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Abstract
In this paper, we seek the exact and numerical solutions using Lie group analysis for one
dimensional unsteady adiabatic flow in a self-gravitating ideal gas behind a cylindrical shock
wave with axial magnetic field. With the help of Lie group analysis, the one-dimensional
optimal system of sub-algebra is obtained for the system of equations of motion. With the
help of optimal classes of infinitesimal generators, we constructed the similarity variable
and transformation of the flow variables, which convert the system of partial differential
equations into system of ordinary differential equations. In three particular cases, we have
derived a general framework to solve the fundamental equations and exact feasible solutions
are obtained. In two cases, the similarity solutions with exponential law and power law shock
path are discussed. The similarity solution is obtained using numerical method in the case of
power law shock path. It is obtained that the increase in the values of magnetic field strength
and adiabatic index have the decaying effect on the shock wave. Also, increase in the strength
of shock wave is witnessed with the rise in the gravitation parameter value. The effects of
variation of magnetic field strength, adiabatic exponent and gravitational parameter on the
flow variables are analyzed graphically.

Keywords Shock waves and blast waves · Magnetogasdynamics and electrodynamics ·
Self-gravitating gas · Ideal gas · Similarity solution · Lie group theoretic method

Introduction

The study of non-linear PDEs exhibit a great variety of non-linear phenomena, arise in various
fields such as astrophysics, fluidmechanics, plasma physics, condensedmatter physics, solid-
state physics, etc. Therefore, finding analytical (exact) or numerical solutions for the systemof
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non-linear PDEs related to the physical phenomena in fluid physics and general relativity, etc.,
are of great importance for the physical insight. Various model equations have been solved
by the numerical methods such as, Sedov [1] and Carrus et al. [2] obtained the numerical
solutions for adiabatic flow in a gravitating gas, independently. The self-similarity solution
for the propagation of shock wave in the presence or absence of gravitational effects with
radiation heat flux and heat conduction was obtained by Vishwakarma and Singh [3]. The
similarity solution for flowbehind amagnetogasdynamics (MGD) shockwave in a gravitating
gas driven by a moving piston was discussed in [4]. The propagation of MGD shock wave
in a self-gravitating gas in the case of exponential law shock path have been studied in [5,6].

In general, determining the exact solution of non-linear equations especially the system
of non-linear PDEs is a very difficult task, and only in some appropriate cases, one can get
the solution explicitly [7,8]. Moreover, the study of propagation of shallow-water waves and
optical fibers, nonlinear and super-nonlinear travelingwaves, solitons, shockwaves, etc., have
experienced over the past decades. Ivanova [9] has been determined all classes of solutions
using Lie symmetry analysis of 2-D Burgers equation with variable-coefficient. The obtained
solution can be employed for modeling the formation and decay of non-planar shock waves.

In the literature, there are different methods for studying and finding the solutions of
linear or non-linear PDEs, but only in precise cases, it is possible to find the solutions. Lie
group theoretic method, developed by Sophus Lie pioneered, one of the systematic methods
for obtaining the class of solutions for systems of non-linear PDEs. The application of Lie
group theoretic method, for study non-linear models, is one of the effective methods that
answer the difficult problem developed in the past few years described in the papers [10–14].
Lie symmetry analysis is used to obtain a similarity variable and transformation of the flow
variables, that converted the set of PDEs into ODEs, which are generally non-linear. There
are some particular cases, in which we have to solve these ODEs. However, in most of the
cases, the differential equations are solved by numerical methods.
Donato [15] has studied the similarity analysis and non-linear wave propagation. In [15]
author has reduced a quasi linear hyperbolic systems of PDEs in conservative form into
autonomous form using the stretching group of transformation under suitable conditions.
Torrisi [16] has obtained the similarity solutions for wave propagation in polytropic gas. In
[16] the Lie group analysis is used to reduce the governing equations in autonomous form and
the exact solution of theZND (Zel’dovic,VonNewmann,Doering)model for detonationwave
has been also obtained. Donato and Oliveri [17] have reduced the set of equations like Eqs.
(1)–(5) of our considered problem under the suitable conditions to autonomous form using
Lie group analysis and by introducing canonical variables and obtained the exact solutions
of axis-symmetric magnetohydrodynamic (MHD) equations. Using substitution principles
and Lie group analysis Oliveri and Speciale [18,19] have applied the different approach to
study the unsteady equations of ideal gas and ideal magnetogasdynamic equations.
Bira and Sekhar [20] obtained the exact solutions of the isentropic magnetogasdynamic
problem using Lie group analysis. The exact similarity solution using the product solution
of progressive wave (Mc Vittie [21]), for MHD shock wave in a non-ideal gas with radiation
pressure, radiation energy and radiation heat flux under the gravitational field in spherical
geometry was discussed in [22]. Recently, Liu and Zhang [23] have been obtained the exact
solutions using group theoretic method for coupled four systems of non-linear PDEs which
have many real-life applications. In real physical problems, they have presented the point
symmetries of the system and based on the system reductions exact solutions are discussed
in detail. They have reduced exact solutions in terms of the power series forms (using power
series method) and the infinite-dimensional vector field. Some other important works related
to group theoretic method can be found in [24–26].
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In all of the works, mentioned above, the exact as well as numerical solutions using the
group symmetric analysis for the propagation of shock wave with axial magnetic field in a
self-gravitating medium has not been studied as known to us, whereas the given model has
various applications in many areas as, astrophysics, space science, plasma physics, nuclear
physics, etc. The solutions might be a significant role in the study of γ - ray burst, the central
part of star-burst galaxies, solar winds, cloud-cloud collisions, supernova explosions, etc.

