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Abstract
In this article, a theoretical investigation is analyzing the effects of the complaint wall
properties, the slip conditions, the space porosity, and the transverse magnetic field on the
magnetohydrodynamic peristaltic transport of viscous compressible flow carrying out some
rigid spherical suspension particles flowing through space porous medium in a horizontal
elastic rectangular channel. The flexible channel walls are taken as a sinusoidal wave. The
expressions describing the peristaltic transport are mathematically analyzed using the per-
turbation technique with a small amplitude wave ratio. The analytical study describes the
influence of various wall parameters such as damping force, wall tension, and wall elastic-
ity and flow parameters as compressibility parameter, slip parameter, suspension parameter,
Reynolds number, space porosity, and magnetic field parameter on the net axial velocity. The
reversal flow occurs at the channel core and boundaries due to the slip and the magnetic field
effects. Biological, geophysical, and industrial fluid dynamics applications are important
models for the peristaltic transport described in this work.

Keywords Peristaltic flow · Wall properties · Compressible flow · Slip conditions · MHD ·
Porosity · Dusty fluid and non-uniform channel

Introduction

Recent theoretical articles studying the action of the peristaltic transport of biofluids through
a channel or tube draw the interest of many researchers. In the beginning, it is important to
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know the nature of the peristaltic transport which is considered as a fluid dynamic process,
in which the fluid transport from one place to another occurs as a result of area contraction or
expansion along the flexible walls of a distensible channel. The resultingwave takes the shape
of a sinusoidal wave. Many applications in the physiological and industrial fields are widely
depending on the type of two-phase flow, in which the interaction between the fluid flow
and suspended particles through the porous medium will occur. Particularly, physiological
applications take serious attention in the study, such as urine motion in the ureter from
kidney to the bladder, chyme movement through gastrointestinal system, food movement
in the esophagus, the ovum motion in the female’s fallopian tube, and the blood transport
through the small blood vessels like the motion in arterioles, venules, and also the capillaries.
The peristaltic system can also exist in the case of lymph motion via the lymphatic vessels.
Furthermore, some worms use the peristaltic movement as a method of movement. Also, this
phenomenon is applied in the propulsion of some industrial fluids, for instance, roller, finger
pumps, heart–lung machine, and blood pump machine. For this reason, in the current years,
scientific studies are handling the peristalticmovement of incompressible liquidswhereas few
articles deal with the compressible peristaltic transport. As a result, this study concentrates
on this type under the effect of several physical parameters. To extend the interests of the
study, the flow of rarefied gases in micro-domains is also included.

There are numerous physiological applications related to the compliant collapsible tubes
and their effects on the behavior of the fluid flow carrying some particulate suspensions
through a porousmedium such as the dynamics of internal blood flowing through veins above
the heart and arteries under a cuff, and the pressure pulse propagation in the cerebrospinal
fluid system and the blood flow in the cardiovascular system. The elastic properties of the
collapsing tubes in the real physiological systems are related to the muscle effect. In the
laboratory, this model can be described according to the “tube law”. It means rubber tubes
of finite length are used and reveal a rich variety of self-excited oscillations indicating the
related dynamical system.

