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Abstract
Prior EOQmodels under trade credits generally assumed that the demand of the commodities
was either stable or purely dependent on the selling price. This paper develops an economic
order control model of deteriorating commodities with inventory associated demand under
different conditions. It is assumed that the permissible delay period is permitted till specific
threshold. The comparative study of order quantity with threshold quantity is also discussed.
Optimal solutions are obtained with the help of differential calculus and optimality condition.
Numerical examples and sensitive analyses are provided to validate the optimal solution. It
is also shown that the total cost function is U-shaped.

Keywords Inventory · Deterioration · Economic order quantity · Trade credits ·
Stock-dependent demand

Introduction

Researchers presume in the standard EOQmodels, that the value of inventory commodities is
unaltered by the length of time. In practice, however many items depreciate during the usual
storage stage.Volatile liquids, green vegetables, blood accumulated in blood banks, chemicals
and electronic gears decline considerably.Deteriorationmeans decompose, damage, spoilage,
fading, or aeration out of foodstuffs. Therefore, the ideal case visualizes by the conventional
model remains a perfect one.

At present scenario, researchers are facing a major problem to analyze the practical and
actual work problem in the correct environment. In this environment supplier has to offer a
number of discounts for their clients for concession in the permissible delay period. Delayed
payment might be considered to enhance sales. Large number of elements disturbed the
smooth transaction and business process as like, lock off, labour problem, earth quake etc.
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Most of the commodities lose their originality at the time passes as like, bread, seasonal
vegetable, fruits, food stuffs etc. having more deterioration is comparison to other items.
Some commodities like medicine, electronic products, machine with fixed life span.

Classical inventory model was established in the year 1915 in which demand was con-
stant, while in actual practice, it is in a dynamic state. Some internal factor such as selling
price and availability for a particular product made by manufacturer affect the smooth busi-
ness transaction. In this study, demand rate is considered stock-sensitive. Goh [1] designed
the unbroken, unlimited horizon inventory scheme where the demand in stock-dependent.
Tripathi [2] established an EOQ model for price-linked demand and different carrying cost
function. Affares [3] designed an EOQ inventory model for stock-associated demand and
shortage with time—linked carrying cost. Taleizadeh and Noori-daryan [4] designed pricing,
industrialized and inventory strategies for unprocessed objects in a three-stage supply chain.
Tripathi [5] studied a model for spoilage commodities with linearly time-linked demand
rate under permitted delay. Goyal and Change [6] pointed out an ordinary-transfer an EOQ
model for determining the vendor’s optimal order quantity and a number of transfers from
the warehouse to the exhibit area. Soni and Shah [7] considered an optimal ordering pol-
icy for retailer when customers’ demand is stock-sensitive and supplier suggest progressive
credit period. Khanra et al. [8] designed an EOQ model for deteriorating item and quadratic
time-linked demand under trade credits. Other related studies based on variable demand are:
Kumar and Sana [9], Chowdhury [10], Tripathi andMishra [11].Tripathi [12], Guchhait et al.
[13], Ghiami and Williams [14], Hsieh and Dye [15], Ouyang et al. [16] etc.

The delay in payment is an actual part is business transaction to enhance demand for a
short run span, it dominates the cost of the business system like: holding cost, ordering cost
and total cost. Tripathi and Chaudhary [17] developed an EOQmodel forWeibull distribution
decline with inflation and permitted delay in payments. Teng et al. [18] established an EOQ
model under trade credit financing bymeans of growing demand. A number of related studies
have been presented by; Chakrabarty et al. [19], Taleizadeh et al. [20], Mishra [21], Dave
[22], Liao et al. [23], Tripathi et al. [24], Jiangtao et al. [25], Soni [26], Wu et al. [27] in this
direction.