The main objective of this study is, to obtain the exact solutions as well as numerical
solution using the Lie group analysis for 1-D unsteady cylindrical shock wave propagation
in a self-gravitating ideal gas, subject to the axial magnetic field. Lie group analysis is used
for constructing the similarity variables and similarity transformations for the flow variables
which convert the set of PDEs intoODEswith the unknown function of the similarity variable.
The exact solutions are obtained in three particular cases and numerical solutions in two cases.
The set of PDEs are reduced into set of ODEs and these ODEs can be solved numerically.
The cases with exponential law and power law shock paths, in which numerical solutions
are possible. This is the main advantage of group theoretic method that we can obtained the
numerical solutions inmore number of cases, whereas themethod of dimensionality provides
the numerical solution in only one case. In our works, the numerical solution for shock wave
propagation in a cylindrical geometry with shock path varying as power law are worked out
in detail using forth order Runge-Kutta method. The effect of physical parameters such as,
gravitational parameter, magnetic field strength and adiabatic index on the shock strength
and on the flow-fields are discussed. Solutions of gravitating and non-gravitating cases are
also compared with each other.

Model Equations

The model equations for 1-D, unsteady cylindrical symmetric flow of a self-gravitating gas
in which an axial magnetic field is permeated can be expressed as [3–5,27]

∂ρ

∂t
+ ∂(uρ)

∂r
= −ρu

r
, (1)

∂u

∂t
+ u

∂u

∂r
+ 1

ρ

[
μh

∂h

∂r
+ ∂ p

∂r

]
= −Gm

r
, (2)

∂ p

∂t
+ u

∂ p

∂r
+ γ p

r

∂(ur)

∂r
= 0, (3)

∂h

∂t
+ ∂(uh)

∂r
= −uh

r
, (4)

∂m

∂r
− 2πρr = 0, (5)

where r is space coordinate and t is time coordinate; ρ the density, p the pressure, u the
velocity, h the axial magnetic field, m the mass and μ the magnetic permeability.
The equation of state for perfect gas is taken to be

p = RρT and em = p

ρ(γ − 1)
, (6)

where (em) is internal energy per unit mass; R is the universal gas constant and T is temper-
ature.
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Let us consider that the position of shock wave is r = R(t), propagating with the speed

V = dR

dt
into a medium described as

u = 0, ρ = ρ1(r), p = p1(r), h = h1(r), m = m1(r), (7)

here the subscript ‘1’ refers the condition just in front of the shock.
The jump conditions, across the shock front at theMGD shock wave are derived by taking

laws of conservation of momentum, mass and energy [4,6], namely,

ρ1V = ρ2(V − u2),

h1V = h2(V − u2),

p1 + 1

2
μh21 + ρ1V

2 = p2 + 1

2
μh22 + ρ2(V − u2)

2,

em1 + p1
ρ1

+ 1

2
V 2 + μh21

ρ1
= em2 + p2

ρ2
+ 1

2
(V − u2)

2 + μh22
ρ2

,

m1 = m2, (8)

where the subscript ‘2’ represents the conditions just behind the shock front.
If, the shock wave is strong, then p ≈ 0, em1 ≈ 0. From Eq. (8), shock conditions reduced
to conditions for strong shock as

ρ2 = ρ1

β
,

u2 = (1 − β)V ,

p2 =
[
(1 − β) + M−2

a

2

(
1 − 1

β2

)]
ρ1V

2,

h2 = h1
β

,

m2 = m1, (9)

where Ma =
(

ρ1V 2

μh21

) 1
2

is the Alfven-Mach number.

The expression of density ratio β (0 < β < 1) is derived by solving the equation given below

β2 − β

(γ + 1)

[
γ

(
1

M2
a

+ 1

)
− 1

]
+

(
γ − 2

γ + 1

)
1

M2
a

= 0. (10)

Similarity Analysis

To find the similarity solution, Let, consider one parameter group under which the set of Eqs.
(1)–(5) are invariant (see [11,13]):

r̃ = r + εχ + O(ε2), t̃ = t + εψ + O(ε2), ρ̃ = ρ + ε
 + O(ε2), ũ = u + εU + O(ε2),

p̃ = p + εP + O(ε2), m̃ = m + εF + O(ε2), h̃ = h + ε� + O(ε2),

(11)
where the generators ψ, χ, U , 
, �, F and P are the function of r , t, u, ρ, h, m
and p resp. The entity ε is a small parameter. If, it is possible to find such a group permits
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us to reduce the number of independent variables in the problem by one, thereby the set of
PDEs (1)–(5) transformed into a set of ODEs. Now, consider r1 = t, r2 = r , v1 = ρ, v2 =
u, v3 = p, v4 = h, v5 = m and pij = ∂vi/∂r j , where i = 1 to 5 and j = 1, 2. Using
summation convention, the set of Eqs. (1)–(5) can be written as