To illustrate the importance of peristaltic transport in the physiological field, a literature
survey of the relevant works has been provided. Several experimental and theoretical attempts
in this area have been provided such as Latham [1], Fung and Yih [2] and Shapiro et al. [3].
They were amongst earlier researchers who introduced studies for the peristaltic movement
system. A comprehensive literature review on the theoretical investigations was classified
accordingly with the model geometry, the fluid type, Reynolds number, wave amplitude,
wavelength, and the shape of wave taken into consideration. The experimental studies for
peristaltic motion have been analyzed by Rath [4], Srivastava and Srivastava [5–8] and Sri-
vastava and Saxena [9]. It was remarkable that the prior studies were concentrated on the
peristaltic movement of incompressible viscous and non-Newtonian fluids. There are a few
related studies explaining the flow of compressible fluids peristaltically. Aarts and Ooms [10]
was the first who introduced the principles of peristaltic pumping of compressible liquids to
improve the oil extraction process from porous rocks using the ultrasound technique. It is
noticed that a similar action between the ultrasonic radiation and the peristaltic mechanism
on the liquid motion. The compressibility has a powerful effect on the liquid flow. Tsiklauri
and Beresnev [11] have explained the relaxation time impact on the peristaltic locomotion
for the compressible liquid of the Maxwell model. Antanovskii and Ramkissoon [12] have
studied the discharge of a compressible fluid through a long flexible wall tube motivated by
pulsatile force in addition to the wall relaxation and contraction by applying the lubrication
technique. Elshehawey et al. [13] investigated the action of the peristaltic movement of a
compressible liquid through a porous medium via tapered pore. The perturbation method-
ology is used. The results disclosed that the net flow rate was depending on the ultrasonic
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radiation, furthermore, liquid compressibility has a large impact on the net flow generated.
Eldesoky andMousa [14] have analyzed the peristaltic process for Maxwell fluid flowing via
a porous medium tube. The calculations too disclosed that liquid compressibility, porosity
parameter, and relaxation time have impacted the net flow rate. Hayat et al. [15] have indicated
the influence of the rheological characteristics and compressibility of Jeffrey fluid traveling
peristaltically through a circular pipe. The increase in the relaxation time has reduced the
streamwise velocity and caused the reversal flow near the walls. Eldesoky and Mousa [16]
have studied the applications of the peristaltic system for compressible fluids in the field of
aerospace. In addition, Eldesoky [17] investigates the influence of different properties like
wall slip conditions and permeability parameters on the peristaltic locomotion of compress-
ible fluid of the Maxwell model, it was noticed that energy is dissipated through the traveling
wave of compressible fluid at the surface of the tube wall. Felderhof [18] has indicated the
dissipation rate occurred. Ricard and Nuñez [19] has illustrated the stability effect of the long
wave peristaltic action for compressible fluid using extended lubrication theory with a small
parameter.

The two-phase flowhas an essential action inmany engineering applications and especially
in the biological field. Solid particleswere constructedwithin the kidneys or appeared because
of shattering larger kidney stones producing dusty peristaltic transport via the ureter. This
effect has been indicated as Jiménez-Lozano et al. [20]. Hung and Brown [21] were the first
who tried to study two-phase peristaltic transport. Researches of Srivastava and Srivastava
[7], Srivastava and Saxena [9] and Mekheimer et al. [22] have worked on this topic. The
previous articles deal with incompressible viscous peristaltic motion in a rectangle duct
or circular tube. Eldesoky et al. [23] were the first who concentrated their study on the
interaction of the liquid compressibility and the suspended solid particles for the peristaltic
wave mechanism. It was remarkable that the net axial velocity increases with increasing
particle concentration. Eldesoky et al. [24] have analyzed the mutual effects of the particle
concentration and the thermal characteristics on the peristaltic locomotion in the presence of
a catheter through a pipe using the low Reynolds long wave technique. The results showed
that the increase in the catheter size has reduced the mean flow velocity but the thermal
properties were enhanced. Whereas, Eldesoky et al. [25] added the porosity effect to the
magnetohydrodynamics (MHD), heating, and dusty suspensions properties on the peristaltic
flow of the blood via a two-dimensional channel under the assumptions of the perturbation
scheme. The more dust led to more decrease in the fluid temperature and also the magnetic
force has changed thefluid temperature depending on the time andposition. Zeeshan et al. [26]
have examined the simultaneous effects of the ionization slip properties with hall current,
suspension concentration, and thermal heating on the peristaltic motion of the two-phase
MHDflow in the presence of the space porosity. The results showed that the Darcy factor was
reducing the temperature distribution, whereas, the increase in the particle volume fractions
have decreased the velocity profiles.

Selection the compliant walls indicates the effectiveness of the wall properties on the
flow behavior in the collapsible tubes and particularly in the critical positions in the living
creatures such as the wavy transport in the cardiovascular system, the urine transport in
the bladder membrane and particularly if dusty solid stones are flowing within the urine
from kidney to the bladder. Wall compliance properties have received good concentration
amongst the latest investigations studying the peristaltic process of biofluids. Pandey and
Chaube [27] have explained the various influences of the properties of the walls on peristaltic
movement for couple stress fluid, but the case of non-Newtonian fluid was studied by Javed
et al. [28]. The elasticity of the flexible walls and the heat transfer effects were discussed for
the incompressible peristaltic waves by Radhakrishnamacharya and Srinivasulu [29]. Elnaby
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and Haroun [30] have presented a discussion about a new model to illustrate the action of
wall properties on peristaltic movement fluids.

