈ L2[0, 1], with bounded second derivatives can be approximated as,

f (t) � lim
n→∞

n∑
k�0

ckεk(t), (10)

where ck � 〈 f (t), εk(t).〉
Equation (10), for finite dimension is written as,

f ∼�
m∑

k�0

ckεk(t) � CTΠm(t), (11)

where C and Πm(t) are (m + 1) × 1 vectors and given by

C � [c0, c1, . . . , cm]
T and Πm(t) � [ε0, ε1, . . . , εm]

T . (12)
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Theorem 1 Let Πm(t) � [ε0, ε1, . . . , εm]T , and consider q be a positive integer then

I qεi (t) � I (q)Πm(t), (13)

where I (q) � (u(i, j)),is (m + 1) × (m + 1)matrix of integral operator whose entries are
given by

u(i, j) � (2i + 1)
1/2(2 j + 1)

1/2
i∑

k�0

j∑
l�0

(−1)i+ j+k+l
(i + k)! ( j + l)!

(i − k)! ( j − l)! (k)! (l!)2(q + k + l + 1)(q + k)!
.

(14)

Proof Pl. see [19, 24].

Outline of Method

Here, we will derive method for the solution of fractional reaction–diffusion equations in a
spherical catalyst and spherical biocatalyst. First, we consider the initial value problem with
an undetermined constant in the determination of boundary value problem. i.e.

x ′′(t) +
2

t
x ′(t) − ρ2x(t) exp

(
αμ(1 − x(t))

1 + μ(1 − x(t))

)
� 0, (15)

x ′′(t) +
2

t
x ′(t) − ρ2 (1 + μ)x(t)

1 + μx(t)
� 0, (16)

with initial and boundary conditions

x(0) � β, x ′(0) � 0 and x(1) � 1, (17)

where x(0) � β, represents an undetermined constant.
Taking the following approximation:

x ′′(t) � CTΠn(t). (18)

Integrating Eq. (18), we obtain

x ′(t) � CT I (1)Πn(t) + ATΠn(t), (19)

where I (1), is an operational matrix of integration of order 1.
Integrating Eq. (19), we obtain

x(t) � CT I (2)Πn(t) + AT I (1)Πn(t) + BTΠn(t), (20)

where

x ′(0) � ATΠn(t) and x(0) � BTΠn(t). (21)

Further, taking

1 � DTΠn(t). (22)
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Mathematical Model of Spherical Catalyst Equation

Grouping Eqs. (15), (17)–(22), we get

(23)

CT Πn (t) +
2

t

(
CT I (1) + AT

)
Πn (t)

−ρ2
(
CT I (2) + AT I (1) + BT

)
Πn (t) exp

(
αμ

(
DT − (

CT I (2) + AT I (1) + BT
))

Πn (t)(
DT + μ

(
DT − (

CT I (2) + AT I (1) + BT
)))

Πn (t)

)
� 0.

The residual for Eq. (23), is given as

Rn (t) � CTΠn (t) +
2

t

(
CT I (1) + AT

)
Πn (t)

− ρ2
(
CT I (2) + AT I (1) + BT

)
Πn (t) exp

(
αμ

(
DT − (

CT I (2) + AT I (1) + BT
))

Πn (t)(
DT + μ

(
DT − (

CT I (2) + AT I (1) + BT
)))

Πn (t)

)
.

(24)

Since the residual has n + 1, unknowns therefore collocating Eq. (24), at n points given
by ti � i

n , i � 1, 2, . . . , n.

(25)

Rn (ti ) � CT Πn (ti ) +
2

ti

(
CT I (1) + AT

)
Πn (ti )

− ρ2
(
CT I (2) + AT I (1) + BT

)
Πn (ti ) exp

(
αμ

(
DT − (

CT I (2) + AT I (1) + BT
))

Πn (ti )(
DT + μ

(
DT − (

CT I (2) + AT I (1) + BT
)))

Πn (ti )

)
.

Further, using approximation in boundary condition(
CT I (2) + AT I (1) + BT

)
Πn(1) � 1. (26)

From Eqs. (25) and (26), we get a system of n + 1 equations whose solution gives the
unknowns in the approximations. Using this in the Eq. (20), we get solution for spherical
catalyst model.

Mathematical Model of Spherical Biocatalyst Equation

Grouping Eqs. (16), (17)–(22), we get

CTΠn(t) +
2

t

(
CT I (1) + AT

)
Πn(t) − ρ2 (1 + μ)

(
CT I (2) + AT I (1) + BT

)
Πn(t)(

DT + μ
(
CT I (2) + AT I (1) + BT

))
Πn(t)

� 0.

(27)

The residual for Eq. (27), is given as

Rn(t) � CTΠn(t) +
2

t

(
CT I (1) + AT

)
Πn(t) − ρ2 (1 + μ)

(
CT I (2) + AT I (1) + BT

)
Πn(t)(

DT + μ
(
CT I (2) + AT I (1) + BT

))
Πn(t)

.