The problem of deteriorating inventory has taken strong concentration in the present
scenario. Several researchers have considered constant deterioration rate is their inventory
models. However, in real life it is not always steady. One simple example of variable deterio-
ration isWeibull distributionwhich differs with time. Geetha andUdayakumar [28] presented
an EPQmodel for deteriorating items with price and advertisement dependent demand under
partial backlogging. Yang [29] designed an EOQ model for deteriorating item with infla-
tion and two level of storage. Min [30] presented a model for spoilage commodities under
inventory-sensitive demand and two-level trade credits. Tsao and Sheen [31] established
dynamic pricing promotion problem for deteriorating items. Some articles related to deteri-
oration like: Chen et al. [32], Taleizadeh et al. [33], Chang et al. [34], Taleizadeh and Noori-
daryan [35], Taleizadeh et al. [36].

In this paper, EOQ models are presented for items with stock-linked demand under dete-
rioration. The specific threshold is compared with order quantity. We also compare threshold
with permissible delay. The main idea of the model is to settle on least total cost.

The rest part of the study is arranged as follows: in the next portion 2, the assumption and
notations used are given. In Sect. 3, mathematical model is obtained to decide minimum total
cost/unit time. Numerical examples and sensitivity examination are provided in Sects. 4 and
5 respectively. We establish future research direction in Sect. 6.
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Assumptions and Notations

Assumptions

The succeeding assumptions are made to buildup the model:

(i) Deterioration rate is invariable.
(ii) In case of order size exceeds as pre-determined quantity complete permissible delay

period is offered.
(iii) Demand is considered stock—sensitive (i.e. D(t) � α + β I(t), α > 0,0 < β < 1}.
(iv) Shortages are not acceptable.
(v) Time horizon is never-ending.

Notations

The following notations are used in the whole manuscript:

A Ordering cost
D(t) Stock-dependent demand/year
W Specific threshold
θ Deterioration rate, (0<θ<1)
P Selling price
T Cycle time
C Purchasing cost
h Holding cost/unit/year
I(t) Inventory level at any time ‘t’
Ie and Ic Interest earned and charges/ year
M Permissible delay period
μ Permitted fraction of delay in payment
Q Order quantity
Tw Threshold time-period
T Cycle time
T0 Time during (1 − μ)Q units are depleted
IC Total cost on interest
T E Total interest earned
NTCi (T ) Annual non-identical part of cost function, i � 1 − 3
ATCi(T ) Annual total cost, i � 1 − 3

Mathematical Formulation

The following differential equation represents the change of I(t)

d I (t)

dt
+ γ I (t) � −{α + β I (t)}; 0 ≤ t ≤ T , I(T ) � 0 (1)

The, order quantity:

Q � I (0) � αT

{
1 +

βT

2
+
T 2

6

(
β2 + γ

)}
(2)
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From (2), the time throughout whichW units are exhausted is attained as follows:

Tw �
√
1 + βW

α
− 1

β
(3)

If Q > W (T > Tw), completely permissible delay is allowed. Consumer must pay
(1 − μ)CQ and pay off μCQ at the closing stages of delay phase.

T0 is defined as the time in which (1 − μ)Q units are exhausted, from (2), we get

T0 � β(1 − μ)

2α2 (approx.) (4)

It should be noted that parameters M, Tw, T0 and T are constraints that have affects the
capital cost. We can consider only cases.

Identical Costs

Identical related costs are: ordering cost (OC), carrying cost (HC) and purchasing cost (PC);

OC � A

T
(5)

HC � h

T

∫ T

0
I (t)dt � hαT

6

{
3 + βT +

(
β2 − γ

)
T 2}, (approx.) (6)

PC � CQ

T
� Cα

{
1 +

βT

2
+
T 2

6

(
β2 + γ

)}
, (approx.) (7)

The identical cost of the system is:

I TC(T ) � OC + HC + PC (see in Appendix I) (8)

Non-Identical Terms

As stated, because of unlike values of Tw and M , two group of M ≥ Tw and M < Tw may
take place. Now for every case of the opening set, where M ≥ Tw , IC and IE will be derived.

