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Abstract
In continuation of the paper (Pathak and Singh in Int J Wavelets Multiresolut Inf Process
16(4):1850027, 2018). A general construction of biorthogonal wavelets on Sobolev space
over local fields of positive characteristic Hs(K) is given. Some results are discussed. Finally,
we obtain Riesz bases for Hs(K) in form of wavelet under some assumption on the wavelets
and scaling functions where scaling functions depend on levels.

Keywords Wavelets · Multiresolution analysis · Local fields · Sobolev space · Biorthogonal
wavelets · Riesz basis

Introduction

The theory of wavelet on local field and related groups has been developed by Benedetto and
Benedetto [1,2]. Albeverio and Kozyrev [3–5] and their collaborators gave multiresolution
analysis and wavelets on the p − adic field Qp . MRA on a local field is defined by Jiang et
al. [6] and the corresponding orthonormal wavelets are constructed.

These concepts have been extended by Behra and Jahan [7]. Recently, Pathak and Singh
modified the classical definition of multiresolution analysis and constructed orthonormal
wavelets in Sobolev space over local fields of positive characteristic Hs(K) see [8–12].

The theory of biorthogonal wavelets are discussed by Cohen et al. [13], Chui and Wang
[14] and others. The idea of biorthogonal wavelets on local field are discussed by Behra and
Jahan [15].

In [16], biorthogonal wavelets are constructed in Hs(R). In this paper we generalize the
concept of biothogonal wavelets to Sobolev space over K.

This article is divided as follows. Section 2 contains the general notations and definitions.
Also in this section, we give some basic concepts of theory of distributions over local fields
and defined Sobolev space. In Sect. 3 Riesz basis in Hs(K) is given. Section 4 contains

B Ashish Pathak
ashishpathak@bhu.ac.in

Guru P. Singh
gurusinghab9092@gmail.com

1 Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40819-020-0782-0&domain=pdf


25 Page 2 of 13 Int. J. Appl. Comput. Math (2020) 6 :25

multiresolution point of view in Sobolev space. In Sect. 5, it is proved that wavelets associated
with dual MRAs generate Riesz bases for Hs(K).

Notation and Definitions

In this section, we recall some notations and definitions of local fields and distribution over
local fields which will be used throughout the paper. The following list of notation and
definitions are given below :

• Throughout this paper K denotes the local field of positive characteristic.
• dx is the normalized Haar measure for K+.
• |α| is the valuation of α ∈ K. If α �= 0(α ∈ K), then d(αx) is also a Haar measure.

Let d(αx) = |α|dx . Let |0| = 0. The valuation or absolute value has the following
properties:

(i) |x | ≥ 0 and |x | = 0 if and only if x = 0;
(ii) |xy| = |x ||y|;
(iii) |x + y| ≤ max(|x |, |y|).
The condition (iii) is called the ultrametric inequality or non-Archimedean property. It
follows that |x + y| = max(|x |, |y|) if |x | �= |y|.

• We will use following notations for the numbers, Z = set o f integers; N =
set o f natural numbers; N0 = {0, 1, 2, 3, . . .}.

• Let π be a prime element in K.
• For k ∈ Z, Pk = {x ∈ K : |x | ≤ q−k} is a compact subgroup of K+. P0 = D is called

ring of integres in K.
• |Pk | = q−k and |D| = 1.
• χ be a fixed character on K

+ that is trivial on D but is non trivial on P−1. For y ∈ K,
χy(x) = χ(yx), x ∈ K.

• The “natural”order on the sequence is denoted by {w(k) ∈ K}∞k=0 and is described as
follows.
D/P ∼= GF(q) = τ, q = ps, p is a prime, s ∈ N and Ω : D → τ the canonical
homomorphism of D onto τ . τ = GF(q) is a vector space over GF(p) ⊂ τ. We
consider a set {1 = ε0, ε1, . . . , εs−1} ⊂ D

∗ = D\P in such a way that {Ω(εk)}s−1
k=0 is a

basis of GF(q) over GF(p).
For k, 0 ≤ k < q, k = a0 + a1 p + · · · + as−1 ps−1, 0 ≤ ai < p, i = 0, 1, . . . , s − 1,
we define

w(k) = (a0 + a1ε1 + · · · + as−1εc−1)π
−1 (0 ≤ k < q).

For k = b0 + b1q + · · · + brqr , 0 ≤ bi < q, k ≥ 0, we set

w(k) = w(b0) + π−1w(b1) + · · · + π−rw(br ).

• Note that for k, l ≥ 0, w(k + l) �= w(k) + w(l). However, it is true that for all r , l ≥
0, w(rql) = π−lw(r), and for r , l ≥ 0, 0 ≤ t < ql , w(rql + t) = w(rql) + w(t) =
π−lw(r) + w(t).

