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Abstract
It is shown, similarly as the solution of the Riccati equation can be given via quotients of two
linear independent solutions of the second order ordinary differential equation, the solution of
the Riccati-Abel differential equation is presented by three linear independent solutions of the
third order ordinary differential equation. The method is extended to the class of generalized
Riccati-type equations governed by the characteristic polynomials of the associated higher
order ordinary differential equations. An explicit functional dependence between solutions
of the higher degree Riccati equations with the linear independent solutions of the associated
ordinary differential equations established.

Keywords Trigonometry · Polynomial · Euler formula · Riccati–Abel equation · Ordinary
differential equation

Introduction

Consider the first order differential equation

du

dφ
= P(u), (1.1)

where the function P(u) is a polynomial. If the function P(u) is restricted by a second order
polynomial then the Eq. (1.1) is the Riccati equation [1]. For a given second order ordinary
differential equation one may put in correspondence the Riccati equation. The relevance
of the ordinary Riccati equation to the second order ordinary differential equation can be
specified by the following features.

1. The corresponding Riccati equation is governed by the quadratic polynomial which is the
characteristic polynomial of the associated second order ordinary differential equation.

2. The solution of the Riccati equation is formed from the linear independent solutions of
the associated differential equation [2].
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The aim of the present work is to derive the Riccati-type equation possessing with the
similar properties as the ordinary Riccati equation.

The higher order Riccati equation associated with the higher order ordinary differential
equation has to be the first order differential equation governed with the same characteristic
polynomial. Consider n- order ordinary differential equation

P

(
d

dφ

)
�(φ) = 0, (1.2)

with n-degree characteristic polynomial P(X). The task is to derive the Ricati-type equation
of the form

�(u)
du

dφ
= P(u), (1.3)

induced by the polynomials P(u) and�(u)with deg(�(u)) < deg(F(u)). Furthermore, we
shall establish a link between set of linear independent solutions of the differential equation
(1.2) and the solutions of the corresponding Riccati-type equations.

The Riccati equations of the type (1.3) with polynomials �(u, φ), P(u, φ) recently had
been studied from various points of view (see, for example [3,4] and references therein). The
works have been devoted to construct appropriate solutions of the Riccati-type equations
with different dependence of the coefficients on the parameter of differentiation.

The main purpose of the present paper is to establish a link between higher order lin-
ear differential equations and the first order nonlinear differential equations. The paper is
presented by the following sections. In order to give a main idea, in “Ordinary Differential
Equation of Second Order and Its Associated Riccati Equation” section, we recall the inter-
connections between second order ordinary differential equation and its associated Riccati
equation. In “Riccati–Abel Equations Associated with Third Order Ordinary Differential
Equation” section, it is suggested a method to construct a link between the solution of the
Riccati–Abel equation [5] and the third order ordinary linear differential equation. In “Higher
Order Riccati-Type Equation Governed by n-Degree Polynomial” section, the system of
Riccati-type equations are reduced to the system of algebraic equations. In “Solutions of the
Riccati-Type Equations in Terms of the General Trigonometric Functions” section, the linear
independent solutions of the higher order ordinary differential equations are identified with
the functions of the generalized trigonometry. The solutions of the Riccati-type equations
are expressed via the generalized trigonometric functions.

Ordinary Differential Equation of Second Order and Its Associated
Riccati Equation

Consider the ordinary differential equation of second order

d2

dφ2 � − a1
d

dφ
� + a2� = 0, (2.1)

where a1, a2 ∈ C . The second order differential equation can be cast in the following “two-
component” form [6]

d

dφ

(
�1

�2

)
=

(
0 1

−a2 a1

) (
�1

�2

)
,
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after identifying the components as(
�1

�2

)
=

(
�

d�/dφ

)
. (2.2)

Let x1, x2 ∈ C be roots of the characteristic polynomial

P(x) = x2 − a1x + a2.