(28)

Since the residual has n + 1, unknowns therefore collocating Eq. (28), at n points given
by ti � i

n , i � 1, 2, . . . , n.

Rn(ti ) � CTΠn(ti ) +
2

ti

(
CT I (1) + AT

)
Πn(ti ) − ρ2 (1 + μ)

(
CT I (2) + AT I (1) + BT

)
Πn(ti )(

DT + μ
(
CT I (2) + AT I (1) + BT

))
Πn(ti )

. (29)

Further, using approximation in boundary condition(
CT I (2) + AT I (1) + BT

)
Πn(1) � 1. (30)
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Fig. 1 Effect of dimensionless heat of reaction on the concentration x(t ;α, μ, ρ) at different choices of alpha
(α)

From Eqs. (29) and (30), we get a system of n + 1 equations whose solution gives the
unknowns in the approximations. Using this in the Eq. (20), we get solution for spherical
biocatalyst model.

Numerical Simulation and Discussion

Here, we show the numerical simulation for our proposedmethod.We compare our numerical
results with some analytical techniques in literature. The concentration depends on the μ, α
and ρ. Here, we show how the concentration x(t) is effected by these parameters.

Numerical Simulation for Spherical Catalyst Model

We show the numerical simulation results for spherical catalyst model by varying its parame-
ters. In Fig. 1, we have shown the effect of dimensionless heat of reaction by varying α on the
concentration x(t ;α,μ, ρ) by fixing the value of dimensionless activation energy (μ � 1)
and Thiele modulus (ρ � 1).

FromFig. 1, it is clear that concentration varies continuouslywith increasing ofα. In Fig. 2,
we have shown the effect of Thiele modulus by varying ρ on the concentration x(t ;α,μ, ρ)
by fixing the value μ � 1 and α � 1. From Fig. 2, we can see that concentration varies
constantly with increasing of ρ.
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Fig. 2 Effect of Thiele modulus on the concentration x(t ;α,μ, ρ) at different choices of rho (ρ)

Table 1 Comparison of numerical results for different values of dimensionless heat of reaction (α)

t Used
technique
(α � 0.5)

Technique in
[17]
(α � 0.5)

Used
technique
(α � 1)

Technique in
[17](α � 1)

Used
technique
(α � 1.5)

Technique in
[17]
(α � 1.5)

0.0 0.8442594 0.8442594 0.8367615 0.8367615 0.8282279 0.8282279

0.1 0.8457656 0.8457651 0.8383651 0.8383666 0.8299455 0.8299479

0.2 0.8502895 0.8502888 0.8431844 0.8431860 0.8351059 0.8351091

0.3 0.8578510 0.8578503 0.8512303 0.8512320 0.8437109 0.8437143

0.4 0.8684827 0.8684820 0.8625224 0.8625242 0.8557637 0.8557671

0.5 0.8822295 0.8822289 0.8770865 0.8770882 0.8712661 0.8712694

0.6 0.8991479 0.8991473 0.8949523 0.8949537 0.8902154 0.8902182

0.7 0.9193047 0.9193043 0.9161509 0.9161520 0.9125997 0.9126020

0.8 0.9427761 0.9427758 0.9407117 0.9407124 0.9383935 0.9383950

0.9 0.9696453 0.9696451 0.9686576 0.9686579 0.9675510 0.9675518

1.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

In Table 1, results are compared for different values of α by fixing the value of dimen-
sionless activation energy (μ � 1) and Thiele modulus (ρ � 1).

In Table 2, results are compared for different values of ρ by fixing the value μ � 1 and
α � 1.

From Tables 1 and 2, we observe that our results are accurate and have good agreement
with method in [17]. In Table 3, we have listed, the value of effectiveness factor for different
values of parameters.

From Table 3, it is clear that effectiveness factor is increasing with the increase of dimen-
sionless heat of reaction α and it decrease with the increase of Thiele modulus (ρ).

In Table 4, results are compared with variational iteration method [12].
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Table 2 Comparison of numerical results for different values of Thiele modulus (ρ)

t Used
technique
(ρ � 0.5)

Technique in
[17]
(ρ � 0.5)

Used
technique
(ρ � 1)

Technique in
[17](ρ � 1)

Used
technique
(ρ � 1.5)

Technique in
[17]
(ρ � 1.5)

0.0 0.9583911 0.9583911 0.8367785 0.8367785 0.6575456 0.6575456

0.1 0.9588068 0.9588068 0.8383702 0.8383832 0.6606348 0.6607732

0.2 0.9600537 0.9600537 0.8431862 0.8432014 0.6701998 0.6703284

0.3 0.9621321 0.9621321 0.8512314 0.8512456 0.6864292 0.6864317

0.4 0.9650424 0.9650424 0.8625229 0.8625355 0.7090615 0.7092056

0.5 0.9687850 0.9687850 0.8770871 0.8770971 0.7387347 0.7388698

0.6 0.9733604 0.9733604 0.8949525 0.8949603 0.7755713 0.7756891

0.7 0.9787692 0.9787692 0.9161509 0.9161564 0.8198630 0.8199543

0.8 0.9850118 0.9850118 0.9407119 0.9407150 0.8718951 0.8719526

0.9 0.9920887 0.9920887 0.9686573 0.9686591 0.9318945 0.9319237

1.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

Table 3 Comparison of
effectiveness factor for different
values of parameters

β α ρ μ Effectiveness
factor present
method

Effectiveness
factor method in
[17]

