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Abstract

In this article, a theoretical investigation is analyzing the effects of the complaint wall
properties, the slip conditions, the space porosity, and the transverse magnetic field on the
magnetohydrodynamic peristaltic transport of viscous compressible flow carrying out some
rigid spherical suspension particles flowing through space porous medium in a horizontal
elastic rectangular channel. The flexible channel walls are taken as a sinusoidal wave. The
expressions describing the peristaltic transport are mathematically analyzed using the per-
turbation technique with a small amplitude wave ratio. The analytical study describes the
influence of various wall parameters such as damping force, wall tension, and wall elastic-
ity and flow parameters as compressibility parameter, slip parameter, suspension parameter,
Reynolds number, space porosity, and magnetic field parameter on the net axial velocity. The
reversal flow occurs at the channel core and boundaries due to the slip and the magnetic field
effects. Biological, geophysical, and industrial fluid dynamics applications are important
models for the peristaltic transport described in this work.

Keywords Peristaltic flow - Wall properties - Compressible flow - Slip conditions - MHD -
Porosity - Dusty fluid and non-uniform channel
Introduction

Recent theoretical articles studying the action of the peristaltic transport of biofluids through
a channel or tube draw the interest of many researchers. In the beginning, it is important to
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know the nature of the peristaltic transport which is considered as a fluid dynamic process,
in which the fluid transport from one place to another occurs as a result of area contraction or
expansion along the flexible walls of a distensible channel. The resulting wave takes the shape
of a sinusoidal wave. Many applications in the physiological and industrial fields are widely
depending on the type of two-phase flow, in which the interaction between the fluid flow
and suspended particles through the porous medium will occur. Particularly, physiological
applications take serious attention in the study, such as urine motion in the ureter from
kidney to the bladder, chyme movement through gastrointestinal system, food movement
in the esophagus, the ovum motion in the female’s fallopian tube, and the blood transport
through the small blood vessels like the motion in arterioles, venules, and also the capillaries.
The peristaltic system can also exist in the case of lymph motion via the lymphatic vessels.
Furthermore, some worms use the peristaltic movement as a method of movement. Also, this
phenomenon is applied in the propulsion of some industrial fluids, for instance, roller, finger
pumps, heart-lung machine, and blood pump machine. For this reason, in the current years,
scientific studies are handling the peristaltic movement of incompressible liquids whereas few
articles deal with the compressible peristaltic transport. As a result, this study concentrates
on this type under the effect of several physical parameters. To extend the interests of the
study, the flow of rarefied gases in micro-domains is also included.

There are numerous physiological applications related to the compliant collapsible tubes
and their effects on the behavior of the fluid flow carrying some particulate suspensions
through a porous medium such as the dynamics of internal blood flowing through veins above
the heart and arteries under a cuff, and the pressure pulse propagation in the cerebrospinal
fluid system and the blood flow in the cardiovascular system. The elastic properties of the
collapsing tubes in the real physiological systems are related to the muscle effect. In the
laboratory, this model can be described according to the “tube law”. It means rubber tubes
of finite length are used and reveal a rich variety of self-excited oscillations indicating the
related dynamical system.