According to the compressible flow area of study, wall properties have been handled in
few articles as Mekheimer and Abdel-Wahab [31] who investigated the influence of different
parameters of the wall on the compressible flow generated by surface acoustic wave (SAW)
in micro-channel.

Also, there is a special concentration on the peristaltic motion of magnetohydrodynamic
(MHD) flow of physiological fluids, such as pump machine of blood and also MHD peri-
staltic compressor. Sud et al. [32] illustrates the magnetic field effect on the flow of blood.
The rise in themagnetic field has enhanced blood velocity.Whereas Akbar [33] has discussed
the magnetic field impact on the peristaltic flow of nano-Eyring-Powell fluid. Abbasi et al.
[34] have introduced a further model of changing the viscosity of the MHD fluid moving
peristaltically. Moreover, Sinha et al. [35] did a similar study including the mutual effects
of wall slip and heat exchange. The results showed that the slipping at walls boosted the
mean streamwise velocity. Srinivas et al. [36] studied the combined influences of transverse
magnetic flux, the wall slip conditions, and the heat transfer on the peristaltic movement
of an incompressible MHD Newtonian fluid in a porous channel with elastic features. The
long-wavelength technique with a low-Reynolds number was applied. The thermal temper-
ature gradient in the divergent portion was large. According to the compressible flow study
Mekheimer et al. [37] were concerned with magnetic field action in their research. The Hart-
mann number and the permeability parameter have enhanced the net discharge and the mean
streamwise velocity at walls. Recent articles handling the simultaneous effects of dusty fluid
withMHD in presence of different factors of nanofluid, hall current, porous medium and wall
slip properties are presented for instance (Elmaboud et al. [38, 39]; Abdelsalam and Vafai
[40, 41]; Abdelsalam and Bhatti [42, 43]; Abd Elmaboud et al [44]). Recently, Eldesoky et al.
[46] have analyzed the different influences of the relaxation time, the slip conditions, and the
elastic features for the flexible channel on the peristaltic motion of compressible fluid of the
Maxwellian model. It was found that the higher concentration of particles caused resistance
to the flow and assistance of the reflux occurrence. Then, Eldesoky et al. [46] analyzed the
various effects of heat transfer, elastic wall properties, slip conditions on the peristaltic flow
of compressible liquid in a tube and the results showed that the liquid compressibility, flexible
wall features, and heat transfer have strong effectiveness in changing the dynamic behavior
of the flow. Abumandour et al. [47] have also studied the interaction between the magnetic
flux and the elastic wall properties on the peristaltic movement of theMHD flow by using the
perturbation approach. The results showed that the damping coefficient will resist the flow
but the rise in the magnetic flux has reduced the flow rate.

In Sadaf and Abdelsalam [48], the performance of the injected nanoparticles is investi-
gated in a mixed flexible peristaltic blood model using average lubrication methodology. It
was found that the hybrid nanoparticles were affecting the heat transfer rate rather than the set
nanoparticles. Bhatti et al. [49] have investigated the Sutterby fluid model to understand the
mechanism of the blood hemodynamics under the effect of the nanomaterials characteristics
on the runoff of the gyrotactic microorganisms through the blood flow in a narrow artery.
The accurate perturbation technique up to the third order was performed on the model’s gov-
erning equations. The results showed that the non-Newtonian property has a resisting impact
on the fluid flow and the temperature distribution was high in the transition from a conver-
gent to a divergent position through the artery. Abdelsalam and Bhatti [50] have analyzed
the convective flow of a non-Newtonian nanofluid carrying some oxytocic microorganisms
using the homotopy perturbation methodology (HPM). Elmaboud et al. [51] have entered
the electromagnetic force field and the heat flux on the two layers’ immiscible flow. The
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analytical methodology is the homotopy analysis method (HAM). The results showed that
the electric field boosted the net flow whereas, the magnetic force did not. Abdelsalam and
Mekheimer [52] have investigated the case of rotating channel with constant angular velocity
and carrying couple stress fluid moving peristaltically under the exact solution of (HPM).
Eldesoky et al. [53] have combined the mutual effects of thermal heating andmagnetic flux in
the presence of small circular suspensions through the blood flow in a catheter tube under the
approximation of the long wave technique. The results showed that the heat was enhancing
the net axial velocity while the suspension concentration caused a reduction in the flow rate.

Towards what is best for the author’s survey, it is worth saying that there has not been any
attempt to study the combined influences of wall properties, slip condition, magnetic field
on peristaltic locomotion of MHD compressible liquid mixed with suspended particulate
through the porous area of a planar rectangular channel. Therefore, the authors pay attention
to this study for compressible fluid flow as it receives less interest.