0.8442594 0.5 1 1 0.963812 0.963818

0.8367615 1.0 1 1 0.991217 0.991210

0.8282279 1.5 1 1 1.02187 1.02184

0.9583911 1 0.5 1 0.999411 0.999413

0.8367785 1 1.0 1 0.991296 0.991167

0.6575456 1 1.5 1 0.962358 0.961743

Table 4 Comparison of numerical
results at α � 1, μ � 1 and for
different values of Thiele
modulus (ρ)

t Used
technique
(ρ � 0.5)

Technique in
[12]
(ρ � 0.5)

Used
technique
(ρ � 1.5)

Technique in
[12]
(ρ � 1.5)

0.0 0.9554170 0.9554170 0.6471921 0.6471921

0.1 0.9569721 0.9558604 0.6543974 0.6503923

0.2 0.9591596 0.9571910 0.6672786 0.6600325

0.3 0.9616089 0.9594096 0.6846433 0.6762321

0.4 0.9647015 0.9625176 0.7080187 0.6991897

0.5 0.9685565 0.9665172 0.7380499 0.7291836

0.6 0.9732026 0.9714109 0.7751042 0.7665715

0.7 0.9786649 0.9772020 0.8195569 0.8117906

0.8 0.9849475 0.9838942 0.8717037 0.8653577

0.9 0.9920524 0.9914918 0.9317848 0.9278689

1.0 1.0000000 1.0000000 1.0000000 1.0000000
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Fig. 3 Effect of Thiele modulus on the concentration x(t ;μ, ρ) at different choices of rho (ρ)

Table 5 Comparison of numerical results for different values of Thiele modulus (ρ)

t Used
technique
(ρ � 1)

Technique in
[17](ρ � 1)

Used
technique
(ρ � 1.5)

Technique in
[17]
(ρ � 1.5)

Used
technique
(ρ � 2)

Technique in
[17](ρ � 2)

0.0 0.8401441 0.8401441 0.6614868 0.6614868 0.4564643 0.4564643

0.1 0.8417115 0.8417117 0.6646777 0.6646917 0.4608336 0.4612215

0.2 0.8464182 0.8464184 0.6743143 0.6743302 0.4751546 0.4755901

0.3 0.8542757 0.8542759 0.6904600 0.6904739 0.4994820 0.4998553

0.4 0.8653033 0.8653035 0.7132276 0.7132390 0.5341764 0.5344752

0.5 0.8795277 0.8795279 0.7427755 0.7427837 0.5798510 0.5800566

0.6 0.8969826 0.8969828 0.7792974 0.7793031 0.6371888 0.6373242

0.7 0.9177083 0.9177084 0.8230199 0.8230235 0.7070042 0.7070867

0.8 0.9417511 0.9417512 0.8741952 0.8741969 0.7901669 0.7902033

0.9 0.9691627 0.9691628 0.9330933 0.9330944 0.8875264 0.8875513

1.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

From Table 4, it clear that our proposed method has good agreement with variational
iteration method [12].
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Table 6 Comparison of
effectiveness factor for different
values of parameters

β ρ μ Effectiveness factor
used technique

Effectiveness factor
technique in [17]

0.8401441 1 2 0.977095 0.977095

0.6614868 1.5 2 0.946801 0.946738

0.4564643 2 2 0.902908 0.902501

Numerical Simulation for Spherical Biocatalyst Model

We show the numerical simulation results for spherical biocatalyst model by varying its
parameters. In Fig. 3, we have shown the effect of Thiele modulus by varying ρ on the
concentration x(t ;μ, ρ) by fixing the values of dimensionless activation energy (μ � 2).
From Fig. 3, it is clear that concentration varies continuously with increasing of ρ.

In Table 5, we have compared results by method in [17] for different values of ρ by fixing
the value of dimensionless activation energy (μ � 2). From Table 5, we observe that our
results are accurate and show good agreement with method in [17].

In Table 6, we have listed, the value of effectiveness factor for different values of parame-
ters. From Table 6, it is clear that effectiveness factor decreases with the increasing of Thiele
modulus (ρ).

Conclusions

In this paper, we have studied the diffusion of reactants in an idealized spherical catalytic
pellet and spherical biocatalyst pellet. We have also computed the behaviour of concentration
at the spherical origin t � 0 of the pellets. We have converted spherical catalyst and spherical
biocatalyst model into a system of algebraic equations. Desired accuracy is achieved only
for few basis number elements. Proposed computational method is accurate and handy for
computation purpose.
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