To illustrate the importance of peristaltic transport in the physiological field, a literature
survey of the relevant works has been provided. Several experimental and theoretical attempts
in this area have been provided such as Latham [1], Fung and Yih [2] and Shapiro et al. [3].
They were amongst earlier researchers who introduced studies for the peristaltic movement
system. A comprehensive literature review on the theoretical investigations was classified
accordingly with the model geometry, the fluid type, Reynolds number, wave amplitude,
wavelength, and the shape of wave taken into consideration. The experimental studies for
peristaltic motion have been analyzed by Rath [4], Srivastava and Srivastava [5-8] and Sri-
vastava and Saxena [9]. It was remarkable that the prior studies were concentrated on the
peristaltic movement of incompressible viscous and non-Newtonian fluids. There are a few
related studies explaining the flow of compressible fluids peristaltically. Aarts and Ooms [10]
was the first who introduced the principles of peristaltic pumping of compressible liquids to
improve the oil extraction process from porous rocks using the ultrasound technique. It is
noticed that a similar action between the ultrasonic radiation and the peristaltic mechanism
on the liquid motion. The compressibility has a powerful effect on the liquid flow. Tsiklauri
and Beresnev [11] have explained the relaxation time impact on the peristaltic locomotion
for the compressible liquid of the Maxwell model. Antanovskii and Ramkissoon [12] have
studied the discharge of a compressible fluid through a long flexible wall tube motivated by
pulsatile force in addition to the wall relaxation and contraction by applying the lubrication
technique. Elshehawey et al. [13] investigated the action of the peristaltic movement of a
compressible liquid through a porous medium via tapered pore. The perturbation method-
ology is used. The results disclosed that the net flow rate was depending on the ultrasonic
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radiation, furthermore, liquid compressibility has a large impact on the net flow generated.
Eldesoky and Mousa [14] have analyzed the peristaltic process for Maxwell fluid flowing via
a porous medium tube. The calculations too disclosed that liquid compressibility, porosity
parameter, and relaxation time have impacted the net flow rate. Hayatet al. [15] have indicated
the influence of the rheological characteristics and compressibility of Jeffrey fluid traveling
peristaltically through a circular pipe. The increase in the relaxation time has reduced the
streamwise velocity and caused the reversal flow near the walls. Eldesoky and Mousa [16]
have studied the applications of the peristaltic system for compressible fluids in the field of
aerospace. In addition, Eldesoky [17] investigates the influence of different properties like
wall slip conditions and permeability parameters on the peristaltic locomotion of compress-
ible fluid of the Maxwell model, it was noticed that energy is dissipated through the traveling
wave of compressible fluid at the surface of the tube wall. Felderhof [18] has indicated the
dissipation rate occurred. Ricard and Nuifiez [19] has illustrated the stability effect of the long
wave peristaltic action for compressible fluid using extended lubrication theory with a small
parameter.

The two-phase flow has an essential action in many engineering applications and especially
in the biological field. Solid particles were constructed within the kidneys or appeared because
of shattering larger kidney stones producing dusty peristaltic transport via the ureter. This
effect has been indicated as Jiménez-Lozano et al. [20]. Hung and Brown [21] were the first
who tried to study two-phase peristaltic transport. Researches of Srivastava and Srivastava
[7], Srivastava and Saxena [9] and Mekheimer et al. [22] have worked on this topic. The
previous articles deal with incompressible viscous peristaltic motion in a rectangle duct
or circular tube. Eldesoky et al. [23] were the first who concentrated their study on the
interaction of the liquid compressibility and the suspended solid particles for the peristaltic
wave mechanism. It was remarkable that the net axial velocity increases with increasing
particle concentration. Eldesoky et al. [24] have analyzed the mutual effects of the particle
concentration and the thermal characteristics on the peristaltic locomotion in the presence of
a catheter through a pipe using the low Reynolds long wave technique. The results showed
that the increase in the catheter size has reduced the mean flow velocity but the thermal
properties were enhanced. Whereas, Eldesoky et al. [25] added the porosity effect to the
magnetohydrodynamics (MHD), heating, and dusty suspensions properties on the peristaltic
flow of the blood via a two-dimensional channel under the assumptions of the perturbation
scheme. The more dust led to more decrease in the fluid temperature and also the magnetic
force has changed the fluid temperature depending on the time and position. Zeeshan et al. [26]
have examined the simultaneous effects of the ionization slip properties with hall current,
suspension concentration, and thermal heating on the peristaltic motion of the two-phase
MHD flow in the presence of the space porosity. The results showed that the Darcy factor was
reducing the temperature distribution, whereas, the increase in the particle volume fractions
have decreased the velocity profiles.

Selection the compliant walls indicates the effectiveness of the wall properties on the
flow behavior in the collapsible tubes and particularly in the critical positions in the living
creatures such as the wavy transport in the cardiovascular system, the urine transport in
the bladder membrane and particularly if dusty solid stones are flowing within the urine
from kidney to the bladder. Wall compliance properties have received good concentration
amongst the latest investigations studying the peristaltic process of biofluids. Pandey and
Chaube [27] have explained the various influences of the properties of the walls on peristaltic
movement for couple stress fluid, but the case of non-Newtonian fluid was studied by Javed
et al. [28]. The elasticity of the flexible walls and the heat transfer effects were discussed for
the incompressible peristaltic waves by Radhakrishnamacharya and Srinivasulu [29]. Elnaby
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and Haroun [30] have presented a discussion about a new model to illustrate the action of
wall properties on peristaltic movement fluids.

According to the compressible flow area of study, wall properties have been handled in
few articles as Mekheimer and Abdel-Wahab [31] who investigated the influence of different
parameters of the wall on the compressible flow generated by surface acoustic wave (SAW)
in micro-channel.