Case 1 Tw ≤M ≤T .
In this consideration, the credit period is shorter than cycle time. The pictorial represen-

tation is as follows:
From the Fig. 1, we get

IC � IkC

T

T∫
M

I (t)dt

� IkCα

T

[
T 2

2
+

βT 3

6

{
3 +

(
β2 + γ

)} − MT

3

{
6 + T 2(5γ − 4β2)}

− M2

2

{
2 − βT + T 2(3γ − 2β2) +

βT 3

6

(
2
(
β2 + γ

)
+ 9β

(
γ − β2))}

+
M3

12

{−6β + 6T
(
γ − β2) +3βT 2(γ − β2) + T 3}] (9)
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Q 

I(t) 

O        Tw M           T     Time 

Fig. 1 Graph between time and I(t) (Tw ≤M ≤T )

and

I E � Ie P

T

∫ M

0
{α + β I (t)}dt

� Ie Pα

6T

[
6 +

BM2

2

{
6T + 3βT 2 + T 3(β2 + γ

)}

− βM3

3

{
6 + 6βT + 3β2T 2 + βT 3(β2 + γ

)}]
(10)

now,

NTC1(T ) � IkC

T

∫ T

M
I (t)dt − Ie P

T

∫ M

0
{α + β I (t)}dt (11)

Therefore, the annual total cost is:

ATC1(T ) � I TC + NTC1(T ) (see Appendix I) (12)

Case 2 Tw ≤T ≤M.
In this case, the permissible delay period is longer than cycle time, then interest charged

and interest earned both will considered in the calculation of total inventory cost.
From Fig. 2, we getand

IC � Ie P

T

∫ T

0
{α + β I (t)} t dt � Ie PαT

12

[
6 + 2βT − β2T 2]

I E � Ie P

T

∫ T

M
{α + β I (t)}dt

� Ie Pα

[{
1 − M

T
+ βT + β2T 2 +

βT 3

6

(
β2 + γ

)}

− βM

{
1 +

βT

2
+
T 2

6

(
β2 + γ

)} − βT

2

{
1 + βT +

βT 2

2

}

− βM2

2

{
1

T
+ β +

β2T

2
+

βT 2

6

(
β2 + γ

)}
+

βT 2

6

{
β − (

γ − β2)T }

+
βM3

3

{
− β

2T
+

(
1

2
+

βT

4
+
T 2

12

(
β2 + γ

))(
γ − β2)}]

(13)
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Q 

I(t) 

O        Tw T              M     Time 
Fig. 2 Graph between time and I(t) (Tw ≤T ≤M)

Therefore,

NTC2(T ) � − Ie P

T

∫ T

0
{α + β I (t)}t dt − Ie P

T

∫ T

M
{α + β I (t)}dt (14)

and,

ATC2(T ) � I TC + NTC2(T ) (see Appendix I) (15)

Case 3 T ≤Tw ≤M.
In this case, the trade credit phase is shorter than specific threshold time.
From Fig. 3, we search out the total cost for this case is as follows:

NTC3(T ) � IkC

T

∫ T0

0
I (t)dt − IkC

T
μQT0 − Ie P

T

∫ M

0
{α + β I (t)} t dt

− Ie P

T

∫ T

M
{α + β I (t)}dt (16)

and,

ATC3(T ) � I TC + NTC3(T ) (see Appendix I) (17)

Optimal value of Ti is obtained on putting dT ACi
dT � 0, i � 1 − 3 (See Appendix I).

It is difficult to find d2T ACi
dT 2 > 0 , for i � 1−3, we can show numerically in the numerical

examples and sensitivity analysis.

Note The remaining mathematical calculations are given in the Appendix.

Numerical Examples

In this part, the model is demonstrated by numerical explanations for three unlike cases with
Mathematica 9.0 software.

Example 1. (Case 1) Tw ≤ M ≤ T .
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Q

µQ

I(t) 

O      T                        Tw              M     Time 
Fig. 3 Graph between time and inventory level (T <Tw ≤M)

Let us consider A � 50, h � 5, α � 1000, β � 0.1, γ � 0.5, M � 1, Ik � 0.1, Ie � 0.01,
C � 5, P � 100 in appropriate units. Putting these in (A8) and calculating for T , we get,

T ∗
1 � 1.7355, corresponding, Q∗ � 2330.41,ATC∗

1 � 6269.93 and d2ATC1
dT � 212165.0 >

0.