In terms of the roots x1.x2 one may easily form the set of the linear independent solutions of
the differential equation (2.1):

�1(φ) = C1 exp(x1φ), �2(φ) = C2 exp(x2φ). (2.3)

However, the problem is to find solutions of the Eq. (2.1) as functions of the coefficients. For
that aim, consider a companion matrix of the polynomial P(x) defined by the (2×2)matrix

E =
(
0 −a2
1 a1

)
. (2.4)

Since the matrix E obeys the quadratic equation

P(E) = E2 − a1E + a2 I = 0, (2.5)

the following expansion of exp(Eφ) holds true

exp(Eφ) = g1(φ; a1, a2)E + g0(φ; a1, a2). (2.6)

In a diagonal form this matrix equation is separated into two equations

exp(x2φ) = x2 g1(φ; a1, a2) + g0(φ; a1, a2),
exp(x1φ) = x1 g1(φ; a1, a2) + g0(φ; a1, a2), (2.7)

which admits explicit expressions for the “trig”-functions [7]. Apparently, g0 and g1 are two
linearly independent solutions of the second order differential equation (2.1). As it has been
proved in [8], the functions g0 and g1 explicitly depend of the coefficients a1, a2. These
functions obey the system of evolution equations generated by companion matrix E :

d

dφ

(
g0
g1

)
=

(
0 −a2
1 a1

) (
g0
g1

)
, (2.8)

The pair of solutions �1, �2 and the pair g0, g1 in [6] and [9] had been introduced within
the framework of the concept “binormality”. The scalar product of these vectors forms the
Courant-Snyder invariant. Form a ratio of two equations from (2.7) as follows

exp((x2 − x1)φ) = x2 g1(φ; a1, a2) + g0(φ; a1, a2)
x1 g1(φ; a1, a2) + g0(φ; a1, a2) . (2.9)

Let g1(φ; a1, a2) �= 0, then,

exp((x1 − x2)φ) = x1 − u

x2 − u
, (2.10)

where

u = −g0(φ; a1, a2)
g1(φ; a1, a2) . (2.11)
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Differential equation for this function is derived from the system of equations (2.8),

u2 − a1u + a2 = du

dφ
. (2.12)

This is the Riccati equation associated with differential equation (2.1) and governed by the
characteristic polynomial P(x):

du

dφ
= P(u). (2.13)

Direct integration of Eq. (2.12) leads one to the inverse function φ(u) of the solution,∫
dx

x2 − a1x + a2
=

∫
dφ. (2.14)

On making use of the formula

x1 − x2
x2 − a1x + a2

= 1

x − x1
− 1

x − x2
, (2.15)

the integral (2.14) is easily calculated∫ u

w

dx

x2 − a1x + a2
= 1

m12

(
log

u − x1
u − x2

− log
w − x1
w − x2

)
= φ(u) − φ(w), (2.16)

where m12 = x1 − x2. By inverting the logarithm function, we recover the exponential
function from (2.10),

exp(m12φ) = u − x1
u − x2

, (2.17)

where the function u(φ) is defined as the quotient of trigonometric functions g0, g1.
If φ = φ0 where u(φ0) = 0, then

exp(m12φ0) = x1
x2

. (2.18)

As soon as the point φ = φ0 is determined, one may calculate the function u(φ) from the
algebraic equation (2.17). Since a1 = x1 + x2, the formula (2.18) is read as

a1 = m12 coth(m12φ0/2). (2.19)

Consequently, the function u is presented as follows

u(φ, φ0) = 1

2
m12 coth(m12φ0/2) − 1

2
m12 coth(m12φ/2). (2.20)

The formulae (2.19) and (2.20) imply the following link between solution of the Riccati
equation and first coefficient of the characteristic polynomial [10]

u(φ, φ0) = 1

2
a1(φ0) − 1

2
a1(φ). (2.21)

This formula expresses one of the most important features of the associated Riccati equation:
the formula provides us with a law of evolution of the first coefficient of the characteristic
polynomial

a1(φ) = a1(φ0) − 2u(φ, φ0). (2.22)

Under this translation the next coefficients of the polynomial are calculated on making use
of the Pascal matrix [11,12].
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Riccati–Abel Equations Associated with Third Order Ordinary
Differential Equation