• For k ∈ N0, we denote χw(k) by χk .
• S(K) is the space of all finite linear combinations of characteristic function of balls of

K. Also S(K) is dense in L p(K), 1 ≤ p < ∞.
• S′(K) is the space of distributions.
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• f̂ (ζ ) is the Fourier transform of f ∈ S(K) and is defined by

f̂ (ζ ) =
∫
K

f (x)χζ (x)dx, ζ ∈ K,

and the inverse transform by

f (x) =
∫
K

f̂ (ζ )χx (ζ )dζ, x ∈ K.

• Let s ∈ R, we denote Sobolev space over local fields by Hs(K) is the space of all
functions in S′(K) such that

γ̂
s
2 (ζ ) f̂ (ζ ) ∈ L2(K), where γ̂ s(ζ ) = (max(1, |ζ |))s .

• The inner product in Hs(K) is denoted by

〈 f , g〉 = 〈 f , g〉Hs (K) =
∫
K

γ̂ s(ζ ) f̂ (ζ )ĝ(ζ )dζ.

• The space S(K) is also dense in Hs(K).

For more details refer to [6,8,17,18].

Riesz Basis in Hs(K)

In this section we give definitions related to Riesz basis and deduce certain results.

Definition 1 Two families of functions {ψk : k ∈ N0} and {ψ̃k : k ∈ N0} in Hs(K) are said
to be biorthogonal if

〈ψk, ψ̃k′ 〉 = δk,k′ for every k, k′ ∈ N0.

A collection {ψk : k ∈ N0} of functions in Hs(K) is said to be linearly independent if for
any l2-sequence {ak : k ∈ N0} of coefficients such that if

∑
k∈N0

akψk = 0 in Hs(K),
then, ak = 0 for all k ∈ N0. It can be easily shown that biorthogonal families are linearly
independent.

Lemma 1 Let {ψk : k ∈ N0} be a collection of functions in Hs(K). Suppose there is a
collection {ψ̃k : k ∈ N0} in Hs(K) which is biorthogonal to {ψk : k ∈ N0}. Then {ψk : k ∈
N0} is linearly independent.
Proof Let {ak : k ∈ N0} be an l2-sequence satisfying∑k∈N0

akψk = 0 in Hs(K). Then for
each k′ ∈ N0, we have

0 = 〈0, ψ̃k′ 〉 =
〈∑
k∈N0

akψk, ψ̃k′

〉
=
∑
k∈N0

ak〈ψk, ψ̃k′ 〉 = ak′ .

Therefore, {ψk : k ∈ N0} is linearly independent. ��
Definition 2 A sequence of functions {gk : k ∈ N0} is called a Riesz basis of Sobolev space
(Hs(K), ‖.‖Hs (K)) if

1. {gk : k ∈ N0} is linearly independent, and
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2. there exist constants A1 and A2 with 0 < A1 ≤ A2 < ∞ such that

A2
1‖h‖2Hs (K) ≤

∑
k∈N0

|〈h, gk〉Hs (K)|2 ≤ A2
2‖h‖2Hs (K) for every h ∈ Hs(K). (1)

If above sequence satisfies the condition in item 2 of Definition 2 then it is called frame of
Hs(K) and the numbers A1 and A2 are called frame bounds.

Remark 1 A sequence of functions {gk}k∈N0 is called a Riesz basis of Sobolev space
(Hs(K), ‖.‖Hs (K)). If for any h ∈ Hs(K) , there is a sequence {ck : k ∈ N0} such that
h = ∑

k∈N0
ckgk which converges in Hs(K) and

A2
1

∑
k∈N0

|ck |2 ≤
∥∥∥∥∥∥
∑
k∈N0

ckgk

∥∥∥∥∥∥
2

Hs (K)

≤ A2
2

∑
k∈N0

|ck |2, (2)

where the constants A1 and A2 satisfy 0 < A1 ≤ A2 < ∞ and independent of h. The right
hand ineqaulity in (1) and (2) is known as the pre-Riesz condition for {gk}k∈N0 .

It can be easly shown that the above two definitions of Riesz bases are euivalent to each
other.