Example 2. (Case 2) Tw ≤ T < M .
On considering A � 50, h � 5,α � 1000, β � 0.1, γ � 0.5,M � 1, Ik � 0.1, Ie � 0.01,

C � 5, P � 100 in proper units. On substituting these in (A9) and calculating for T , we

obtain T ∗
2 � 0.69123, corresponding, Q∗ � 743.193, ATC∗

2 � 7316.46 and d2ATC2
dT �

6011.97 > 0.

Example 3. (Case 3) T < Tw ≤ M .
Let us take A � 40, h � 8, α � 800, β � 0.1, γ � 0.5, M � 1,Ik � 0.1, Ie � 0.01, C � 5,

P � 80,μ � 0.2 in suitable units. Substituting these in (A10) and solving for T , we get T3*

� 0.47872, corresponding Q* � 399.603, ATC3* � 6413.49, and d2ATC3
dT 2 � 12386.9 > 0.

Sensitivity Analysis

Sensitivity analysis is a significant component of any kind of business transaction for both
vendors and buyers; it affects thewhole transaction system.Weknow that any type of business
is a long taking process, depends on nature and future planning, while future planning’s are
unsure and estimated by their elements like weather, lock off, strikes etc.

Case 1 Taking all numerical values discussed in Ex. 1, shifting one constraints at a time,
preserving residual constraints identical.

From Table 1, the following deductions can be made:

(i) Boost of c, β and α resulting, increase of T ∗
1 , Q

∗ and ATC∗
1 .It mean that the optimal

values move in the identical direction with c, β and α.

(ii) Argument of A, r and h leading, decrease of T ∗
1 , Q

∗ and ATC∗
1 .It shows that T1*, Q*

and ATC1* move in the toward the back direction with A, r and h.

(iii) Boost of Ie and p resulting, increase in T ∗
1 , Q

∗ and decrease in ATC∗
1 .
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Table 1 (a) Variation of T1*, Q1* and ATC1* with different parameters