Let us start with Riccati–Abel differential equation of the form [13]

u3 − a1u
2 + a2u − a3 = du

dφ
, a1, a2, a3 ∈ C . (3.1)

The integral ∫ u

w

dx

x3 − a1x2 + a2x − a3
(3.2)

is calculated by applying the expansion

1

x3 − a1x2 + a2x − a3
= (x3 − x2)

V

1

x − x1
+ (x1 − x3)

V

1

x − x2
+ (x2 − x1)

V

1

x − x3
,

(3.3)

where

V = (x1 − x2)(x2 − x3)(x3 − x1), (3.4)

means the determinant of the Vandermonde matrix

W [x1, x2, x3] :=
⎛
⎝ 1 1 1

x1 x2 x3
x21 x22 x23

⎞
⎠ .

The distinct constants x1, x2, x3 ∈ C are roots of the cubic polynomial

P(x) = x3 − a1x
2 + a2x − a3. (3.5)

After integration the differential equation (3.1) is reduced to the following algebraic equation

(x3 − x2)

V
log

u − x1
w − x1

+ (x1 − x3)

V
log

u − x2
w − x2

+ (x2 − x1)

V
log

u − x3
w − x3

= φ(u) − φ(w).

(3.6)

By inverting the logarithms we come to the exponential function of the form

(u − x1)
m32(u − x2)

m13(u − x3)
m21 = exp(Vφ), (3.7)

where

mi j = (xi − x j ), i, j = 1, 2, 3, with m21 + m32 + m13 = 0. (3.8)

Thus, the problem of solution of differential equation (3.1) is reduced to the problem of
solution of the algebraic equation (3.7). Notice, the values mi, j , i, j = 1, 2, 3 are elements
of the cofactor matrix corresponding to the elements on the third line of the Vandermonde’s
matrix W [x1, x2, x3]. In our notations these quantities are given by

A(3)
1 = x2 − x3, A(3)

2 = x3 − x1, A(3)
3 = x1 − x2. (3.9)

According to the properties of the cofactor matrix we have two identities [14]

x1A
(3)
1 + x2A

(3)
2 + x3A

(3)
3 = 0, x21 A

(3)
1 + x22 A

(3)
2 + x23 A

(3)
3 = V . (3.10)
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In addition, let us recall the following useful matrix identity
⎛
⎝ x2x3 x3x1 x1x2

−(x2 + x3) −(x3 + x1) −(x1 + x2)
1 1 1

⎞
⎠

⎛
⎜⎝

A(3)
1 A(2)

1 A(1)
1

A(3)
2 A(2)

2 A(1)
2

A(3)
3 A(2)

3 A(1)
3

⎞
⎟⎠ = V

⎛
⎝ 1 −a1 a2
0 1 −a1
0 0 1

⎞
⎠

(3.11)

The differential form of the algebraic equation (3.7) is(
A(3)
1

u − x1
+ A(3)

2

u − x2
+ A(3)

3

u − x3

)
du = Vdφ. (3.12)

The use of the identities (3.10), (3.11)leads us to the Riccati–Abel differential equation of
the form

d

dφ
u(φ) = P(u). (3.13)

Now, let us use elements of the cofactor matrix corresponding to the elements on the
second line of the Vandermonde matrix. For these elements the following identities hold
true

x1A
(2)
1 + x2A

(2)
2 + x3A

(2)
3 = V , x21 A

(2)
1 + x22 A

(2)
2 + x23 A

(2)
3 = 0. (3.14)

This case corresponds to the Riccati-type equation of the following form

�(u)
d

dφ
u(φ) = P(u), (3.15)

where

�(u) = u − a1. (3.16)

Next, let us establish a relationship between linear independent solutions of third order
ordinary differential equation

d3

dφ3� − a1
d2

dφ2 � + a2
d

dφ
� − a3� = 0, (3.17)

and the Riccati–Abel equation (3.13) and the Riccati-type equation (3.15).
Following the algorithm developed in the previous section, firstly, let us define the com-

panion matrix of the cubic characteristic polynomial

E :=
⎛
⎝ 0 0 a3
1 0 −a2
0 1 a1

⎞
⎠ . (3.18)