Also, there is a special concentration on the peristaltic motion of magnetohydrodynamic
(MHD) flow of physiological fluids, such as pump machine of blood and also MHD peri-
staltic compressor. Sud et al. [32] illustrates the magnetic field effect on the flow of blood.
The rise in the magnetic field has enhanced blood velocity. Whereas Akbar [33] has discussed
the magnetic field impact on the peristaltic flow of nano-Eyring-Powell fluid. Abbasi et al.
[34] have introduced a further model of changing the viscosity of the MHD fluid moving
peristaltically. Moreover, Sinha et al. [35] did a similar study including the mutual effects
of wall slip and heat exchange. The results showed that the slipping at walls boosted the
mean streamwise velocity. Srinivas et al. [36] studied the combined influences of transverse
magnetic flux, the wall slip conditions, and the heat transfer on the peristaltic movement
of an incompressible MHD Newtonian fluid in a porous channel with elastic features. The
long-wavelength technique with a low-Reynolds number was applied. The thermal temper-
ature gradient in the divergent portion was large. According to the compressible flow study
Mekheimer et al. [37] were concerned with magnetic field action in their research. The Hart-
mann number and the permeability parameter have enhanced the net discharge and the mean
streamwise velocity at walls. Recent articles handling the simultaneous effects of dusty fluid
with MHD in presence of different factors of nanofluid, hall current, porous medium and wall
slip properties are presented for instance (Elmaboud et al. [38, 39]; Abdelsalam and Vafai
[40, 41]; Abdelsalam and Bhatti [42, 43]; Abd Elmaboud et al [44]). Recently, Eldesoky et al.
[46] have analyzed the different influences of the relaxation time, the slip conditions, and the
elastic features for the flexible channel on the peristaltic motion of compressible fluid of the
Maxwellian model. It was found that the higher concentration of particles caused resistance
to the flow and assistance of the reflux occurrence. Then, Eldesoky et al. [46] analyzed the
various effects of heat transfer, elastic wall properties, slip conditions on the peristaltic flow
of compressible liquid in a tube and the results showed that the liquid compressibility, flexible
wall features, and heat transfer have strong effectiveness in changing the dynamic behavior
of the flow. Abumandour et al. [47] have also studied the interaction between the magnetic
flux and the elastic wall properties on the peristaltic movement of the MHD flow by using the
perturbation approach. The results showed that the damping coefficient will resist the flow
but the rise in the magnetic flux has reduced the flow rate.

In Sadaf and Abdelsalam [48], the performance of the injected nanoparticles is investi-
gated in a mixed flexible peristaltic blood model using average lubrication methodology. It
was found that the hybrid nanoparticles were affecting the heat transfer rate rather than the set
nanoparticles. Bhatti et al. [49] have investigated the Sutterby fluid model to understand the
mechanism of the blood hemodynamics under the effect of the nanomaterials characteristics
on the runoff of the gyrotactic microorganisms through the blood flow in a narrow artery.
The accurate perturbation technique up to the third order was performed on the model’s gov-
erning equations. The results showed that the non-Newtonian property has a resisting impact
on the fluid flow and the temperature distribution was high in the transition from a conver-
gent to a divergent position through the artery. Abdelsalam and Bhatti [50] have analyzed
the convective flow of a non-Newtonian nanofluid carrying some oxytocic microorganisms
using the homotopy perturbation methodology (HPM). Elmaboud et al. [51] have entered
the electromagnetic force field and the heat flux on the two layers’ immiscible flow. The
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analytical methodology is the homotopy analysis method (HAM). The results showed that
the electric field boosted the net flow whereas, the magnetic force did not. Abdelsalam and
Mekheimer [52] have investigated the case of rotating channel with constant angular velocity
and carrying couple stress fluid moving peristaltically under the exact solution of (HPM).
Eldesoky et al. [53] have combined the mutual effects of thermal heating and magnetic flux in
the presence of small circular suspensions through the blood flow in a catheter tube under the
approximation of the long wave technique. The results showed that the heat was enhancing
the net axial velocity while the suspension concentration caused a reduction in the flow rate.

Towards what is best for the author’s survey, it is worth saying that there has not been any
attempt to study the combined influences of wall properties, slip condition, magnetic field
on peristaltic locomotion of MHD compressible liquid mixed with suspended particulate
through the porous area of a planar rectangular channel. Therefore, the authors pay attention
to this study for compressible fluid flow as it receives less interest.