C T ∗
1 Q∗ ATC∗

1
d2ATC1
dT 2

α T ∗
1 Q∗ ATC∗

1
d2ATC1
dT 2

08 1.81637 2490.7 8887.17 229,889.0 1500 1.73674 3499.2 9347.35 702,863.0

10 1.86908 2598.8 10,669.7 209,787.0 2000 1.73735 4668.0 12,453.6 1.6475×106

12 1.92104 2708.2 12,466.8 169,470.0 2500 1.73772 5836.8 15,559.8 3.19411×106

14 1.97238 2819.1 14,278.5 112,399.0 3000 1.73797 7005.6 18,666.1 5.49072×106

16 2.02321 2931.8 16,104.6 41,325.7 3500 1.73814 8174.4 21,772.3 8.68581×106

A T ∗
1 Q∗ ATC∗

1
d2ATC1
dT 2

β T ∗
1 Q∗ ATC∗

1
d2ATC1
dT 2

60 1.73476 2329.0 6246.86 212,872.0 0.01 1.58609 1931.2 5488.92 51,343.7

70 1.73401 2327.5 6252.59 213,589.0 0.02 1.59995 1967.1 5560.04 82,762.5

80 1.73327 2326.1 6258.33 214,297.0 0.03 1.61444 2004.8 5633.91 110,923.0

90 1.73252 2324.6 6264.07 215,017.0 0.04 1.62957 2044.4 5710.69 135,756.0

100 1.73177 2323.2 6269.82 215,737.0 0.05 1.64537 2086.1 5790.50 157,199.0

γ T ∗
1 Q∗ ATC∗

1
d2ATC1
dT 2

h T ∗
1 Q∗ ATC∗

1
d2ATC1
dT 2

1.0 1.214340 1589.5 4591.75 936,532.0 10 1.62764 2126.6 8740.51 324,768.0

1.5 0.995069 1292.5 3765.77 1.91687×
106

15 1.58762 2053.8 11,277.70 372,684.0

2.0 0.867066 1123.0 3217.90 3.07729×
106

20 1.56659 2016.1 13,825.40 398,343.0

2.5 0.780553 1010.0 2809.80 4.37817×
106

25 1.55359 1993.0 16,377.60 413,664.0

3.0 0.716957 927.54 2486.17 5.79991×
106

30 1.54475 1977.4 18,392.10 423,326.0

M T ∗
1 Q∗ ATC∗

1
d2ATC1
dT 2

P T ∗
1 Q∗ ATC∗

1
d2ATC1
dT 2

2.0 1.53725 1964.2 3060.56 4.89357×106 50 1.69964 2261.4 6552.30 121,542.0

2.5 1.53420 1958.8 1807.41 1.01503×107 100 1.73550 2330.4 6241.12 212,165.0

3.0 1.60212 2080.0 1002.48 1.55969×106 150 1.76807 2394.2 5935.05 275,945.0

3.5 1.77447 2406.8 938.571 1.77613×107 200 1.79800 2453.7 5633.47 318,578.0

4.0 2.17978 3297.7 2241.87 1.25257×106 250 1.82574 2509.7 5335.89 34,107.0

Case 2 Taking all numerical values from example 2. On fluctuating one constraint at a
time and keeping rest parameters unvarying.

From Table 2 the following deductions can be reviewed.

(i) Increase of c, β and h lead decrease of T ∗
2 , Q

∗ and increase of ATC∗
2 . It means that

T2* and Q*, move in opposite direction with c, β and h, while total cost parallel to c,
β and h.

(ii) Increase ofM, r, A and P causes, augment in T ∗
2 , Q

∗ and ATC∗
2 It shows that all optimal

values move in the similar direction.

Case 3 Taking all numerical values discussed in Ex. 3, varying one parameter at a time
and keeping rest parameters same.