Due to equation

P(E) = 0, (3.19)

the following expansion of the exponential function holds true

exp(Eφ1 + E2φ2) = g0(φ1, φ2) + E g1(φ1, φ2) + E2 g2(φ1, φ2). (3.20)

In this expansion the function g0(φ1, φ2) is the cosine-type function whereas the functions
gk(φ1, φ2), k = 1, 2 are referred to the sine-type functions. It is seen, the general trigono-
metrical functions of third order depend on the pair of parameters. It should be emphasized,
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the second parameter of evolution φ2 plays a crucial role in solution of the problem of con-
nection between third order ordinary differential equation and the Riccati–Abel equations.
The formulae of differentiation are defined as the evolution equations generated by degrees
of the companion matrix along these parameters:

∂

∂φ1

⎛
⎝ g0
g1
g2

⎞
⎠ =

⎛
⎝ 0 0 a3
1 0 −a2
0 1 a1

⎞
⎠

⎛
⎝ g0
g1
g2

⎞
⎠ , (3.21)

∂

∂φ2

⎛
⎝ g0
g1
g2

⎞
⎠ =

⎛
⎝ 0 a3 a3a1
0 −a2 a3 − a1a2
1 a1 −a2 + a21

⎞
⎠

⎛
⎝ g0
g1
g2

⎞
⎠ . (3.22)

In the diagonal form the matrix equation (3.20) is decomposed into three equations

exp(xkφ1 + x2kφ2) = g0(φ1, φ2) + xk g1(φ1, φ2) + x2k g2(φ1, φ2), k = 1, 2, 3, (3.23)

where the values x1, x2, x3 ∈ C are eigenvalues of the matrix E . Raise to power A(i)
k , k =

1, 2, 3; i = 2, 3, both sides of this equation and form the following product

3∏
k=1

exp(A(i)
k (xkφ1 + x2kφ2)) =

3∏
k=1

(g0(φ1, φ2) + xk g1(φ1, φ2) + x2k g2(φ1, φ2))
A(i)
k .

(3.24)

Notice, in this equation the terms A(i)
k , k = 1, 2, 3; i = 2, 3 mean the elements of the

cofactor matrix corresponding to the elements of the Vandermonde’s matrix W [x1, x2, x3]
and, respectively, they obey the identities (3.10) and (3.14). The use of these identities in
(3.24) allows to reduce the products into the following compact forms

3∏
k=1

exp(A(3)
k (xkφ1 + x2kφ2)) = exp(Vφ2), (3.25)

3∏
k=1

exp(A(2)
k (xkφ1 + x2kφ2)) = exp(Vφ1). (3.26)

From these formulas it follows that the former, e.g. (3.25), is free of the variable φ1, and the
latter, e.g. (3.26), does not depend of the variable φ2, respectively. This observation prompts
us to choose the variable φ1, φ2 in a such way that the following constrains will be satisfied:

g2(φ1, φ2) = 0 → φ1 = φ1(φ2), (3.27)

for the former product, and

g2(φ1, φ2) = 0 → φ2 = φ2(φ1), (3.28)

for the latter one, correspondingly.
Define the function u(φ2) by

u(φ2) = −g0(φ1(φ2), φ2)

g1(φ1(φ2), φ2)
. (3.29)

In these terms the formula (3.24) for i = 3 is read

exp(Vφ2) = (u − x1)
m32(u − x2)

m13(u − x3)
m21 , (3.30)
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where mi j = (xi − x j ), i, j = 1, 2, 3.
The differential equation corresponding to the algebraic equation (3.30) is the Riccati–

Abel equation

d

dφ2
u(φ2) = u3 − a1u

2 + a2u − a3. (3.31)

Next, redefine the function u(φ1, φ2) as a function of the variable φ1, then,

u(φ1) = −g0(φ1, φ2(φ1))

g1(φ1, φ2(φ1))
. (3.32)

Correspondingly, for i = 2 Eq. (3.24) takes the form

exp(Vφ1) = (u − x1)
r23(u − x2)

r31(u − x3)
r12 , (3.33)

where ri j = (x2i − x2j ), i, j = 1, 2, 3.
The differential equation corresponding to the algebraic equation (3.33), as above it has

been proved, is the Riccati-type equation of the form

(u − a1)
d

dφ1
u(φ1) = u3 − a1u

2 + a2u − a3. (3.34)

Notice, namely the variable φ1 is the parameter of differentiation of the differential equation
(3.17), meanwhile the variable φ2 is the auxiliary parameter of the method.