Lemma 2 Let {φ( j)} j∈Z ∈ Hs(K). If {φ j,k = q
j
2 φ( j)(π− j · −w(k)) : k ∈ N0} satisfies the

Riesz condition, we have

A2
j

∑
l∈N0

|cl |2 ≤
∥∥∥∥∥∥
∑
l∈N0

cl gl

∥∥∥∥∥∥
2

Hs (K)

≤ B2
j

∑
l∈N0

|cl |2 (3)

where, 0 < A j ≤ Bj < ∞ and are independent of {cl}l∈N0 . Let

σ 2
φ( j) =

∑
k∈N0

γ̂ s(π− j (ζ + w(k)))|φ̂( j)(ζ + w(k))|2. (4)

Then ,

A j ≤ σ 2
φ( j) ≤ Bj a.e. ζ ∈ K. (5)

Moreover,

|φ̂( j)(π jζ )| ≤ √
Bj γ̂

− s
2 (ζ ). (6)

Proof See [12]. ��

Multiresolution Point of View in Hs(K)

Here we discuss certain results associated to multiresolution analysis in Hs(K).

Theorem 1 Let φ̃( j), φ( j) ∈ Hs(K) and j ∈ Z, then the distribution φ̃ j,k = q
j
2 φ̃( j)(π− j x−

w(k)); k ∈ N0 and φ j,k = q
j
2 φ( j)(π− j x − w(k)) are biorthogonal in Hs(K) if and only if

∑
k∈N0

γ̂ s(π− j (ζ + w(k)))φ̂( j)(ζ + w(k)) ˆ̃
φ( j)(ζ + w(k)) = 1 a.e. (7)
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Moreover, we also have

lim
j→∞ φ̂( j)(π jζ )

ˆ̃
φ( j)(π jζ ) ≤ γ̂ −s(ζ ). (8)

Proof For k ∈ N0 and from the biorthogonality of φ j,k and φ̃ j,k, we have

δk,0 =
〈
q

j
2 φ( j)(π− j · −w(k)), q

j
2 φ̃( j)(π− j ·)

〉
Hs (K)

=
∫
K

γ̂ s(π− jζ )φ̂( j)(ζ )
¯̃̂
φ( j)(ζ )χ̄k(ζ )dζ.

Splitting the integral and using the fact that χk(w(l)) = 1 ∀ l, k ∈ N0, we have

δk,0 =
∫
D

∞∑
l=0

γ̂ s(π− j (ζ + w(l)))φ̂( j)(ζ + w(l)) ˆ̃
φ( j)(ζ + w(l))χ̄k(ζ )dζ. (9)

Since {χk(·)}∞k=0 is a complete basis over D, then from (9) we get required result (7). ��

Theorem 2 Let φ̃( j), φ( j),∈ Hs(K), for every j ∈ Z. Assume that two families φ j,k =
q

j
2 φ( j)(π− j x − w(k)) and φ̃ j,k = q

j
2 φ̃( j)(π− j x − w(k)); k ∈ N0, satisfies pre-Riesz

condition. We condiser the projection map Pj

Pj : Hs(K) → Hs(K), Pj f =
∑
k∈N0

〈 f , φ̃ j,k〉Hs (K)φ j,k .

If lim
j→+∞

¯̂
φ( j)(π jζ )

ˆ̃
φ( j)(π jζ ) = γ̂ −s(ζ ) a.e. then

lim
j→+∞〈Pj f , g〉Hs (K) = 〈 f , g〉Hs (K) for every f , g ∈ Hs(K). (10)

Moreover, for every f ∈ Hs(K),

lim
j→−∞ ||Pj f ||Hs (K) = 0. (11)

Proof For all j ∈ Z, we have

〈Pj f , g〉Hs (K) =
∑
k∈N0

q j
∫
K

γ̂ s(π− jζ ) f̂ (π− jζ )
ˆ̃
φ( j)(ζ )χk(ζ )dζ

∫
K

γ̂ s(π− jζ ) ¯̂g(π− jζ )φ̂( j)(ζ )χ̄k(ζ )dζ

=
∑
k∈N0

q j
∫
K

{∑
l∈N0

∫
D

γ̂ s(π− j (ζ + w(l)))

f̂ (π− j (ζ + w(l))) ˆ̃
φ( j)(ζ + w(l))χk(ζ + w(l))dζ

}

×γ̂ s(π− jζ ) ¯̂g(π− jζ )φ̂( j)(ζ )χ̄k(ζ )dζ.

Since f , g ∈ S(K), so the
∑

l∈N0
contains only finite non-zero terms and χk(w(l)) = 1 for

k, l ∈ N0, then we get
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〈Pj f , g〉Hs (K) =
∑
k∈N0

q j
∫
K

⎛
⎝
∫
D

⎧⎨
⎩
∑
l∈N0

γ̂ s(π− j (ζ

+w(l))) f̂ (π− j (ζ + w(l))) ˆ̃
φ( j)(ζ + w(l))

}
χk(ζ )dζ

)

× γ̂ s(π− jζ ) ¯̂g(π− jζ )φ̂( j)(ζ )χ̄k(ζ )dζ.