The main goal of this investigation is to determine the wall slip, wall properties, fluid
compressibility, magnetic field, and space porosity effects on the wavy peristaltic pumping
of a compressible fluid mixed with suspended particles inside a micro-channel with compliant
walls and, also, study the effect of suspended particles concentration. This study is divided
into three cases which will be shown later. The problem model is introduced as a spring-
backed flexible wall. A perturbation approach with a small amplitude wave ratio is taken
and neglecting the pressure gradient of the order zero at the beginning. This theoretical
investigation is very useful in understanding a number of diverse physical problems concerned
with biofluid peristaltic transport through the human organs; also, this study may be valid for
molecular gases (compressible liquid) flowing in Nano-channels. The undertaken problem in
the present form approaches to the real system containing the wall slip, the space porosity, the
transverse magnetic field, and the wall properties in the presence of suspended particles that
appear in the peristaltic flow for the blood through the artery. The chosen model represents a
model similar to the blood motion in the flexible arteries. The elastic features are presented
as spring-backed walls. The particulate suspensions refer to the red blood cells concentration
in the blood and the plasma is the main flow. The fats in the blood are constructing the
porous medium and the magnetic field effect appears in the magnetic resonance imaging
MRI units. The current model can be reduced to reach the model investigated by Mekheimer
and Abdel-Wahab [31].

Mathematical Formulation of the Problem

Suppose a peristaltic wave of compressible viscous flow carrying out some rigid spherical
particles whose number density is sufficiently sizable to define average characteristics of
dusty particles. The rectangular channel has elastic walls with uniform width (2d). The
channel is containing a porous area and is exposed to a transverse magnetic field. The model
of a spring-backed compliant wall under the previous physical parameters is presented in
Fig. 1. Selection of (x — y) as Cartesian coordinates. The flow is energized by means of a
small amplitude ratio sinusoidal wave with a constant wave speed ¢ on the compliant walls
of the channel.

The system of the governing equations describing the two-phase flow in the existence of
the magnetic force and the space porosity is expressed as Srivastava and Srivastava [7, 8],
Eldesoky et al. [23] and Drew [54].
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Fig. 1 Schematic graph for the geometry of a two-dimensional peristaltic transport through spring-backed
flexible channel walls
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Particulate Phase
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where [x] is the streamwise direction and [ y] is the normal direction of the channel walls. [ B, ]
refers to the transverse magnetic field. [o] denotes the coefficient of electrical conductivity.
[K] is the permeability of the porous area. [u f>Vf, Up,andv 11] refer to the liquid phase and
particle phase velocities in the [x and y] directions, respectively. [o rand o, ] refer to the actual
liquid and particles densities, respectively. [ p] is the liquid pressure. [1s] refers to suspended
particles effective viscosity, and [S] means the drag coefficient as a result of the interface
forces associated with the two phases of flow.

The constitutive equation expressing the action of fluid compressibility takes the form of
Srivastava and Saxena [9]

1 Yo B

pa(l—=C)p
where [k*] is the fluid compressibility and Eq. (8) was solved to obtain a relation for the fluid
density as follows:

k* ®)

pr= poe[(l—C)k*(p—pc)] )

where [p,] refers to the constant density at reference pressure [ p.].
The geometry of the wall surface can be described as Elnaby and Haroun [30]

2
n(x,t) = acos T(x —ct) (10)

where [n(x, t)] refers to the transverse displacement of the channel wall. [a] refers to the
amplitude of the wave. [1] denotes the wavelength, and [c] is the wave speed.
[n(x, t)and — n(x, t)] are defined at the upper and lower boundaries as follows:

y::I:(d+77)::|:<d+ac03277t(x—ct)) (11)

where [2d] is the channel width.
Compliant walls are represented as a spring-backed flexible wall prototype restricted to
just propagate in the normal direction. The flexible wall equation can be expressed as

L) =p— 1o 12)
where [L] refers to differential operator representing the action of the complaint wall forces,
according to Mekheimer and Abdel-Wahab [31].