The main goal of this investigation is to determine the wall slip, wall properties, fluid
compressibility, magnetic field, and space porosity effects on the wavy peristaltic pumping
of a compressible fluidmixedwith suspended particles inside amicro-channelwith compliant
walls and, also, study the effect of suspended particles concentration. This study is divided
into three cases which will be shown later. The problem model is introduced as a spring-
backed flexible wall. A perturbation approach with a small amplitude wave ratio is taken
and neglecting the pressure gradient of the order zero at the beginning. This theoretical
investigation is very useful in understanding a number of diverse physical problems concerned
with biofluid peristaltic transport through the human organs; also, this study may be valid for
molecular gases (compressible liquid) flowing in Nano-channels. The undertaken problem in
the present form approaches to the real system containing the wall slip, the space porosity, the
transverse magnetic field, and the wall properties in the presence of suspended particles that
appear in the peristaltic flow for the blood through the artery. The chosen model represents a
model similar to the blood motion in the flexible arteries. The elastic features are presented
as spring-backed walls. The particulate suspensions refer to the red blood cells concentration
in the blood and the plasma is the main flow. The fats in the blood are constructing the
porous medium and the magnetic field effect appears in the magnetic resonance imaging
MRI units. The current model can be reduced to reach the model investigated by Mekheimer
and Abdel-Wahab [31].

Mathematical Formulation of the Problem

Suppose a peristaltic wave of compressible viscous flow carrying out some rigid spherical
particles whose number density is sufficiently sizable to define average characteristics of
dusty particles. The rectangular channel has elastic walls with uniform width (2d). The
channel is containing a porous area and is exposed to a transverse magnetic field. The model
of a spring-backed compliant wall under the previous physical parameters is presented in
Fig. 1. Selection of (x − y) as Cartesian coordinates. The flow is energized by means of a
small amplitude ratio sinusoidal wave with a constant wave speed c on the compliant walls
of the channel.

The system of the governing equations describing the two-phase flow in the existence of
the magnetic force and the space porosity is expressed as Srivastava and Srivastava [7, 8],
Eldesoky et al. [23] and Drew [54].
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Fig. 1 Schematic graph for the geometry of a two-dimensional peristaltic transport through spring-backed
flexible channel walls
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where [C] refers to the constant volume fraction of the solid particles as Srivastava and
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Particulate Phase

Continuity Equation
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where [x] is the streamwise direction and [y] is the normal direction of the channel walls. [Bo]
refers to the transverse magnetic field. [σ ] denotes the coefficient of electrical conductivity.
[K ] is the permeability of the porous area.

[
u f , v f , u p, andv p

]
refer to the liquid phase and

particle phase velocities in the [x and y] directions, respectively. [ρ f andρp] refer to the actual
liquid and particles densities, respectively. [p] is the liquid pressure. [μs] refers to suspended
particles effective viscosity, and [S] means the drag coefficient as a result of the interface
forces associated with the two phases of flow.

The constitutive equation expressing the action of fluid compressibility takes the form of
Srivastava and Saxena [9]

1

ρ

∂ρ

∂(1 − C)p
� k∗ (8)

where [k∗] is the fluid compressibility and Eq. (8) was solved to obtain a relation for the fluid
density as follows:

ρ f � ρoe[
(1−C)k∗(p−pc)] (9)

where [ρo] refers to the constant density at reference pressure [pc].
The geometry of the wall surface can be described as Elnaby and Haroun [30]

η(x, t) � a cos
2π

λ
(x − ct) (10)

where [η(x, t)] refers to the transverse displacement of the channel wall. [a] refers to the
amplitude of the wave. [λ] denotes the wavelength, and [c] is the wave speed.