Hk(r j , vi , pij ) = 0 (k = 1 to 5),

under the group of transformation (11) the system given above is conformally invariant, if
there exist constants σks (s, k = 1 to 5) s. t. for all smooth surfaces, vi = vi (r j ), we have

LHk = σks Hs, (12)

where the Lie derivative L is defined as

L = ξ
j
r

∂

∂r j
+ ξ iv

∂

∂vi
+ ξ ip j

∂

∂ pij
, (13)

with ξ1r = ψ , ξ2r = χ , ξ1v = 
, ξ2v = U , ξ3v = P , ξ4v = �, ξ5v = F and the generators of the
derivative transformations is given by

ξ ip j
= ∂ξ iv

∂r j
+ ∂ξ iv

∂vk
pkj − ∂ξ lr

∂r j
pil − ∂ξ lr

∂vn
pil pnj (n = 1 to 5, l = 1, 2), (14)

Using Eq. (13) in Eq. (12), we have

∂Hk

∂r j
ξ
j
r + ∂Hk

∂vi
ξ iv + ∂Hk

∂ pij
ξ ip j

= σks Hs (k = 1, 2, ..., 5 and s = 1, 2, ..., 5). (15)

Substitution of ξ ip j
from Eq. (14) into the Eq. (15) gives a polynomial in pij . Equating

the coefficients of pij and pij p
k
l both sides give the linear first-order system of PDEs in

term of generators. The obtained equations, is the set of over-determining equations of the
invariance group which can be solved to get the invariance group (11). If the above procedure
is implemented for Eqs. (1)–(5), yield the set of over-determining equations. We find the
generators of the group transformations by solving the obtained set of over-determining
equations:

ψ = b + at, χ = (2a + σ22)r , 
 = −2aρ, U = (a + σ22)u,

P = 2σ22 p, � = σ22h, F = 2(σ22 + a)m, (16)

where σ22, a and b are arbitrary constants.
The Eq. (16) for infinitesimal generators admits a 3-dimensional Lie algebra with the fol-
lowing generators:

Z1 = 2r
∂

∂r
+ t

∂

∂t
− 2ρ

∂

∂ρ
+ u

∂

∂u
+ 2m

∂

∂m
, Z2 = r

∂

∂r
+ u

∂

∂u
+ 2p

∂

∂ p
+ h

∂

∂h
+ 2m

∂

∂m
,

Z3 = ∂

∂t
. (17)

Symmetries and the Optimal System

In this section, we investigated the optimal system of equations of motion with the aid of
the method as discussed in [28,29]. The commutation relations of Lie algebra determined
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Table 1 Commutator Table [Zα, Zτ ] Z1 Z2 Z3

Z1 0 0 −Z3
Z2 0 0 0

Z3 Z3 0 0

Table 2 Adjoint Table Ad exp(εα Zα)Zτ Z1 Z2 Z3

Z1 Z1 Z2 eε1 Z3
Z2 Z1 Z2 Z3
Z3 Z1 − ε3Z3 Z2 Z3

by Zα, α = 1, 2, 3 are depicted in Table 1. It is obvious that Zα is closed under the Lie
bracket.

where the entry α is used for row and τ are coloum. Therefore, we have

[Zα, Zτ ] = ZαZτ − Zτ Zα. (18)

Furthermore, we can compute the adjoint representations of the vector fields. With the help
of the Lie series, we constructed adjoint representation in Table 2 as given below

Ad exp(εαZα)Zτ = Zτ − εα[Zα, Zτ ] + ε2α

2
[Zα, [Zα, Zτ ]], (19)

where εα is arbitrary constant and α, τ = 1, 2, 3.
By using the Table 2 as given above, we obtain the adjoint matrix A by applying the

adjoint actions of Z1, Z2 and Z3 to general element Z which is given as

Z = a1Z1 + a2Z2 + a3Z3, (20)

where a1 = a, a2 = σ22, a3 = b.

Ad exp(ε1Z1)(a1Z1 + a2Z2 + a3Z3)

= a1Ad exp(ε1Z1)Z1 + a2Ad exp(ε1Z1)Z2 + a3Ad exp(ε1Z1)Z3

= a1Z1 + a2Z2 + eε1 Z3

= (a1, a2, a3)

⎛
⎝ 1 0 0
0 1 0
0 0 eε1

⎞
⎠

⎛
⎝ Z1

Z2

Z3

⎞
⎠ . (21)

The above equation is written as

Ad exp(ε1Z1)(a1Z1 + a2Z2 + a3Z3) = (a1, a2, a3)A1(Z1, Z2, Z3)
T , (22)

superscript T denotes the transpose of matrix.

where A1 =
⎛
⎝ 1 0 0
0 1 0
0 0 eε1

⎞
⎠ . (23)

Ad exp(ε2Z2)(a1Z1 + a2Z2 + a3Z3)

= a1Ad exp(ε2Z2)Z1 + a2Ad exp(ε2Z2)Z2 + a3Ad exp(ε2Z2)Z3
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= a1Z1 + a2Z2 + eε1 Z3

= (a1, a2, a3)

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝ Z1

Z2

Z3

⎞
⎠ , (24)

where A2 =
⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠ . (25)

Ad exp(ε3Z3)(a1Z1 + a2Z2 + a3Z3)