123



Int. J. Appl. Comput. Math (2021) 7 :43 Page 9 of 19 43

Table 2 Variation of T2*, Q2* and ATC2* with different parameters

C T ∗
2 Q∗ ATC∗

2
d2ATC2
dT 2

α T ∗
2 Q∗ ATC∗

2
d2ATC2
dT 2

10 0.594520 630.05 12,648.7 10,906.2 1500 0.685385 1104.4 10,938.4 9141.75

15 0.538513 566.29 17,925.4 15,513.1 2000 0.682455 1465.5 14,560.1 12,272.4

20 0.499379 522.43 23,169.0 20,039.9 2500 0.680694 1826.7 18,181.8 15,403.6

25 0.469564 489.39 28,389.5 24,549.6 3000 0.679520 2192.0 21,803.5 18,420.9

30 0.445653 463.11 33,592.6 29,069.1 3500 0.678680 2557.3 25,425.1 21,666.2

A T ∗
2 Q∗ ATC∗

2
d2ATC2
dT 2

β T ∗
2 Q∗ ATC∗

2
d2ATC2
dT 2

100 0.708662 764.023 7387.90 5771.15 0.2 0.655234 723.485 7697.98 7979.19

200 0.743155 805.655 7525.67 5316.32 0.3 0.625799 708.642 8104.84 10,149.1

300 0.777345 847.485 7657.23 4890.72 0.4 0.601121 697.284 8539.41 12,527.8

400 0.811459 889.799 7783.13 4481.10 0.5 0.579968 688.444 9004.19 15,127.0

500 0.845732 932.913 7903.84 4102.92 0.6 0.561474 681.421 9501.82 17,962.9

γ T ∗
2 Q∗ ATC∗

2
d2ATC2
dT 2

h T ∗
2 Q∗ ATC∗

2
d2ATC2
dT 2

0.5 0.691230 743.19 7316.46 6011.97 10 0.484643 506.06 8692.95 18,167.8

1.0 0.693689 773.94 7372.48 5082.55 15 0.392299 405.13 9759.30 34,958.1

1.5 0.697770 807.61 7427.78 4082.05 20 0.337902 346.89 10,658.40 55,307.8

2.0 0.705313 847.73 7482.28 2934.36 25 0.301143 308.00 11,449.80 78,664.2

2.5 0.726450 913.21 7535.68 1254.86 30 0.274207 279.72 12,164.60 104,675.0

M T ∗
2 Q∗ ATC∗

2
d2ATC2
dT 2

P T ∗
2 Q∗ ATC∗

2
d2ATC2
dT 2

1.3 0.805867 882.82 7792.38 4567.73 50 0.463582 482.80 7006.13 11,441.5

1.5 0.884172 982.01 8079.28 3714.19 60 0.510328 534.65 7105.01 10,017.1

1.7 0.968021 1092.0 8344.80 2884.79 70 0.555767 585.80 7182.63 8820.12

1.9 1.064740 1224.0 8589.47 2009.69 80 0.600638 637.10 7242.31 7780.91

2.1 1.205160 1426.6 8811.20 853.285 90 0.645582 689.3 7286.37 6855.08

Note Some graphs on sensitivity investigations are provided in the Appendix II.

From the above Table 3 following inferences can be summarized.

(i) Increase of c, β and h lead, decrease in T ∗
3 , Q

∗ and increase in ATC∗
3 .It shows that

T3* and Q* move opposite to c, β and h, while ATC3* move alike to c, β and h.
(ii) On increasing α, diminish in T3*, while increase in Q*and ATC3*.
(iii) On increasing γ ,A,P and M , increase in T ∗

3 , Q
∗ and ATC∗

3 . It shows that parameters
and optimal values move the similar way.

Conclusion and Future Research

In this study EOQ models are developed for deteriorating commodities with stock-linked
demand considering three dissimilar situations. We assumed that spoilage rate is constant.
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Table 3 Variation of T3*, Q* and ATC3* with various parameters