Higher Order Riccati-Type Equation Governed by n-Degree Polynomial

Let P(x) be a n degree polynomial over field C ,

P(x) = xn +
n∑

k=1

(−1)kak x
n−k, (4.1)

where the coefficients ak ∈ C , and the polynomial possesses with n distinct roots xk ∈
C, k = 1, . . . , n. If C is a field and x1, . . . , xn are algebraically independent over C , the
polynomial

P(x) =
n∏

k=1

(x − xk), (4.2)

is referred to as generic polynomial overC of degree n. The polynomial P(x) defines structure
of the higher order Riccati equation of the type

du

dφ
= P(u). (4.3)

Integral form of this equation is ∫ u

v

dx

P(x)
= φu − φv. (4.4)

The integral is calculated on making use of the expansion

n∑
m=1

A(n−1)
m (u − xm)−1 = V

P(u)
, (4.5)
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where A(n−1)
k is the element of the cofactor matrix corresponding to the element xn−1

k of the
Vandermonde matrix

W [x1, x2, . . . , xn−1, xn] :=

⎛
⎜⎜⎜⎜⎝

1 1 . . . 1
x1 x2 . . . xn
x21 x22 . . . x2n
. . . . . . . . . . . .

xn−1
1 xn−1

2 . . . xn−1
n ,

⎞
⎟⎟⎟⎟⎠ , (4.6)

and V is the determinant, V = Det(W ).
The result of the integration is given by the algebraic equation with respect to solution

u(φ),

exp(Vφ) =
n∏

k=1

(u − xk)
A(n−1)
k . (4.7)

Inversely, by differentiating both sides of this equation one may recover the n-order Riccati
equation (4.3). In fact,

V exp(Vφ) dφ = du
n∑

m=1

A(n−1)
m (u − xm)A

(n−1)
m −1

n−1∏
k=1,k �=m

(u − xk)
A(n−1)
k (4.8)

= du
n∑

m=1

A(n−1)
m (u − xm)−1

n∏
k=1

(u − xk)
A(n−1)
k . (4.9)

Owing the identities

n∑
l=1

(xl)
k A(n−1)

l = 0, k = 1, 2, . . . , n − 2;
n∑

l=1

(xl)
n−1A(n−1)

l = V , (4.10)

formula (4.9) is reduced to the following differential form [14]

V dφ = du
n∑

m=1

A(n−1)
m (u − xm)−1. (4.11)

Transform the sum in the right-hand side of this equation by using (4.8), then,

n∑
m=1

A(n−1)
m (u − xm)−1 = V∏n

k=1(u − xk)
. (4.12)

Substituting this formula into (4.11) we arrive at the n-order Riccati equation (4.3).
Following to prescriptions of the “Riccati–Abel Equations Associated with Third Order

Ordinary Differential Equation” section we will extend the algebraic formula (4.8) and its
differential form given by the generalized Riccati equation (4.3) by including into consider-
ation all cofactors of the Vandemonde’s matrix. For the aim, firstly, let us extend the identity
given by formula (3.11). On the set of roots xk, k = 1, . . . , n of the polynomial P(x) define
the trimmed polynomials as follows.

Define n trimmed polynomials by

Tk =
n∏

i �=k

(xk − xi ) = xn−1
k + b(k)

1 xn−2 + · · · + b(k)
n−1, k = 1, 2, · · · , n. (4.13)
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Then, the identity (3.11) is extended as follows [8]:⎛
⎜⎜⎜⎜⎜⎝

b(1)
n−1 b(2)

n−1 . . . b(n−1)
n

b(1)
n−2 b(2)

n−2 . . . b(n−2)
n

. . . . . . . . . . . .

b(1)
1 b(2)

1 . . . b(1)
n

1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

A(n−1)
1 A(n−2)

1 . . . A(0)
1

A(n−1)
2 A(n−2)

2 . . . A(0)
2

. . . . . . . . . . . .