= a1Ad exp(ε3Z3)Z1 + a2Ad exp(ε1Z1)Z2 + a3Ad exp(ε1Z1)Z3

a1(Z1 − ε3Z3) + a2Z2 + eε1 Z3

= (a1, a2, a3)

⎛
⎝ 1 0 −ε3
0 1 0
0 0 1

⎞
⎠

⎛
⎝ Z1

Z2

Z3

⎞
⎠ , (26)

where A3 =
⎛
⎝ 1 0 −ε3
0 1 0
0 0 1

⎞
⎠ . (27)

Thus, by using Eqs. (23), (25) and (27), we obtain the general adjoint transformation matrix
A as

A = A1A2A3 =
⎛
⎝ 1 0 −ε3
0 1 0
0 0 eε1

⎞
⎠ . (28)

To obtain the optimal system ( see [28] ) , we have

1

a
A(α1, α2, α3)

T = (β1, β2, β3)
T

or

1

a

⎛
⎝α1 − ε3α3

α2

eε1α3

⎞
⎠ =

⎛
⎝β1

β2

β3

⎞
⎠ , (29)

where a �= 0, β = (β1, β2, β3) → (a1, a2, a3).
Now, using Eq. (29), one can start to construct the optimal system, we have the following

different cases:

Case (i) when α1 �= 0, α2 = 0, α3 = 0, then by choosing α1 = a, we obtain the
β = (1, 0, 0). Therefore, the generator is W1 = Z1.
Case (ii) when α2 �= 0, α1 = 0, α3 = 0, then choosing α2 = a, we find the β =
(0, 1, 0). Therefore, the generator is W2 = Z2.

Case (iii) when α3 �= 0, α1 = 0, α2 = 0, by choosing ε1 = log
aa3
α3

, ε3 = − aa1
α3

, we

find the β = (a1, 0, a3). Therefore, the generator is W3 = a1Z1 + a3Z3.
Case (iv) when α1 �= 0, α2 �= 0, α3 = 0, by choosing α1 = aa1, α = aa2, we find the
β = (a1, a2, 0). Therefore, the generator is W4 = a1Z1 + a2Z2.

Case (v) when α1 �= 0, α2 = 0, α3 �= 0, by choosing ε1 = log
a

α3
, ε3 = α1

α3
, we find

the β = (0, 0, 1). Therefore, the generator is W5 = Z3.
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Case (vi) when α1 = 0, α2 �= 0, α3 �= 0, by choosing ε1 = log
aa3
α3

, ε3 = aa1
α3

, α2 =
aa2,wefind theβ = (a1, a2, a3). Therefore, the generator isW6 = a1Z1+a2Z2+a3Z3.

Case (vii) when β1 = 0, by choosing α1 = ε3α3, ε1 = log
aa3
α3

, α2 = aa2, we find the

β = (0, a2, a3). Therefore, the generator is W7 = a2Z2 + a3Z3.

Collecting all the representatives from seven cases given above, We have the seven optimal
classes as follow W1 = Z1, W2 = Z2, W3 = a1Z1 + a3Z3, W4 = a1Z1 + a2Z2, W5 =
Z3, W6 = a1Z1 + a2Z2 + a3Z3, W7 = a2Z2 + a3Z3. Out of seven optimal classesW4,W6

are same and W1, W3 are same because the optimal classes W6 and W3,reduces the optimal
classes W4 and W1 by using translation property respectively. Therefore, the five optimal
classes W1, W2, W4, W5 and W7 are obtained. The similarity solutions corresponding to
the five optimal classes are discussed below:

Similarity Solutions

In order to construct the solution for the system of Eqs (1)–(5), we derive similarity variable
and the corresponding the transformation for the flow variables, by which the set of PDEs
(1)–(5), are converted into the set of ODEs. Hence, by solving the obtained ODEs, we can
predict the shock strength for the shock wave propagation and the nature of flow variables
corresponding to different shock path (power law shock path and exponential law shock
path). In the present article, we have study the all possible solutions in the following different
cases:

Case I :when infinitesimal generator isW1 = 〈Z1〉 = 〈2r ∂

∂r
+t

∂

∂t
−2ρ

∂

∂ρ
+u

∂

∂u
+2m

∂

∂m
〉

orW3 =< a1Z1 + a3Z3 >= 〈2ar ∂

∂r
+ (at + b)

∂

∂t
− 2aρ

∂

∂ρ
+ au

∂

∂u
+ 2am

∂

∂m
〉, then by

using the shifting property in W3 for r and t defined by r̃ = r , t̃ = t + b/a, does not alter
the system of Eqs. (1)–(5). Therefore, W3 is rewritten in new variables r̃ and t̃ , we obtain
aW1 after dropping the tilde sign.
Therefore, the characteristic equation associated with W3 or W1 is

dt

2r
= dr

t
= dρ

−2ρ
= du

u
= dp

0
= dh

0
= dm

2m
. (30)

Integration of Eq. (30), gives the similarity variable and the dependent variables as

η= r

t2
, ρ = t−2
∗(η), u=U∗(η)t, p = P∗(η), h = �∗(η), m = t2F∗(η).