By the convergence theorem of Fourier series on D, we obtain

〈Pj f , g〉Hs (K) =
∫
K

γ̂ s(ζ ) f̂ (ζ )
ˆ̃
φ( j)(π jζ ){

∑
l∈N0

γ̂ s

(ζ + π− jw(l)) ¯̂g(ζ + π− jw(l))φ̂( j)(π jζ + w(l))}dζ

=
∫
K

γ̂ 2s(ζ ) f̂ (ζ ) ¯̂g(ζ )
ˆ̃
φ( j)(π jζ )φ̂( j)(π jζ )dζ

+
∫
K

∑
l∈N

γ̂ s(ζ )γ s(ζ + π− jw(l)) f̂ (ζ )

ˆ̃
φ( j)(π jζ ) ¯̂g(ζ + π− jw(l))φ̂( j)(π jζ + w(l))}dζ (12)

= I1 + I2 (say). (13)

Now by using Lemma 2 and Cauchy–Schwarz inequality, we get

|I2| ≤
∫
K

γ̂ s(ζ )| f̂ (ζ )|| ˆ̃φ( j)(π jζ )|
∞∑
k=1

γ̂ s

(ζ + π− jw(k))| ¯̂g(ζ + π− jw(l))||φ̂( j)(π jζ + w(l))|dζ

≤
√
Bj B̃ j

∫
K

γ̂
s
2 (ζ )| f̂ (ζ )|

∞∑
k=1

γ̂
s
2 (ζ + π− jw(k))| ¯̂g(ζ + π− jw(l))|dζ

≤
√
Bj B̃ j

∞∑
k=1

∥∥∥γ̂ s
2 (·) f̂ (·)

∥∥∥
L2(K)

∥∥∥γ̂ s
2 (· + π− jw(k))ĝ(· + π− jw(k))

∥∥∥
L2(K)

.

Again since ĝ ∈ S(K) therefore ∃ l such that support of ĝ(ζ ) is P−l , i.e., if j > l then for
any such l ∈ N , ĝ(ζ + π− jw(l)) = 0. This shows that lim

j→∞ |I2| = 0.

By using the Hypothesis of the theorem, we see that

lim
j→+∞〈Pj f , g〉Hs (K) =

∫
K

γ̂ s(ζ ) f̂ (ζ ) ¯̂g(ζ )dζ

Now, let f ∈ Hs(K). Since we know thatS(K) is dense in Hs(K) so there exists σ(ζ ) such
that

‖ f − σ‖Hs (K) < ε, where σ(ζ ) =
(
γ̂ − s

2 (ζ )ĥ(ζ )
)∨

, and h(ζ ) ∈ S(K). (14)

Therefore,

||Pj ( f − σ)||Hs (K) < ε �⇒ ||Pj f ||Hs (K) < ε + ||Pjσ ||Hs (K). (15)
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So, we only need to show that lim
j→−∞ ||Pjσ ||2Hs (K)

= 0. Now, by using (12) and (14), we

have

||Pjσ ||Hs (K) = sup
‖g‖≤1

|〈Pjσ, g〉Hs (K)| ≤ Bj

√∑
k∈N0

|〈σ, φ̃
( j)
j,k〉|2.

Therefore,

||Pjσ ||2Hs (K) ≤ B2
j

∫
K

γ̂
s
2 (ζ )ĥ(ζ )

ˆ̃
φ( j)(π jζ )

⎧⎨
⎩
∑
l∈N0

γ̂
s
2 (ζ + π− jw(l)) ¯̂h(ζ + π− jw(l)) ˆ̃

φ( j)(π jζ + w(l))

⎫⎬
⎭ dζ.

By Cauchy–Schwarz inequality, we get

||Pjσ ||2Hs (K) ≤ B2
j

∑
l∈N0

(∫
K

γ̂ s(ζ )|ĥ(ζ )|2| ˆ̃φ( j)(π jζ )|2dζ

) 1
2

×
(∫

K

γ̂ s(ζ + π− jw(l))| ¯̂h(ζ + π− jw(l))|2| ˆ̃φ( j)(π jζ + w(l))}|2dζ

) 1
2

.