A(n−1)
n−1 A(n−2)

n−1 . . . A(0)
n−1

A(n−1)
n A(n−2)

n . . . A(0)
n

⎞
⎟⎟⎟⎟⎟⎠

= V

⎛
⎜⎜⎜⎜⎝

1 −a1 . . . an(−1)n

0 1 . . . an−1(−1)n−1

. . . . . . . . . . . .

0 0 . . . −a1
0 0 . . . 1

⎞
⎟⎟⎟⎟⎠ . (4.14)

We claim that the differential form of algebraic equation

exp(Vφ) =
n∏

k=1

(u − xk)
A(n−p)
k (4.15)

is given by the higher order Riccati equation of the type (compare with [16])

�(u)
du

dφ
= P(u), (4.16)

where �(u) is (n − p − 1) degree polynomial of the form

�(u) = un−p−1 +
n−p−1∑
k=1

aku
n−p−1−k(−1)k . (4.17)

This claim it follows from observation that the differential form of Eq. (4.15) is

Vdφ =
n∑

k=1

A(n−p)
k

u − xk
du. (4.18)

Then, on making use of each line of the matrix formula (4.14) the following set of equations
are obtained(

un−p +
n−p∑
k=1

(−1)kaku
n−p−k

)
d

dφ
u = P(u), p = 2, . . . , n − 1. (4.19)

Solutions of the Riccati-Type Equations in Terms of the General
Trigonometric Functions

Consider n-order ordinary differential equation with characteristic polynomial P(x) defined
in (4.1),

P

(
d

dφ

)
�(φ) = 0. (5.1)

Seeking the set of fundamental solutions explicitly depending of the coefficients of the
polynomial P(x) we will arrive at the set of the functions of the generalized trigonometry
[13]. Following the prescriptions of “Ordinary Differential Equation of Second Order and
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its Associated Riccati Equation”, “Riccati–Abel Equations Associated with Third Order
Ordinary Differential Equation” sections, firstly, let us define the companion matrix of the
characteristic polynomial P(x) by (n × n) matrix with entries consisting of coefficients of
the polynomial

E :=

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 (−1)n+1an
. . . . . . . . . . . . . . .

1 0 . . . 0 a3
0 1 . . . 0 −a2
0 0 . . . 1 a1

⎞
⎟⎟⎟⎟⎠ (5.2)

Next, consider an expansion of the exponential function with respect to matrix E as

exp

(
n−1∑
k=1

Ekφk

)
=

n−1∑
i=0

Ei gi (φ), with φ := (φ1, φ2, . . . , φn−1). (5.3)

The formulae of differentiation for g-functions are obtained by using the following set of
equations [15]

d

dφl
exp

(
n−1∑
k=1

Ekφk

)
= El exp

(
n−1∑
k=1

Ekφk

)
=

n−1∑
k=0

Ek dgk
dφl

, l = 1, 2, . . . , n − 1.

In these equations on making equal expressions at (1, E, E2, . . . , En−1), we get

d

dφk
gi−1 =

[
Ek

] j

i
g j−1, k = 1, . . . , n − 1, i = 1, 2, . . . , n. (5.4)

Let xk, k = 1, . . . , n be a set of eigenvalues of the matrix E . Let � be a diagonal matrix
of the eigenvalues of E . In diagonal form the Eq. (5.3) is given by n equations

exp

(
n−1∑
k=1

�kφk

)
=

n−1∑
i=0

�i gi (φ). (5.5)

This linear system of equations can be exploited to define the trigonometric function through
the exponentials exp(xlkφl), k = 1, . . . , n, l = 1, 2, . . . , n − 1.