(31)

Substitution of Eq. (31) into the PDEs (1)–(5), gives the set of ODEs after dropping the
asterisk sign becomes:

(U − 2η)

′ − 2
 + 
U

′ + 
U

η
= 0, (32)

U + (U − 2η)U
′ + 1



P

′ + μ�



�

′ + G F

η
= 0, (33)

(U − 2η)P
′ + γ PU

′ + γ PU

η
= 0, (34)
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(U − 2η)�
′ + �U

′ + �U

η
= 0, (35)

F
′ − 2πη
 = 0, (36)

where prime represents the differentiation w.r.t. eta (η).
By solving the above Eqs. (32)–(36) for γ = 2, we obtained the solution as given below


 = c1, U = η, P = c2η
4, � = c3η

2, when G = 0 and 2c2 + μc23 = 0,
(37)

where c1, c2, c3 are constants of integration.
Now using Eq. (31) in equation (37) we obtain the solution of Eqs. (1)–(5) respectively, as
follow:

ρ = c1t
−2, u = r

t
, p = c2

r4

t8
, h = c3

r2

t4
, when G = 0 and 2c2 + μc23 = 0.

(38)

Case II : when infinesimal generator is W5 = Z3 = ∂

∂t
, therefore, the similarity variable

and the flow variables are obtained as

η = r , u = U∗(η), p = P∗(η), h = �∗(η), .ρ = 
∗(η), m = F∗(η).

(39)

Substitution of Eq. (39) into the Eqs. (1)–(5), gives the following set of ODEs after dropping
the asterisk sign:

U

′ + 
U

′ + 
U

η
= 0, (40)

UU
′ + 1



P

′ + μ�



�

′ + G F

η
= 0, (41)

U P
′ + γ PU

′ + γ PU

η
= 0, (42)

U�
′ + �U

′ + �U

η
= 0, (43)

F
′ − 2πη
 = 0. (44)

By solving the above Eqs. (40)–(44) for γ = 2 and G = 0, we obtained the solution as
follow


 = c4
η

, U = c5, P = c6
η2

, � = c7
η

, (45)

where c4, c5, c6 and c7 are constants of integration with the relation 2c6 + μc27 = 0.
The solution of Eqs. (1)–(5) are obtained using Eqs. (39) and (45), given below:

ρ = c4
r

, u = c5, p = c6
r2

, h = c7
r

, when G = 0 and 2c6 + μc27 = 0. (46)

Case III : when infinitesimal generator is W6 = a1Z1 + a2Z2 + a3Z3 or W4 = a1Z1 +
a2Z2, then the dependent variables are obtained as given below

ρ = t−2
∗(η), u = tδ−1U∗(η), p = t2(δ−2)P∗(η),

h = tδ−2�∗(η), m = t2(δ−1)F∗(η), (47)
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where δ = (σ22 + 2a)

a
and the function 
∗, U∗, P∗, �∗ and F∗ depend only on the

similarity variable η given by

η = r

Btδ
. (48)

where B is a dimensional constant.
The Eqs. (1)–(5), convert the following set of ODEs using Eq. (47), which on dropping the
asterisk sign becomes:

− 2
 + (U − δη)

′ + 
U

′ + 
U

η
= 0, (49)

(U − δη)U
′ + (δ − 1)U + 1



P

′ + μ �



�

′ + G F

η
= 0, (50)

2(δ − 2)P + (U − δη)P
′ + γ PU

′ + γ PU

η
= 0, (51)

(δ − 2)� + (U − δη)�
′ + �U

′ + U�

η
= 0, (52)

F
′ − 2πη
 = 0, (53)

The solution of set of Eqs. (1)–(5) are obtained by solving the above set of Eqs. (49)–(53)
for G = 0 and γ = 2 and using Eq. (47), we have

ρ = c8
t2

, .u = r

t
, p = c9r

(
2δ

δ − 1

)

t

(
2
3δ − 2

1 − δ

)

, h = c10r

(
δ

δ − 1

)

t

(
3δ − 2

1 − δ

)

. (54)

Where δ �= 1; c8, c9 and c10 are constants of integration and c9 and c10 are satisfy the relation
2c9 + μc210 = 0.

In all cases (I-III) the exact feasible solution of Eqs. (1)–(5) are possible only in non-
gravitating case. Therefore, we discuss numerical solutions in non-gravitating and gravitating
cases.

Let η = 1 be the shock front position, thus, the shock path R(t) and the shock velocity V
are given by

R = Btδ, V = dR

dt
= δBtδ−1. (55)

The shock conditions at η = 1, are given below

ρ|η=1 = 
∗(1)t−2, u|η=1 = tδ−1U∗(1), p|η=1 = P∗(1)t2(δ−2),

h|η=1 = tδ−2�∗(1), m|η=1 = F∗(1)t2(δ−1). (56)

In view of Eq. (7), suggest the following form of flow variables just in front of the shock are

ρ1 = ρ∗Rθ , h1 = h∗Rλ, m1 = 2πρ∗

(θ + 2)
R(θ+2), (57)

where h∗, ρ∗ are dimensional constants and λ, θ are arbitrary constants.
From Eqs. (55) and (57), we obtain

M2
a = ρ1V 2

μh21
= ρ∗δ2B(θ+2−2λδ)

μh∗2 tδθ+2(δ−1)−2δλ, (58)
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For existence of similarity solutions the M2
a should be constant, therefore,

θδ + 2(δ − 1) = 2λδ. (59)