Since ĥ ∈ S(K), so there exists a characteristic funtion ϕr (ζ −ζ0) of the set ζ0+Pr ,where r
is some integers. Now h can be written as ĥ(ζ ) = q

r
2 ϕr (ζ − ζ0). If ζ +π− jw(k) ∈ ζ0 +Pr ,

then |π− jw(k)| ≤ q−r , hence |w(k)| ≤ q−r− j . Then summation index l is bounded by
q−r− j . So using this, we get

||Pjσ ||2Hs (K) ≤ B2
j q

−r− j
(∫

K

γ̂ s(ζ )|ĥ(ζ )|2| ˆ̃φ( j)(π jζ )|2dζ

) 1
2

≤ B2
j q

−r− j
∫

ζ0+Pr
γ̂ s(ζ )| ˆ̃φ( j)(π jζ )|2dζ

= B2
j q

−r
∫

π− j ζ0+P− j+r
γ̂ s(π− jζ )| ˆ̃φ( j)(ζ )|2dζ.

Therefore there exists j such that

||Pjσ ||Hs (K) < ε.

Hence,

lim
j→−∞ ||Pj f ||Hs (K) = 0 a.e.

��
Now, for every j ∈ Z, we consider that {φ j,k}k∈N0 and {φ̃ j,k}k∈N0 are Riesz bases of its
closed linear span Vj and Ṽ j . For wavelets, we will have Vj ⊂ Vj+1 and Ṽ j ⊂ Ṽ j+1.
Suppose {φ j,k}k∈N0 and {φ̃ j,k}k∈N0 are biorthogonal. Then, Theorem 2 follows that the maps
Pj+1 − Pj are projections onto Wj (Wj = Vj+1 ∩ Ṽ⊥

j ). This leads to a dual multiresolution
analyses of Hs(K),

Vj ⊂ Vj+1, Ṽ j ⊂ Ṽ j+1.
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Correspondingly, since φ( j) ∈ Vj ⊂ Vj+1; φ̃( j) ∈ Ṽ j ⊂ Ṽ j+1, we have

φ( j) =
∑
k∈N0

h( j)
k φ

( j+1)
j+1,k; φ̃( j) =

∑
k∈N0

h̃( j)
k φ̃

( j+1)
j+1,k . (16)

Taking Fourier transform of the Eq. (16), we get

φ̂( j)(ζ ) = m( j+1)
0 (πζ )φ̂( j+1)(πζ ); φ̃( j)(ζ ) = m̃( j+1)

0 (πζ )
˜̂
φ( j+1)(πζ ). (17)

Theorem 3 Let m( j)
0 (ζ ) and m̃( j)

0 (ζ ) given by (17) satisfy

q−1∑
r=0

m( j)
0 (ζ + πw(r)) ¯̃m( j)

0 (ζ + πw(r)) = 1 a.e.

Proof Proof is simple, hence omitted. ��
The functions φ( j), φ̃( j) ∈ Hs(K) are biorthogonal if they satisfy

δk,0 = 〈φ( j)(π− j · −w(k)), φ̃( j)(π− j ·)〉Hs (K). (18)

Above equation in terms of Fourier transform is equivalent to

∑
k∈N0

γ̂ s(π− j (ζ + w(k)))φ̂( j)(ζ + w(k)) ˆ̃
φ( j)(ζ + w(k)) = 1. (19)

We solve it for φ̃( j) ∈ V0, that is,

φ̃( j)(x) =
∑
k∈N0

a( j)
k φ( j)(x − w(k))

so

ˆ̃
φ( j)(ζ ) =

∑
k∈N0

a( j)
k χ̄k(ζ )φ̂( j)(ζ )

= a( j)(ζ )φ̂( j)(ζ ), where a( j)(ζ ) =
∑
k∈N0

a( j)
k χ̄k(ζ ).

Substituting these values in (19), we get

a( j)(ζ ) =
⎛
⎝∑

k∈N0

γ̂ s(π− j (ζ + w(k)))|φ̂( j)(ζ + w(k))|2
⎞
⎠

−1

. (20)

There are many ways to choose φ( j) and φ̃( j) in order to obtain such a result.

Biorthogonality of Wavelets

Let {Vj } j∈Z and {Ṽ } j∈Z be dual MRAs with scaling function φ( j) and φ̃( j) respec-

tively. Following [8], there exist integral periodic functions m( j+1)
0 and m̃( j+1)

0 such that

φ̂( j)(ζ ) = m( j+1)
0 (πζ )φ̂( j+1)(πζ ) and ˆ̃

φ( j)(ζ ) = m( j+1)
0 (πζ )

ˆ̃
φ( j+1)(πζ ). Assume that

there exist integral periodic functions mr and m̃r , 1 ≤ r ≤ q − 1, such that

M ( j)(ζ )(M̃ ( j))∗(ζ ) = I , (21)
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where M ( j)(ζ ) = [m( j)
r1 (πζ +πw(r2))]q−1

r1,r2=0 and M̃ ( j)(ζ ) = [m̃( j)
r1 (πζ +πw(r2))]q−1

r1,r2=0,

j ∈ Z. Now for 1 ≤ r ≤ q − 1, we define the associated wavelets ψ
( j)
r and ψ̃

( j)
r as follows:

ψ̂
( j)
r (π jζ ) = m( j+1)

r (π j+1ζ )φ̂( j+1)(π j+1ζ ) and
ˆ̃
ψ

( j)
r (π jζ ) = m̃( j+1)

r (π j+1ζ )
ˆ̃
φ( j+1)(π j+1ζ ).