[η(x, t)and − η(x, t)] are defined at the upper and lower boundaries as follows:

y � ±(d + η) � ±
(
d + acos

2π

λ
(x − ct)

)
(11)

where [2d] is the channel width.
Compliant walls are represented as a spring-backed flexible wall prototype restricted to

just propagate in the normal direction. The flexible wall equation can be expressed as

L(η) � p − po (12)

where [L] refers to differential operator representing the action of the complaint wall forces,
according to Mekheimer and Abdel-Wahab [31].
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where [T ] denotes longitudinal wall tension per unit width. [m] refers to wall mass per unit
area, [D] denotes damping forces factor,[B] denotes the wall flexural rigidity coefficient,
[K1] is the stiffness of spring, [p] is the interface pressure at the boundaries, and [po] is the
outside wall surface pressure in consequence of muscles tension. Addition of some terms to
Eq. (13) for calculation of spring basics may exist but they do not modify the mathematical
model, therefore, so that the study remains uncomplicated these terms are neglected asMittra
and Prasad [55]. Supposing that[po � 0], and channel walls are non-extensible. Thus, just
lateral motions exist perpendicular to unreformed locations and no horizontal displacement
occurs. The suspension concentration is supposed to be small [C ≤ 0.59], then the collision
of the particles with each other can be ignored. Diffusivity terms expressing the particles
interfere as Brownian motion was ignored as Batchelor [56]. Drag coefficient relation is
taken in the following form:

S � 9

2

μ0

a20
λ′(C) and λ′(C) � 4 + 3

[
8C − 3C2

]1/2 + 3C

[2 − 3C]2
(14)

where [μ0] refers to the dynamic fluid viscosity. [ao] denotes the particulate radius. Tam [57]
has introduced an expression for [λ′(C)] which serves in the calculations of the fractional
volume of the suspended particles. Noting that, it is valid for small particulate Reynolds
number.

Charm and Kurland [58] have presented an experimental expression for estimation the
effective viscosity of the suspensions as follows:

μS(C) � μ0
1

1 − qC
(15a)

q � 0.07e

[
2.49 C+ 1107

T1
e (−1.69C)

]
(15b)

where [T1] refers to the absolute temperature in (◦K ). Charm and Kurland [58] have exper-
imentally examined Eq. (15) and deduced that this equation was suitable for the blood
suspensions up to 10\%.

The slip of fluid takes place on the wall boundaries and non-permeability conditions are
fitted for the fluid on channel walls.

Boundary conditions: according to the physical explanation of the current model prob-
lem, walls of the channel were supposed to be elastic but extensible and just vertical
displacements of the walls occur.

Thus, the boundary conditions at y � ±(d + η) are expressed as follows:

1. Wall slip condition is

u f � ∓A
∂u f

∂y
(16)

2. Impermeability of wall is
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Dimensionless parameters are presented as follows:
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Dimensionless elastic wall parameters are
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Permeability parameter of the porous area is K � K
d 2 whereas dimensionless fluid param-

eters are supposed to be as follows: the Reynolds number in presence of the suspended
particulates R � c d ρ0
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Thus, Eqs. (l–7), (9–11), and (16–18) after dropping the overbars eventually take the
following form:
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∂x
+ vp

∂vp

∂y

]
� − CR

∂p

∂y
+ CN

(
v f − vp

)
(25)

with

ρ f � e(1−C)χ (p−p0) (26)

η � ε c o s α (x − t) (27)

Also, boundary conditions at y � ±(1 + η) take the form
u f � ∓Kn

∂u f
∂y , v f � ±ε α sin α(x − t) and vp � ±ε α sin α(x − t)

(1 − C)
∂

∂x

(
m

∂2

∂t2
+

D

(1 − C) R

∂

∂t
+

B

(1 − C)2 R2

∂4

∂x4
− T

(1 − C)2 R2

∂2

∂x2
+

K1

(1 − C)2 R2

)
η

� 1

R

(
∂2u f

∂x2
+

∂2u f

∂y2

)

(28)

(29)

− (1 − C) ρ f

(
∂u f

∂t
+ u f

∂u f

∂x
+ v f

∂u f

∂x

)

+
1

3R

∂

∂x

(
∂u f

∂x
+

∂v f

∂y

)
+
CM

R

(
u p − u f

) − ( 1K + H2
a ) u f

(1 − C) R

Solution Technique

Following the principles of the perturbation analysis method, the system of governing
Eqs. (21)–(27) is solved in the form of a power series for ε under the boundary condi-
tions (28) and (29) to obtain first and second-order systems of equations. Supposing that, the
existence of the flow is mainly depending on the peristaltic wave with small amplitude ratio
(ε). Then developing the series for the following properties p, u f , v f , u p, vp, andρ f to be
as follows

p � p0 + εp1(x, y, t) + ε2 p2(x, y, t) + · · · (30)

u f � εu f 1(x, y, t) + ε2 u f 2(x, y, t) + · · · (31)

v f � εv f 1(x, y, t) + ε2 v f 2(x, y, t) + · · · . (32)

u p � εu p1(x, y, t) + ε2 u p2(x, y, t) + · · · . (33)

vp � εvp1(x, y, t) + ε2 vp2(x, y, t) + · · · (34)