C T ∗
3 Q∗ ATC∗

3
d2ATC3
dT 2

α T ∗
3 Q∗ ATC∗

3
d2ATC3
dT 2

10 0.443033 368.191 10,577.5 16,582.1 1000 0.475894 496.38 7995.92 15,600.50

15 0.416500 345.052 14,726.1 20,685.7 1200 0.472106 744.57 11,951.70 23,638.60

20 0.395477 326.844 18,863.2 24,751.9 1400 0.470204 992.76 15,907.30 3678.800

25 0.378143 311.911 22,991.4 28,806.8 1600 0.469059 1222.1 19,862.90 39,720.20

30 0.363449 299.308 27,112.3 32,865.2 1800 0.468295 1466.5 2388.40 47,761.90

A T ∗
3 Q∗ ATC∗

3
d2ATC3
dT 2

β T ∗
3 Q∗ ATC∗

3
d2ATC3
dT 2

100 0.499549 418.098 6356.11 11,724.2 0.2 0.467544 398.882 6670.40 14,420.6

200 0.533008 448.067 6729.74 10,746.8 0.3 0.457343 398.499 6948.54 16,689.7

300 0.565203 477.218 6911.81 9892.40 0.4 0.498020 398.445 7249.60 19,197.7

400 0.596417 505.789 7083.94 9131.47 0.5 0.439456 398.676 7575.36 21,953.2

500 0.626880 533.975 7247.39 8443.25 0.6 0.431533 399.134 7927.71 23,127.5

γ T ∗
3 Q∗ ATC∗

3
d2ATC3
dT 2

h T ∗
3 Q∗ ATC∗

3
d2ATC∗

3
dT 2

1.0 0.482570 410.505 6423.87 6011.97 10 0.428150 355.189 6768.65 17,437.9

1.5 0.487307 422.643 6433.73 5082.55 15 0.348708 286.714 7529.01 32,672.7

2.0 0.493353 436.600 6442.97 4082.05 20 0.301285 246.519 8171.73 51,020.7

2.5 0.501545 453.520 6451.42 2934.36 25 0.269004 219.421 8738.29 72,011.3

3.0 0.514038 476.312 6458.76 1254.86 30 0.245242 199.602 9250.51 95,339.8

M T ∗
3 Q∗ ATC∗

3
d2ATC3
dT 2

P T ∗
3 Q∗ ATC∗

3
d2ATC3
dT 2

0.5 0.341089 280.22 5541.35 18,360.3 10 0.189170 153.23 5231.30 36,991.80

1.0 0.478720 399.60 6413.49 12,386.9 20 0.246177 200.38 5536.03 28,054.40

1.5 0.596806 506.15 7108.68 9149.72 30 0.293502 239.97 5763.63 2312.500

2.0 0.709844 612.35 7752.45 6829.61 40 0.335466 275.44 5944.93 19,795.00

2.5 0.827482 727.90 8199.58 4875.97 50 0.374040 308.39 6094.05 17,329.50

Mathematical formulations are provided for three models to find optimal solution and cor-
responding examples are conversed to validate the EOQ models.

This paper also offered a realistic submission illustration, in which the projected EOQ
model is employed to hold up trade assessment. Mainly, the model presented in the learning
could be helpful in the area of supply string administration. Our consequence demonstrates
that this model can be relatively functional in determining the best possible ordering strategy,
in which the permitted delay period is being investigated. The planned model can be used in
inventory control of convinced decomposing commodities such as pictorial film, electronic
components, and radioactive equipments which display stock-sensitive utilization.

Sensitivity examination with the variation of several parameters is also conversed from
managerial point of view. Following main point will be kept in mind for vendors and buyers.

(i) Purchase cost, optimal cycle time, order quantity and total cost do not move in the
same direction, it means that vendor and buyer has to take precaution during transaction
process.
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(ii) Deterioration rate, optimal cycle time and total cost of all time cases are uniform.

A usual generalization of the model would be to study that the case of gaps in the trade
credit periods. In addition, this research can be generalized for deteriorating items with a
two-parameter Weibull distribution. The planned model can further integrate more sensible
suppositions, such as stochastic demand and trapezoidal fuzzy demand. The study can be
extended by taking into account discount, shortage and time value money. The consideration
of price-sensitive demand is another fulltime research direction. We may also generalized by
taking deterioration is variable etc.

Appendix I

Solution of (1), using condition I (T ) � 0 is given by:

I (t) � Tα

{
1 +

βT

2
+
T 2

6

(
β2 + γ

)} − α

{
1 + βT +

β2T 2

2
+

βT 3

6

(
β2 + γ

)}
t

− α

2

{
−β + T

(
γ − β2) + βT 2

2

(
γ − β2) + T 3

6

(
γ 2 − β4)}t2

− α

{
β2

6
+
2

3
γ − βγ T

2
− β2γ T 2

4
− βγ T 3

12

(
γ + β2)}t3, (A1)

NTC1(T ) � IkCα
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6
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2
(
β2 + γ
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+ 9β
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+
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{−6β + 6T
(
γ − β2) + 3βT 2(γ − β2) + T 3}]

− Ie Pα
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)}]
, (A2)

ATC1(T ) � A

T
+
hα

6

[
3T + βT 2 +

(
β2 − γ

)
T 3] + Cα

T

[
T +

βT 2

2
+
T 3

6

(
β2 + γ

)]

+
IkCα

T

[
T 2

2
+

βT 3

6

{
3 +

(
β2 + γ

)} − M

6

{
12T + T 3(10γ − 8β2)}
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2
(
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12

[
6 + 2βT − β2T 2]

− Ie Pα

[{
1 − M

T
+ βT + β2T 2 +

βT 3

6

(
β2 + γ

)}

− βM

{
1 +

βT

2
+
T 2

6

(
β2 + γ

)} − βT

2

{
1 + βT +

βT 2

2

}

− βM2

2

{
1

T
+ β +

β2T

2
+

βT 2

6

(
β2 + γ

)}

+
β

3

{
β

2
T 2 − T 3

2

(
γ − β2)}

+
βM3

3

{
− β

2T
+

(
1

2
+

βT

4
+
T 2

12

(
β2 + γ

))(
γ − β2)}]