Assume that there is M > 0 such that

sup
j∈Z

sup
ζ∈R

|m( j)
r (ζ )| ≤ M, sup

j∈Z
sup
ζ∈R

|m̃( j)
r (ζ )| ≤ M; r ∈ {1, 2, 3, . . . , q − 1}. (22)

In this section, our main aim is to show that the wavelets associated with dual MRAs are
biorthogonal and they form Riesz bases for Hs(K).

For every j and 1 ≤ r ≤ q − 1, we define linear and continuous operators Pj and Q j

from Hs(K) into itself as

Pj f =
∑
k∈N0

〈 f , φ̃ j,k〉Hs (K)φ j,k

and

Q j f =
∑
k∈N0

〈 f , ψ̃r , j,k〉Hs (K)ψr , j,k .

The same can be defined for P̃j and Q̃ j .
It can be easly shown that

Pj+1 − Pj = Q j , (23)

and

f =
q−1∑
r=1

∑
j∈Z

∑
k∈N0

〈 f , ψ̃( j)
r , j,k〉Hs (K)ψ

( j)
r , j,k =

q−1∑
r=1

∑
j∈Z

∑
k∈N0

〈 f , ψ( j)
r , j,k〉Hs (K)ψ̃

( j)
r , j,k, (24)

in Sobolev space.

Theorem 4 (Main Theorem) Let φ( j) and φ̃( j) be scaling functions for dual MRAs and ψ
( j)
r

and ψ̃
( j)
r , 1 ≤ r ≤ q − 1, be associated wavelets satisfying the matrix condition 21. Then

the collections {ψr , j,k : 1 ≤ r ≤ q − 1, j ∈ Z, k ∈ N0} and {ψ̃r , j,k : 1 ≤ r ≤ q − 1, j ∈
Z, k ∈ N0} are biorthogonal. In addition, if

φ̂( j)(ζ ) ≤ M

γ̂
s
2 (π− jζ )(1 + |ζ |) 1

2+ε
,

ˆ̃
φ( j)(ζ ) ≤ M

γ̂
s
2 (π− jζ )(1 + |ζ |) 1

2+ε
, (25)

sup
j∈Z

sup
ζ∈K

|m( j)
r (ζ )| ≤ M |ζ |, and sup

j∈Z
sup
ζ∈K

|m( j)
r (ζ )| ≤ M |ζ |, (26)

for some constant M > 0, ε > 0 and for a.e. ζ ∈ K, then {ψ( j)
r , j,k : 1 ≤ r ≤ q − 1, j ∈

Z, k ∈ N0} and {ψ̃( j)
r , j,k : 1 ≤ r ≤ q − 1, j ∈ Z, k ∈ N0} form Riesz bases for Hs(K).

Proof We start by proving {ψr , j,k : k ∈ N0} and {ψ̃r , j,k : k ∈ N0} are biorthogonal to each
other. For this, we have
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∑
k∈N0

γ̂ s(π− j (ζ + w(k)))ψ̂( j)
r (ζ + w(k)) ˆ̃

ψ
( j)
r (ζ + w(k))

=
∑
k∈N0

γ̂ s(π− j (ζ + w(k)))m( j+1)
r (π(ζ + w(k)))φ̂ j+1(π(ζ + w(k)))

× m̃( j+1)
r (π(ζ + w(k))) ˆ̃

φ( j+1)(π(ζ + w(k)))

=
q−1∑
r=0

∑
k∈N0

γ̂ s(π− j (ζ + w(qk + r)))m( j+1)
r

(π(ζ + w(qk + r)))φ̂ j+1(π(ζ + w(qk + r)))

× m̃( j+1)
r (π(ζ + w(qk + r))) ˆ̃

φ( j+1)(π(ζ + w(qk + r)))

=
q−1∑
r=0

∑
k∈N0

γ̂ s(π− j−1(πζ + πw(r) + w(k))φ̂ j+1(πζ + πw(r)

+w(k)) ˆ̃
φ( j+1)(πζ + πw(r) + w(k))

×m( j+1)
r (πζ + πw(r))m̃( j+1)

r (πζ + πw(r))

=
q−1∑
r=0

m( j+1)
r (πζ + πw(r))m̃( j+1)

r (πζ + πw(r))

= 1.