ρ f � 1 + ερ f 1(x, y, t) + ε2ρ f 2(x, y, t) + · · · (35)

A substitutive manner of Eqs. (30)–(35) into Eqs. (21)–(27) and (28)–(29)
are performed. Then similar ε, ε2 terms are collected to consist of two sets
of differential equations associated with their relevant boundary conditions for
p1, ρ f 1, u( f ,p)1, v( f ,p)1, u( f ,p)2, v( f ,p)2, ρ f 2, andp2.
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Terms of "

∂u f 1

∂t
+

∂u f 1

∂x
+

∂v f 1

∂y
� 0 (36)

(1 − C)R
∂u f 1

∂t
� −(1 − C)R

∂p1
∂x

+

(
∂2u f 1

∂x2
+

∂2u f 1

∂y2

)

+
1

3

∂

∂x

(
∂u f 1

∂x
+

∂v f 1

∂y

)
+ CM

(
u p1 − u f 1

) −
( 1
K + H2

a

)
u f 1

( 1 − C )
(37)

(38)

(1 − C) R
∂v f 1

∂t
� − (1 − C) R

∂p1
∂y

+

(
∂2v f 1

∂x2
+

∂2v f 1

∂y2

)

+
1

3

∂

∂y

(
∂u f 1

∂x
+

∂v f 1

∂y

)
+ CM

(
vp1 − v f 1

) − v f 1

( 1 − C ) K

CR
∂u p1

∂t
� −CR

∂p1
∂x

+ CN
(
u f 1 − u p1

)
(39)

CR
∂vp1

∂t
� −CR

∂p1
∂y

+ CN
(
v f 1 − vp1

)
(40)

ρ f 1 � (1 − C)χp1 (41)

Terms of "2

∂u f 2

∂t
+ u f 1

∂ρ f 1

∂x
+ v f 1

∂ρ f 1

∂y
+

∂u f 2

∂x
+

∂v f 2

∂y
+ ρ f 1

(
∂u f 1

∂x
+

∂v f 1

∂y

)
� 0 (42)

(43)

(1 − C) R

[
∂ u f 2

∂t
+ u f 1

∂ u f 1

∂x
+ v f 1

∂ u f 1

∂y
+ ρ f 1

∂ u f 1

∂t

]

� − (1 − C) R
∂ p 2

∂x
+

(
∂ 2 u f 2

∂x 2 +
∂ 2 u f 2

∂y 2

)

+
1

3

∂

∂x

(
∂u f 2

∂x
+

∂v f 2

∂y

)
+ CM

(
u p2 − u f 2

) −
( 1
K + H2

a

)
u f 2

( 1 − C )

(44)

(1 − C) R

[
∂ v f 2

∂ t
+ u f 1

∂ v f 1

∂ x
+ v f 1

∂ v f 1

∂ y
+ ρ f 1

∂ v f 1

∂ t

]

� − (1 − C) R
∂ p2
∂y

+

(
∂ 2 v f 2

∂ x 2 +
∂ 2 v f 2

∂ y 2

)

+
1

3

∂

∂y

(
∂u f 2

∂x
+

∂v f 2

∂y

)
+ CM

(
vp2 − v f 2

) − v f 2

( 1 − C ) K

CR

[
∂u p2

∂t
+ u p1

∂u p1

∂x
+ vp1

∂u p1

∂y

]
� −CR

∂p2
∂x

+ CN
(
u f 2 − u p2

)
(45)

CR

[
∂vp2

∂t
+ u p1

∂vp1

∂x
+ vp1

∂vp1

∂y

]
� −CR

∂p2
∂y

+ CN
(
v f 2 − vp2

)
(46)

ρ f 2 � (1 − C)χp2 +
(1 − C)2χ2 p21

2
(47)
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Applying Taylor series expansion about y � ±1 to prepare the systems of boundary
conditions:

u f (x,±η, t) � u f (x,±1, t) ± η(x, t)
∂u f (x,±1, t)

∂y
+

η2(x, t)

2

∂2u f (x,±1, t)

∂y2
+ . . .