Notice, the general trigonometric functions with n-degree characteristic polynomial
depend of (n − 1) parameter. If we restrict ourselves only with the parameter φ = φ1,
then from the formulae of differentiation

d

dφ
gi−1 = [E] ji g j−1, i = 1, 2, . . . , n;

it follows that the functions gi−1(φ), i = 1, 2, . . . , n, are linear independent solutions of
the differential equation (5.1).

We claim that the extension of the set of parameters is indispensable in order to obtain
an interconnection between solutions of higher order ordinary differential equation with its
associated Riccati-type equation.

In order to recover the system of Riccati-type equations on making use of the general-
ized trigonometry we shall repeat the same procedure as it has been done in “Riccati–Abel
Equations Associated with Third Order Ordinary Differential Equation” section. Firstly, let
us construct algebraic equations.
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Raise to power A(n−p)
m , p = 1, . . . , n − 2 both sides of the equations

exp

(
n−1∑
k=1

(xm)kφk

)
=

n−1∑
i=0

(xm)i gi (φ), m = 1, 2, . . . , n − 1; φ := (φ1, φ2, . . . , φn−1),

and form the following product

n∏
m=1

exp

(
A(n−p)
m

n−1∑
k=1

(xm)kφk

)
=

n∏
m=1

(
n−1∑
i=0

(xm)i gi (φ)

)A(n−p)
m

. (5.6)

Due to the identities
∑
k=1

xik A
( j)
k = V δi, j , (5.7)

the summation in the exponential function in (5.6) is reduced to the desired item

exp(Vφn−p).

Consequently, the formula (5.6) is simplified as follows

exp(Vφn−p) =
n∏

m=1

(
n−1∑
i=0

(xm)i gi (φ)

)A(n−p)
m

. (5.8)

This freedom allows us to choose the following set of constraints

gk(φ1, φ2, . . . , φn−1) = 0, k = 2, 3, . . . , n − 1. (5.9)

By setting these conditions into the right- hand side of (5.8) we get

exp(Vφn−p) =
n∏

m=1

( g0(φn−p, φ) + xm g1(φn−p, φ) )A
(n−p)
m , (5.10)

where φ(φn−p) means the set of the other (n − 2) parameters - the functions of the unique
parameter φn−p . These functions implicitly are defined by the system of constraints (5.9).

Let g1 �= 0. Then, by introducing the function

u(φn−p) = −g0(φ)

g1(φ)
, (5.11)

and by taking into account the identity
∑

m=1 A
(n−p)
m = 0, we get

exp(Vφn−p) =
n∏

m=1

(u(φ) − xm)A
(n−p)
m , (5.12)

which is nothing else then the algebraic equation (4.15) corresponding to the Riccati-type
equation (4.16). Thus, the function u(φ) is the solution of the algebraic equation (5.12).
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Under the constraints gk = 0, k = 2, . . . , n− 1 the system of differential equations (5.4)
is reduced to the following set of equations [13]

∂

∂φn−1

⎛
⎜⎜⎜⎜⎜⎜⎝

g0
g1
g2
. . .

gn−2

gn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(−1)n+1ang1
(−1)nan−1g1

(−1)n−1an−2g1
. . .

−a2g1
g0 + a1g1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.13)

These equations we separate into two parts:

∂

∂φn−1

(
g0
g1

)
=

(
(−1)n+1ang1
(−1)nan−1g1

)
. (5.14)

and

∂

∂φn−1

⎛
⎜⎜⎝

g2
. . .

gn−2

gn−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(−1)n−1an−2g1
(−1)n−2an−3g1
(−1)n−3an−4g1

. . .

−a2g1
g0 + a1g1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.15)

The parameters φk, k = 1, . . . , n − 1 are not independent variables, they are connected by
the constraints (5.9). These equations determine the parameters φ1, . . . , φn−2 as functions of
unique variable φn−1 in a implicit way. These conditions admit to define the derivatives of
φk, k = 1, . . . , n − 2 with respect to φn−1 on making use of derivatives of the g-functions.
Differentiating constraints (5.9) with respect to φn−1 we arrive at the system of equations
which determines the desired derivatives:

dgk
dφn−1

= ∂gk
∂φn−1

+
n−2∑
j=1

∂gk
∂φ j

dφ j

dφn−1
= 0, k = 2, 3, . . . , n − 1 (5.16)

In the matrix form this system is written as

−

⎛
⎜⎜⎜⎜⎜⎜⎝

(−1)n−1an−2g1
(−1)n−2an−3g1
(−1)n−3an−4g1

. . .