Therefore, by Theorem 1, {ψ( j)
r , j,k : k ∈ N0} is biorthogonal to {ψ̃( j)

r , j,k : k ∈ N0}.
Now let ψ( j)

r , j,k ∈ Vj , therefore ψ
( j)
r , j,k ∈ Vj+1 ⊂ Vj ′ for j ′ > j . Hence, it will be enough

to show that ψ̃( j ′)
r ′, j ′,k′ is orthogonal to every element of Vj ′ . Let f ∈ Vj ′ . Hence, there exists

an l2-sequence {c( j ′)
k } such that f = ∑

k∈N0
c( j ′)
k φ j ′,k in Hs(K). Therefore

〈ψ̃( j ′)
r ′, j ′,k′ , φ j ′,k〉Hs (K)

= q− j
∫
K

γ̂ s(ζ )
ˆ̃
ψ

( j ′)
r ′ (π j ′ζ )χk′(π j ′ζ )φ̂( j ′)(π j ′ζ )χk(π

j ′ζ )dζ

= q− j
∫
K

γ̂ s(ζ )m̃( j ′+1)
r ′ (π j ′+1ζ )

ˆ̃
φ( j ′+1)

(π j ′+1ζ )χk′(π j ′ζ )m( j ′+1)
0 (π j ′+1ζ )φ̂( j ′+1)(π j ′+1ζ )χk(π

j ′ζ )dζ

=
∫
K

γ̂ s(π− j ′ζ )
ˆ̃
φ( j ′+1)(πζ )φ̂( j ′+1)(πζ )m̃( j ′+1)

r ′ (πζ )m( j ′+1)
0

(πζ )χk′χk(ζ )dζ

=
∫
D

∑
n∈N0

γ̂ s(π− j ′(ζ + w(n)))
ˆ̃
φ( j ′+1)(π(ζ + w(n)))φ̂( j ′+1)(π(ζ + w(n)))m̃( j ′+1)

r ′

(π(ζ + w(n))) × m( j ′+1)
0 (π(ζ + w(n)))χk′χk(ζ )dζ

=
∫
D

q−1∑
t=0

∑
n∈N0

γ̂ s(π− j ′(ζ + w(qn + t))) ˆ̃
φ( j ′+1)(π(ζ + w(qn + t)))
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φ̂( j ′+1)(π(ζ + w(qn + t))) × m̃( j ′+1)
r ′ (π(ζ + w(qn + t)))

m( j ′+1)
0 (π(ζ + w(qn + t)))χk′(ζ )χk(ζ )dζ

=
∫
D

q−1∑
t=0

∑
n∈N0

γ̂ s(π− j ′−1(πζ + w(n) + πw(t)) ˆ̃
φ( j ′+1)

(πζ + w(n) + πw(t))φ̂( j ′+1)(πζ + w(n) + πw(t))

× m̃( j ′+1)
r ′ (πζ + πw(t))m( j ′+1)

0 (πζ + πw(t))χk′(ζ )χk(ζ )dζ

=
∫
D

⎧⎨
⎩

q−1∑
t=0

m̃( j ′+1)
r ′ (πζ + πw(t))m( j ′+1)

0 (πζ + πw(t))

⎫⎬
⎭χk′(ζ )χk(ζ )dζ

= 0.

Hence,

〈ψ̃( j ′)
r ′, j ′,k′ , f 〉Hs (K) =

〈
ψ̃

( j ′)
r ′, j ′,k′ ,

∑
k∈N0

c( j ′)
k φ j ′,k

〉

Hs (K)

=
∑
k∈N0

c( j ′)
k 〈ψ̃( j ′)

r ′, j ′,k′ , φ j ′,k〉Hs (K) = 0.

Since {ψr , j,k : 1 ≤ r ≤ q − 1, j ∈ Z, k ∈ N0} and {ψ̃r , j,k : 1 ≤ r ≤ q − 1, j ∈ Z, k ∈ N0}
are biorthogonal to each other, therefore both the collections are linearly independent by
Lemma 1. We only need to verify the frame condition for these two collections to form Riesz
bases for Hs(K).