, (A4)

ATC2(T ) � A

T
+
hα

6

[
3T + βT 2 +

(
β2 − γ

)
T 3] + Cα

T

[
T +

βT 2

2
+
T 3

6

(
β2 + γ

)]

− Ie PαT

12

[
6 + 2βT − β2T 2] − Ie Pα

[{
1 − M

T
+ βT + β2T 2 +

βT 3

6

(
β2 + γ

)}

− βM

{
1 +

βT

2
+
T 2

6

(
β2 + γ

)} − βT

2

{
1 + βT +

βT 2

2

}

− βM2

2

{
1

T
+ β +

β2T

2
+

βT 2

6

(
β2 + γ

)}

+
β

3

{
β

2
T 2 − T 3

2

(
γ − β2)}

+
βM3

3

{
− β

2T
+

(
1

2
+

βT

4
+
T 2

12

(
β2 + γ

))(
γ − β2)}]

, (A5)

NTC3(T ) � IkCβ

2Tα2

[
3(1 − μ) +

β2(1 − μ)2

2α2 +
β2

(
β2 − γ

)
(1 − μ)3

4α4

]

− IkCμβ(1 − μ)

2

[
1 +

βT

2
+
T 2

6

(
β2 + γ

)] − Ie PαT

12

(
6 + 2βT − β2T 2)

−Ie Pα

[{
1 − M

T
+ βT + β2T 2 +

βT 3

6

(
β2 + γ

)} − βM

{
1 +

βT

2
+
T 2

6

(
β2 + γ

)}

−βT

2

{
1 + βT +

βT 2

2

}
− βM2

2

{
1

T
+ β +

β2T

2
+

βT 3

6

(
β2 + γ

)}
+

βT 2

6

{
β − (

γ − β2)T }

+
βM3

2

{
− β

2T
+

(
1

2
+

βT

4
+
T 2

12

(
β2 + γ

))(
γ − β2)}]

,

(A6)

123



Int. J. Appl. Comput. Math (2021) 7 :43 Page 13 of 19 43

ATC3(T ) � A

T
+
hα

6

[
3T + βT 2 +

(
β2 − γ

)
T 3] + Cα

T

[
T +

βT 2

2
+
T 3

6

(
β2 + γ

)
+
IkC

T

[
3β(1 − μ)

2α2 +
β3(1 − μ)2

4α4 +
β3

(
β2 − γ

)
(1 − μ)3

8α6

]

− IkCμβ(1 − μ)

2T

[
T +

βT 2

2
+
T 3

6

(
β2 + γ

)] − Ie PαT

12

[
6 + 2βT − β2T 2]

−Ie Pα

[{
1 − M

T
+ βT + β2T 2 +

βT 3

6

(
β2 + γ

)} − βM

{
1 +

βT

2
+
T 2

6

(
β2 + γ

)}

−βT

2

{
1 + βT +

βT 2

2

}
− βM2

2

{
1

T
+ β +

β2T

2
+

βT 3

6

(
β2 + γ

)}

+
βT 2

6

{
β − (

γ − β2)T }
+

βM3

2

{
− β

2T
+

(
1

2
+

βT

4
+
T 2

12

(
β2 + γ

))(
γ − β2)}]

.

(A7)

Differentiating (A3), (A5) and (A7), we get
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Again differentiating (A8), (A9) and (A10), we get
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Appendix II

Graph of Case 1

See Figs. 4 and 5.

Fig. 4 Graph between C and ATC*

Fig. 5 Graph between A and ATC*
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Graphs of Case 2

See Figs. 6 and 7.

Fig. 6 Graph between C and ATC*

Fig. 7 Graph between A and ATC*
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Graphs of Case 3

See Figs. 8 and 9.

Fig. 8 Graph between C and ATC*

Fig. 9 Graph between A and ATC*
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