L T82+ o2 +D8+B84 +K (13)
= —] — m-—: — —_—
ax2 " a2 Tar T Daxt T !
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where [T] denotes longitudinal wall tension per unit width. [m] refers to wall mass per unit
area, [D] denotes damping forces factor,[ B] denotes the wall flexural rigidity coefficient,
[K1] is the stiffness of spring, [p] is the interface pressure at the boundaries, and [ p,] is the
outside wall surface pressure in consequence of muscles tension. Addition of some terms to
Eq. (13) for calculation of spring basics may exist but they do not modify the mathematical
model, therefore, so that the study remains uncomplicated these terms are neglected as Mittra
and Prasad [55]. Supposing that[p, = 0], and channel walls are non-extensible. Thus, just
lateral motions exist perpendicular to unreformed locations and no horizontal displacement
occurs. The suspension concentration is supposed to be small [C < 0.59], then the collision
of the particles with each other can be ignored. Diffusivity terms expressing the particles
interfere as Brownian motion was ignored as Batchelor [56]. Drag coefficient relation is
taken in the following form:

4+3[8C —3¢2]* 43¢
[2-3C)?

9
s =22y and (€)=
242

(14)

where [1y] refers to the dynamic fluid viscosity. [a,] denotes the particulate radius. Tam [57]
has introduced an expression for [A'(C)] which serves in the calculations of the fractional
volume of the suspended particles. Noting that, it is valid for small particulate Reynolds
number.

Charm and Kurland [58] have presented an experimental expression for estimation the
effective viscosity of the suspensions as follows:

us(C) = po (15a)

1—-¢gC

[249 4l 1000)]

g =0.07e (15b)

where [77] refers to the absolute temperature in (°K). Charm and Kurland [58] have exper-
imentally examined Eq. (15) and deduced that this equation was suitable for the blood
suspensions up to 10\%.

The slip of fluid takes place on the wall boundaries and non-permeability conditions are
fitted for the fluid on channel walls.

Boundary conditions: according to the physical explanation of the current model prob-
lem, walls of the channel were supposed to be elastic but extensible and just vertical
displacements of the walls occur.

Thus, the boundary conditions at y = £(d + n) are expressed as follows:

1. Wall slip condition is

duy

up=FA (16)

2. Impermeability of wall is
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a7

3. Pressure gradient interaction at the channel boundaries is
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Dimensionless parameters are presented as follows:
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Permeability parameter of the porous area is K = d—Kz whereas dimensionless fluid param-
eters are supposed to be as follows: the Reynolds number in presence of the suspended

articulates R = <400 , the compressibility coefficient ¥ = k* pg ¢, the wave number
P a=Cus P y

2 2
o= 2”d , theamplitude ratioe = d , the suspension factors M = a Sg)us’ N = (]_Scd) pp:ﬂs,

Hartmann number H, = /— B, d, the kinematic viscosity vy = g < and the Knudsen num-

ber Kn = % A \where [A] denotes molecules mean free path.
Thus, Egs. (1-7), (9-11), and (16-18) after dropping the overbars eventually take the
following form:
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Also, boundary conditions at y = £(1 + n) take the form
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Solution Technique

Following the principles of the perturbation analysis method, the system of governing
Egs. (21)—(27) is solved in the form of a power series for & under the boundary condi-
tions (28) and (29) to obtain first and second-order systems of equations. Supposing that, the
existence of the flow is mainly depending on the peristaltic wave with small amplitude ratio
(&). Then developing the series for the following properties p, u s, vy, up,, vy, andps to be
as follows

P =po+epi(x, y, 1) +& pa(x, y, )+ (30)
ufzsuf](x,y,t)+82 upp(x,y,t)+--- 31
Uf:SUf](X,y,t)+82 vea(x, y, )+ (32)
upzsupl(x,y,t)+82 Upo(x, y, ) +---. (33)
vp = evpi1(x, y, 1) + 82 vp2(x, y, 1) + - (34
pr=1+eppi(x,y, )+ ppalx, y, )+ (35)

A substitutive manner of Egs. (30)—-(35) into Egs. (21)-(27) and (28)—(29)
are performed. Then similar e,e2 terms are collected to consist of two sets
of differential equations associated with their relevant boundary conditions for

D1s PF1s U(F, p)ls> V(F, p)1s U(F,p)2> V(f,p)2s Pf2, andpa.
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Terms of £
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ou po o p1 oU p1 ap2
CR| —=+ L, P2l = —CR==+CN - 45
[ ar P T Ty ax (2 = upo) (43)
v, V| 0Vp1 ap2
CR| =+ P4 Pl _crRZE2 4N _ 46
|: ot Mp] ox Upl ay ay (Uf2 UPZ) ( )
(1-0x*p
pr2=(01=Cxprt—— (47)
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Applying Taylor series expansion about y = =1 to prepare the systems of boundary
conditions:

9 Lt 2(x,1) 9% L1t
up(x,xn, 1) =up(x,£1,1) £n(x, 1) ur(x )+77 (x,1) 7up(x )+

dy 2 dy?
2 2 (48)
dur(x, £1,1 1) 9%vop(x, +1, 1
ve(x, £, 1) =vplx, £1,1) £n(x, 1) vf(xay ) + 1 (; ) Uf(;yz ) +...
X i (49)
0 == ) ,1) 0 , k1t
0p (6, £, 1) = vy (s 21, 1) £ nx, ) 22 ) D) 9y ) . (50)

ay 2 dy2

Applying the previous expansions of (48)—(49), and (50) into the boundary Egs. (28)—(29)
then presenting cosine and sine in the form of exponentials. Finally, these boundary conditions
are as follows.

For £ Terms
ou r1(£1)
up(£l) = FKn———= (G
. ay
vri(El) = :Fg(em("*’) - e”""("ft)) (52)
2
. E ia(x—t) _ —ia(x—t)
v (D = F5 (e e ) (53)
Jupi (£ 1 (9%upi (k1) %uy (£
—(1-C)R— +— ;
( ) ot R ( 9x2 dy?
L L0 (dup (D dvpr (D
3R dx dx dy
cM (x +H2)
m (p1 (£1) —uyy (£1)) (]_C)”fl( )
. iéa ia (x—t) —ia(x—1t) 5[7 ia(x—t) —ia(x—t)
= C)[ 7(6 € )*3(6 e ) (54)
3 Ba’ To K — _Ddo?
where §, = ma® — (1—CO;2R2 — (I_CD;sz - (1—61‘)ng and 8§, = (lf‘é)R.
For £ Terms
wpr D)+ ) (el 4 et dupi D
: 2 dy
— k2D KR i | ation) Fup (D)
dy 2 | gyz “n (55)
v () £ 5(@“’“’” + e*"“(“’))vfgi =0 (56)
y
L ia—ty | —ia—n)0Up1(ED
v (D) + 5(@ p )T =0 (57)

It is worth remarking that the first and the second-orders of the boundary conditions are
sufficient for solving the current problem and the 3rd order is not important so that it is
neglected.
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Using the expressions of Aarts and Ooms [10] for the solution of the two sets of equations
according to the following nonlinear approaches:

upi(x,y. ) =Up (e + T pi(y)e~ " (58)

VA, y, 1) = V(e £ V gy (y)e e (59)

Up1(x, y, 1) = Upt(0e™ ™0 + T 1 (y)e 0" (60)

Vp1(x, ¥, 1) = V1 (1) + V1 (y)e 1 #0 (61)

pi(x, y, 1) = Pi()e* ™D + P(y)e* =0 (62)

P10y, 0) = (1=C)x Pi(y) e+ (1= C)x Py (y)e " *™" (63)
and

up(x,y, 1) =Upao(y) + Upa(y) e+ T pp(y) e 240 (64)

vpa(x, 3, 1) = Vioo(0) + Via(3) e 4070+ V gy (y) e 20000 (65)

Upp(x, y. 1) = Upoo(y) + Upa(y) %370 +T () e 21470 (66)

p2 (6, ¥, 1) = Voo (0) + Vpa(3) €200 4V p(y) e 201 (67)

p2(x, y. 1) = Po(y) + Py(y) 71 4 Py(y) e 220D (68)

pr2(x, v, 1) = Dyo(y) + Da(y) eX* ™ + Dy(y) e 2* =1 (69)

The overbars refer to variable’s complex conjugate, knowing that the peristaltic flow has
particularly a nonlinear (second-order) action as Aarts and Ooms [10] and just trivial solution
obtained because of adding a non-oscillatory term into 1st order whereas non-oscillatory
terms such as U 20(y), V20(y), Up20(3), Vp20(y), P2o(y), andD2o(y) were just added into
the second and higher orders and cannot be neglected in the current solution after time
averaging through the period.

Equations (58) through (63) are substituted into the first-order system of (36—41) and their
corresponding boundary conditions (51-54) resulting in the following first set of equations.

The First-order Set Is
Vi +iaUs = (1= C)iay Py. (70)

1
—ia (1= C)RUp1 = —iac(1 = C)RPy + Uy = a’Uy1 + siar |V} 