To show the frame condition, we have to show that there exist constants C1,C2, C̃1 and
C̃2 such that for every f ∈ Hs(K),

C1‖ f ‖2Hs (K) ≤
q−1∑
r=1

∑
j∈Z

∑
k∈N0

|〈 f , ψ( j)
r , j,k〉Hs (K)|2 ≤ C2‖ f ‖2Hs (K), (27)

and

C̃1‖ f ‖2Hs (K) ≤
q−1∑
r=1

∑
j∈Z

∑
k∈N0

|〈 f , ψ̃( j)
r , j,k〉Hs (K)|2 ≤ C̃2‖ f ‖2Hs (K). (28)

To show the existence of upper bounds in (27) and (28), we have

∑
k∈N0

|〈 f , ψ( j)
r , j,k〉Hs (K)|2 =

∑
k∈N0

|
∫
K

γ̂ s(ζ ) f̂ (ζ )q− j
2 ψ̂

( j)
r (π jζ )χk(π

jζ )dζ |2

= q− j
∑
k∈N0

∣∣∣∣∣∣
∫
P− j

∑
l∈N0

γ̂ s(ζ + π− jw(l)) f̂ (ζ + π− jw(l))

× q− j
2 ψ̂

( j)
r (π jζ + w(l))χk(π

jζ )dζ

∣∣∣∣
2

=
∫
P− j

∣∣∣∣∣∣
∑
l∈N0

γ̂ s(ζ + π− jw(l)) f̂ (ζ + π− jw(l))q− j
2 ψ̂

( j)
r (π jζ + w(l))

∣∣∣∣∣∣
2

dζ
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≤
∫
P− j

⎛
⎝∑

l∈N0

γ̂ s(1+δ)(ζ + π− jw(l))| f̂ (ζ + π− jw(l))|2|ψ̂( j)
r (π jζ + w(l))|2δ

⎞
⎠

×
⎛
⎝∑

m∈N0

γ̂ s(1−δ)(ζ + π− jw(m))ψ̂
( j)
r (π jζ + w(m))|2(1−δ)

⎞
⎠ dζ.

We have assumed that φ̂( j)(ζ ) ≤ M

γ̂
s
2 (π− j ζ )(1+|ζ |) 12 +ε

, hence we have, ψ̂
( j)
r (ζ ) ≤

M|πζ |
γ̂

s
2 (π− j ζ )(1+|ζ |) 12 +ε

. So, for all δ ∈ (0, 1) such that (1 − δ) > 1
1+2ε and for all j ∈ Z,

the series
∑

m∈N0
γ̂ s(1−δ)(ζ + π− jw(m))ψ̂

( j)
r (π jζ + w(m))|2(1−δ) is uniformly bounded.

Hence there exists C > 0 such that
∑
j∈Z

∑
k∈N0

|〈 f , ψ( j)
r , j,k〉Hs (K)|2 ≤ C

∫
K

γ̂ s(1+δ)(ζ )| f̂ (ζ )|2
∑
j∈Z

|ψ̂( j)
r (π jζ )|2δdζ

≤ C‖ f ‖2Hs (K)

(
sup
j∈Z

sup
1<|ζ |≤q

∑
k∈Z

γ̂ sδ(π− jζ )|ψ̂(k+ j)
r (πkζ )|2δ

)

≤ C2‖ f ‖2Hs (K).

For the above inequality, notice that

sup
j∈Z

sup
1<|ζ |≤q

0∑
k=−∞

γ̂ sδ(π− jζ )|ψ̂(k+ j)
r (πkζ )|2δ

= sup
j∈Z

sup
1<|ζ |≤q

∞∑
k=0

γ̂ sδ(π− jζ )|ψ̂(−k+ j)
r (π−kζ )|2δ

≤ sup
j∈Z

sup
1<|ζ |≤q

∞∑
k=0

γ̂ sδ(π− jζ )

[
M

γ̂
s
2 (π− jζ )(1 + |π−k+1ζ |) 1

2+ε

]2δ

= M2δ sup
1<|ζ |≤q

∞∑
k=0

1

(1 + qk−1|ζ |)δ(1+2ε)

= M2δ qδ(1+2ε)

1 − q−δ(1+2ε)
< ∞.

Also,

sup
j∈Z

sup
1<|ζ |≤q

∞∑
k=1

γ̂ sδ(π− jζ )|ψ̂(k+ j)
r (πkζ )|2δ

≤ sup
j∈Z

sup
1<|ζ |≤q

∞∑
k=1

γ̂ sδ(π− jζ )

[
M |πk+1ζ |

γ̂
s
2 (π− jζ )(1 + |πk+1ζ |) 1

2+ε

]2δ

≤ M2δ
∞∑
k=1

q−k

= M2δ(q − 1)−1 < ∞.

Similarly, we can show that the upper bound in (28) exists.
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Since upper bounds in (27) and (28) exist, we can easily show that the lower bounds in
(27) and (28) also exist. ��
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