In view of invariance of jump condition (9), the condition on 
∗, U∗, P∗, F∗ and �∗ at
η = 1, are obtained from Eqs. (55)–(58) are


∗(1) = Bθρ∗

β
, U∗(1) = δ(β − 1)B,

P∗(1) =
[
M−2

a

2

(
1 − 1

β2

)
+ (1 − β)

]
ρ∗δ2Bθ+2,

�∗(1) = 1

βMa

(
ρ∗δ2Bθ+2

μ

)1/2

, F∗(1) = 2πρ∗Bθ+2

(θ + 2)
. (60)

where δ θ + 2 = 0 is required to derive the similarity solution.
Using Eqs. (55), (57) and (58), Eq. (47) can be rewritten as

ρ = ρ1
̂(η), u = VÛ (η), p = ρ1V
2 P̂(η), h

√
μ = √

ρ1V �̂(η), m = m1 F̂(η),

(61)

where


̂(η) = 
∗

ρ∗Bθ
(η), Û (η) = 1

Bδ
U∗(η), P̂(η) = 1

δ2ρ∗Bθ+2 P
∗(η),

�̂(η) = �∗(η)

Bδ

(
μ

ρ∗Bθ

)1/2

, F̂(η) = (θ + 2)F∗(η)

2πρ∗Bθ+2 . (62)

The set of Eqs. (1)–(5) are changed into ODEs using Eq. (61), which on dropping the hat
sign becomes:

θ
 + (U − η)

′ + 
U

′ + 
U

η
= 0, (63)

(U − η)U
′ + (δ − 1)

δ
U + P

′



+ � �

′



+ g F

ηδ2(θ + 2)
= 0, (64)

(
θ + 2(δ − 1)

δ

)
P + (U − η)P

′ + γ PU
′ + γ PU

η
= 0, (65)

(
(δ − 1)+

δ
+ θ

2

)
� + (U − η)�

′ + �U
′ + �U

η
= 0, (66)

F
′ − (θ + 2)η
 = 0, (67)

where g = 2πρ∗GBθ is taken as the gravitational parameter.
The shock jump conditions are obtained using Eqs. (60) and (62) which becomes after

dropping the hat sign


(1) = 1

β
, U (1) = (1 − β),

P(1) =
[

1

2M2
a

(
1 − 1

β2

)
+ (1 − β)

]
,

�(1) = 1

Ma β
, F(1) = 1. (68)
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The flow variables are normalized with their respective values at the shock, as

ρ

ρ2
= 
(η)


(1)
,

u

u2
= U (η)

U (1)
,

h

h2
= �(η)

�(1)
,

p

p2
= P(η)

P(1)
,

m

m2
= F(η)

F(1)
. (69)

The numerical solution of Eqs. (63)–(68) with boundary conditions (68) are obtained in Sect.
6 and results are shown in Figs. 1a–e and 2.

Case IV : when the infinitesimal generator is W7 = a2Z2 + a3Z3 then the dependent
variables and similarity variable are obtained in the form given below

u = eδtU∗(η), ρ = 
∗(η), h = eδt�∗(η), p = e2δt P∗(η), m = e2δt F∗(η), η = r

Aeδt
,

(70)

where δ = σ22

b
; A is the dimensional constant.

The shock path R(t) and the shock velocity V in this case are

R(t) = Aeδt , V = δR, (71)

Therefore, flow variables just in front the shock are taken in the form

ρ1 = ρ∗eθ t , h1 = h∗eλt , m1 = 2π A2δρ∗

(θ + 2δ)
e(θ+2δ)t . (72)

For existence of solutions, Ma should be constant, therefore,

θ + 2δ = 2λ. (73)

The shock jump conditions at η = 1 are obtained using Eqs. (70)–(73) as


∗(1) = ρ∗

β
, U∗(1) = δ(1 − β)A,

P∗(1) = ρ∗A2δ2
[

1

2M2
a

(
1 − 1

β2

)
+ (1 − β)

]
,

�∗(1) = 1

β

(
ρ∗δ2A2

μM2
a

)1/2

, F∗(1) = 2π A2δρ∗

(θ + 2δ)
, (74)

with θ = 0.
From Eqs. (70)–(72), the transformations are in the form

ρ = ρ1
̂(η), u = VÛ (η), p = ρ1V
2 P̂(η), h

√
μ = √

ρ1V �̂(η), m = m1 F̂(η),

(75)

where


̂(η) = 1

ρ∗ 
∗(η), Û (η) = 1

δA
U∗(η), P̂(η) = 1

δ2ρ∗A2 P
∗(η),

�̂(η) =
√

μ�∗(η)

δA
√

ρ∗ , F̂(η) = (θ + 2δ)F∗(η)

2π A2δρ∗ . (76)

Using Eq. (75), the fundamental equations of motion (1)–(5) are converted into the set of
ODEs, after dropping the hat sign becomes:

(U − η)

′ + 
U

′ + 
U

η
= 0, (77)
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(U − η)U
′ +U + P

′



+ ��

′



+ g1F

ηδ2
= 0, (78)

2P + (U − η)P
′ + γ PU

′ + γ PU

η
= 0, (79)

(U − η)�
′ + � +U

′
� + U�

η
= 0, (80)

F
′ − 2δη
 = 0, (81)

where g1 = πρ�G is considered as the gravitational parameter.
In this case, we are not able to obtain the feasible exact solution for any value of γ ;

whereas the numerical solution exist for any value of γ . Thus, in the present case, set of
ODEs (77)–(81), under the jump conditions (68) can be solved numerically to discuss the
behavior of the flow variables.