−a2g1
g0 + a1g1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂1g2 ∂2g2 ∂3g2 . . . ∂n−3g2 ∂n−2g2
∂1g3 ∂2g3 ∂3g3 . . . ∂n−3g3 ∂n−2g3
∂1g4 ∂2g4 ∂3g4 . . . ∂n−3g4 ∂n−2g4
· · · · · · · · · · · · · · · · · ·

∂1gn−3 ∂2gn−3 ∂3gn−3 . . . ∂n−3gn−3 ∂n−2gn−3

∂1gn−1 ∂2gn−1 ∂3gn−1 . . . ∂n−3gn−1 ∂n−2gn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

φ′
1

φ′
2

φ′
3

. . .

φ′
n−3

φ′
n−2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(5.17)

where φ′
k means dφk/φn−1. By setting

∂kgk = g0, ∂kgk+1 = g1, k = 2, . . . , n − 2,
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the system is read as

−

⎛
⎜⎜⎜⎜⎜⎜⎝

(−1)n−1an−2g1
(−1)n−2an−3g1
(−1)n−3an−4g1

. . .

−a2g1
g0 + a1g1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

g1 g0 0 . . . 0 0
0 g1 g0 . . . 0 0
0 0 g1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . g1 g0
0 0 0 . . . 0 g1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

φ′
1

φ′
2

φ′
3

. . .

φ′
n−3

φ′
n−2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.18)

By inverting the triangle matrix we get

⎛
⎜⎜⎜⎜⎜⎜⎝

φ′
1

φ′
2

φ′
3

. . .

φ′
n−3

φ′
n−2

⎞
⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎝

1 u u2 . . . (u)n−4 (u)n−3

0 1 u u2 . . . (u)n−4

0 0 1 u u2 . . .

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 u
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

(−1)nan−1

(−1)n−1an−2

. . .

. . .

−a2
−u + a1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.19)

where

u = −g0
g1

. (5.20)

From the matrix equation (5.19) the following polynomials for the derivatives are obtained

dφ1

dφn−1
= un−2 − a1u

n−3 + a2u
n−4 + · · · + an−2,

dφ2

dφn−1
= un−3 − a1u

n−4 + a2u
n−5 + · · · + an−3,

· · ·
dφn−3

dφn−1
= u2 − a1u + a2,

dφn−2

dφn−1
= u − a1. (5.21)

On making use of these formulas we are able to recover all equations presented in (4.19):

(un−2 − a1u
n−3 + a2u

n−4 + · · · + an−2)
d

dφ1
u = P(u),

(un−3 − a1u
n−4 + a2u

n−5 + · · · + an−3)
d

dφ2
u = P(u),

. . .

(u2 − a1u + a2)
d

dφn−3
u = P(u),

(u − a1)
d

dφn−2
u = P(u),

d

dφn−1
u = P(u). (5.22)
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Conclusions

We have established that the Riccati-type equation associated with n-order ordinary differ-
ential equation

P

(
d

dφ

)
� = 0,

with characteristic polynomial

P(x) = xn +
n∑

k=1

(−1)kak x
n−k,

is the first order non-linear differential equation

�(u)
du

dφ
= P(u),

where �(x) is (n − 2)- degree polynomial of the form

�(x) = xn−2 +
n−2∑
k=1

(−1)kak x
n−2−k .

Seeking solutions of n-th order Riccati equation the certain relationship of these solutions
with generalized trigonometric functions has been found. It was shown, in order to obtain
the desired relationship one has to extend the set of variables of differentiation up till (n− 1)
parameters. The auxiliary parameters are defined implicitly by the system of constraints for
the trigonometric functions. The Riccati-type equations are formulated with respect to all set
of auxiliary parameters resulting the system of equations of the triangular form.
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