Case V : when the infinitesimal generator is W2 = Z2 = r
∂

∂r
+ u

∂

∂u
+ 2p

∂

∂ p
+ h

∂

∂h
+

2m
∂

∂m
, then, the similarity variable and the flow variables are obtained as

η = t, ρ = 
∗(η), u = rU∗(η), h = r�∗(η), p = P∗(η)r2, .m = r2F∗(η).

(82)

Using Eq. (82), the set of PDEs (1)–(5), are converted into set of ODEs, after dropping the
asterisk sign become:



′ + 
U = 0, (83)

U
′ + G F = 0, (84)

P
′ + γ PU = 0, (85)

�
′ + U�

η
= 0, (86)

F − π
 = 0. (87)

In this case, we are not able to obtain the feasible exact solution for any value of γ . Also,
numerical solution does not exist using similarity method.

The exact solutions for non-gravitating gas are obtained in cases I-III and presented in
Eqs. (38), (46) and (54). The pressure is negative in all three cases because the constants
appearing in the obtained solution for pressure should be negative for existence of exact
solution. Physically the negative pressure (repulsive action) is generally used in the context
of dark energy, cosmology in astrophysics and astronomy which represents an unknown
form of energy that affects the universe on the largest scales. Also, dark energy is distributed
uniformly in space and cosmological constant of dark energy is non-zero. The simplest
clarification for dark energy is that it is a vacuum energy or cosmological constant that occurs
in space throughout thewholeUniverse. The vacuumenergy is related to the quantumvacuum
(see [30]). The class of solutions in general relativity of importance for astrophysics and
cosmology was studied by Wesson [31]. He has shown that when the pressure in expanding
ideal fluid solutions has to be negative, the mass increases in general. It has become popular
to apply as a model for particle production in the early Universe. The effects of negative
pressure in compact objects, which have an equation of state that shows negative pressure at
the core of the object (see [32]). Also, the self-similar solutions with negative pressure and
violating the strong energy condition were discussed by Carr and Coley [33], which can be
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applicable in the early Universe. Thus, our obtained exact solution may be applicable in the
early Universe and dark energy.

Results and Discussion

To discuss behavior of the flow variable and the strength of shock wave in case III. The
Eqs. (63)–(67), are integrated numerically under the shock conditions (68), using 4th order
Runga-Kutta method between shock front (η = 1) and position of the inner contact surface
η = ηp . The entire computation work has been carried out by using Mathematica software.
The numerical calculations are performed by taking the values of the physical parameters

γ = 4

3
,

5

3
; g = 0, 1, 10; M−2

a = 0, 0.05, 0.1 and θ = −1. We have taken γ = 4

3

for relativistic gases and γ = 5

3
for fully ionized gas, which are applicable to interstellar

medium. These values of adiabatic index γ = 4

3
and

5

3
are taken the most general range

of values which are seen in real stars. The effects of magnetic field on the flow variables
behind the shock front are significant when (1/M2

a ) ≥ 0.01 (see [34]). Thus, the values of
1/M2

a are chosen for calculation as given above. The value g = 0, M−2
a = 0 refers to the

non-gravitating and non-magnetic case.
Tables 3 and 4 depict the variation of the inner contact surface position and density ratio

across the shock front. Table 3 for various values of g and M−2
a for γ = 5

3
; θ = −1; and

Table 4 for various values of γ and M−2
a with g = 10, respectively.

The variation of reduced velocity
u

u2
, reduced density

ρ

ρ2
, reduced axial magnetic field

h

h2
, reduced pressure

p

p2
and reduced mass

m

m2
for M−2

a = 0, 0.05, 0.1; g = 0, 1, 10

with θ = −1 and γ = 5

3
are shown in Fig. 1a–e. The Fig. 2 exhibits the dispersal of flow

variables reduced velocity
u

u2
, reduced pressure

p

p2
,, density

ρ

ρ2
and reduced mass

m

m2
for

γ = 4

3
,
5

3
; M−2

a = 0, 0.05, θ = −1 with g = 10.

Figure 1a–e shown that the reduced mass
m

m2
decreases; whereas the reduced velocity

u

u2
,

density
ρ

ρ2
, pressure

p

p2
and axial magnetic field

h

h2
increase as we move inward to the inner

contact surface from the shock front.

Effects of an Increase in the Value of theMagnetic Field StrengthM−2
a

By increasing the value of the magnetic field strength, the distance between shock front and
inner contact surface and the value of β increases, that is the strength of shockwave decreases

(see Tables 3 and 4). The flow variables
m

m2
and

u

u2
increase; but the flow variables

ρ

ρ2
,
h

h2
and

p

p2
decrease (see Fig. 1a–e).
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Fig. 1 Dispersal of flow variables behind the shock wave for γ = 5

3
with θ = −1: (a) velocity

u

u2
, (b) density

ρ

ρ2
, (c) axial magnetic field

h

h2
, (d) pressure

p

p2
, (e) mass

m

m2
, 1. g = 0 M−2

a = 0; 2. g = 1, M−2
a = 0;3.

g = 10, M−2
a = 0 ; 4. g = 0, M−2

a = .05;5. g = 1, M−2
a = .05;6. g = 10 , M−2

a = .05; 7. g = 0,
M−2
a = .1;8. g = 1, M−2

a = .1; 9. g = 10, M−2
a = .1
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Fig. 1 continued

Effects of an Increase in g

There is a reduction in the distance between the shock front and inner contact surface, when
the value of gravitational parameter g is increased, that is to rise in the shock strength (see

Table 3). The flow variable
m

m2
decreases; whereas the flow variables

h

h2
,
p

p2
,
u

u2
and

ρ

ρ2
increase (see Fig. 1a–e).

Effects of an Increase in the Value of Adiabatic Index �

With an increase in the value of adiabatic index, the distance between the inner contact surface
and shock front increases, i.e. the shock strength decreases an increase in the value of γ (see
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Table 3 The position of inner
contact surface and the density
ratio across the shock front for
various values of g and M−2

a for
γ = 5/3 and θ = −1

Inner contact surface position
M−2
a β g = 0 g = 1 g = 10

0 0.25 0.88391155 0.88875728 0.91428507

0.05 0.301949 0.85741882 0.8633389 0.8939487

0.1 0.34839 0.83349455 0.84058129 0.87643308

Table 4 The position of inner
contact surface and the density
ratio across the shock front for
various values of M−2

a and γ for
θ = −1 and g = 10

M−2
a γ β Inner contact surface position

0 4/3 0.142857 0.9537558

5/3 0.25 0.91428507

0.05 4/3 0.232795 0.9173971

5/3 0.301949 0.893994

Fig. 2 Dispersal of flow variables behind the shock wave for γ = 4

3
, γ = 5

3
; M−2

a = 0, 0.05; and g = 10

with θ = −1: 1. density
ρ

ρ2
, 2. velocity

u

u2
, 3. pressure

p

p2
, 4. axial magnetic field

h

h2
,5. mass

m

m2

Table 4). The flow variables
u

u2
,
p

p2
and

m

m2
increase; whereas the flow variables

h

h2
and

ρ

ρ2
decrease with an increase in γ (see Fig. 2).

Conclusions

In summary, we have used Lie group theoretic method to derive all classes of solutions of
the model Eqs. (1)–(5), that describe an unsteady flow of a cylindrical shock wave with axial
magnetic field in a self-gravitating medium.

The magnetic field has an important role in the formation and evolution of molecular
cloud, supernova explosion, synchrotron radiation from supernova remnants, galactic winds,
etc. Also, we considered that the self-gravitating gas, the consideration of gravitational effect
plays a fundamental role in constructing a quantitative description of equilibrium and motion
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of gas masses that form a star. The consideration of the formation process of astrophysical
objects, (for example - stars and galaxies) the most important factor is self-gravity (Ghanbari
and Abbassi [35]). To find a theoretical explanation for nova and supernova flare-ups, it is
always useful to obtain solutions of the equations for unsteady gas motion with gravitational
effect taken into consideration. Thesemay be considered as themodels reflecting the essential
features of the actual phenomenon of stellar flare-ups (see Sedov [1]).

The group theoretic method is applied to the governing equations, yields the over-
determined equations and solving these over determined equations,weobtain the infinitesimal
group of generators. An optimal system is obtained to construct the similarity variables and
transformations for the flow variables. Using the transformations for the variables the set of
PDEs is transformed into the ODEs. All class of solutions corresponding to the set of ODEs
in possible cases are obtained. These solutions may have various applications in physics and
engineering. The obtained exact solutions are important in the sense that solutions may be
used to check the validity of the numerical solution of a system of PDEs for studying wave
propagation phenomenon using similarity method. The present work is related to the explo-
sion problem which can be used to represent many physical phenomena involving non-linear
hyperbolic PDEs. The shock waves in conducting ideal gas may be important for descrip-
tion of shock wave in explosion in the ionosphere and supernova explosions. Out of the
five different possible cases in which the considered problem have similarity solutions, we
are able to obtain feasible exact solution only in three cases and numerical solutions in the
cases of exponential law and power law shock paths. In the present works we have discussed
the numerical solution in the case of power law shock path. Similarly, we can obtained the
numerical solution for the exponential law shock path. In case V, neither exact nor numerical
solution exist for any value of γ . We conclude as follows, from Table 3 and 4 and Fig. 1a–e
and 2:

1. The strength of shock wave decreases with an increase in the value of the magnetic
field strength and adiabatic exponent; but it increases with an increase in the value of
gravitational parameter.

2. The mass decreases; whereas the density, magnetic field, velocity and pressure increase
in g = 0 and g �= 0 as we approach to inner contact surface from shock front.

3. The flow variables pressure, density, velocity and magnetic field increase; whereas mass
decreases with a rise in the value of gravitational parameter.

4. The increase in the value of M−2
a and g have adverse effect on the pressure, density, mass,

magnetic field and similar effect on the velocity.
5. The profile of the mass, velocity and pressure increase; whereas the density and magnetic

field decrease with an increase in γ . The M−2
a and γ have similar effect on velocity,

magnetic field, mass and density.
6. The increase in the value of g and γ have similar effect on the velocity, pressure and

adverse effect on the magnetic field, mass and density.
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