(48)

v f (x,±η, t) � v f (x,±1, t) ± η(x, t)
∂v f (x,±1, t)

∂y
+

η2(x, t)

2

∂2v f (x,±1, t)

∂y2
+ . . .

(49)

vp(x,±η, t) � vp(x,±1, t) ± η(x, t)
∂vp(x,±1, t)

∂y
+

η2(x, t)

2

∂2vp(x,±1, t)

∂y2
+ . . . (50)

Applying the previous expansions of (48)–(49), and (50) into the boundary Eqs. (28)–(29)
then presenting cosine and sine in the formof exponentials. Finally, these boundary conditions
are as follows.

For " Terms
u f 1(±1) � ∓Kn

∂u f 1(±1)

∂y
(51)

v f 1(±1) � ∓ iα

2

(
eiα(x−t) − e−iα(x−t)

)
(52)

vp1(±1) � ∓ iα

2

(
eiα(x−t) − e−iα(x−t)

)
(53)

(54)

− (1 − C) R
∂u f 1 (±1)

∂t
+

1

R

(
∂2u f 1 (±1)

∂x2
+

∂2u f 1 (±1)

∂y2

)

+
1

3R

∂

∂x

(
∂u f 1 (±1)

∂x
+

∂v f 1 (±1)

∂y

)

+
CM

R

(
u p1 (±1) − u f 1 (±1)

) −
( 1
K + H2

a

)
( 1 − C )

u f 1 (±1)

� (1 − C)

[
− iδa

2

(
ei α (x−t) − e− i α (x−t)

)
+

δb

2

(
eiα(x−t) + e−iα(x−t)

)]

where δa � m α3 − B α5

(1−C)2R2 − T α3

(1−C)2R2 − K1 α

(1−C)2R2 and δb � Dα2

(1−C)R .

For "2 Terms

(55)

u f 2 (±1) ± 1

2

(
eiα(x−t) + e−iα(x−t)

) ∂u f 1 (±1)

∂y

� ∓Kn
∂u f 2 (±1)

∂y
− Kn

2

(
eiα(x−t) + e−iα(x−t)

) ∂2u f 1 (±1)

∂y2

v f 2(±1) ± 1

2

(
eiα(x−t) + e−iα(x−t)

)∂v f 1(±1)

∂y
� 0 (56)

vp2(±1) ± 1

2

(
eiα(x−t) + e−iα(x−t)

)∂vp1(±1)

∂y
� 0 (57)

It is worth remarking that the first and the second-orders of the boundary conditions are
sufficient for solving the current problem and the 3rd order is not important so that it is
neglected.
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Using the expressions of Aarts and Ooms [10] for the solution of the two sets of equations
according to the following nonlinear approaches:

u f 1(x, y, t) � U f 1(y)e
iα(x−t) +U f 1(y)e

−iα(x−t) (58)

v f 1(x, y, t) � V f 1(y)e
iα(x−t) + V f 1(y)e

−iα(x−t) (59)

u p1(x, y, t) � Up1(y)e
iα(x−t) +U p1(y)e

−iα(x−t) (60)

vp1(x, y, t) � Vp1(y)e
iα(x−t) + V p1(y)e

−iα(x−t) (61)

p1(x, y, t) � P1(y)e
iα(x−t) + P1(y)e

−iα(x−t) (62)

ρ f 1(x, y, t) � (1 − C)χ P1(y) e
iα(x−t) + (1 − C)χ P1 (y) e

−iα(x−t) (63)

and

u f 2(x, y, t) � U f 20(y) + U f 2(y) e
2iα(x−t) +U f 2(y) e

−2iα(x−t) (64)

v f 2(x, y, t) � V f 20(y) + V f 2(y) e
2iα(x−t) + V f 2(y) e

−2iα(x−t) (65)

u p2(x, y, t) � Up20(y) + Up2(y) e
2iα(x−t) +U p2(y) e

−2iα(x−t) (66)

vp2(x, y, t) � Vp20(y) + Vp2(y) e
2iα(x−t) + V p2(y) e

−2iα(x−t) (67)

p2(x, y, t) � P20(y) + P2(y) e
2iα(x−t) + P2(y) e

−2iα(x−t) (68)

ρ f 2(x, y, t) � D20(y) + D2(y) e
2iα(x−t) + D2(y) e

−2iα(x−t) (69)

The overbars refer to variable’s complex conjugate, knowing that the peristaltic flow has
particularly a nonlinear (second-order) action as Aarts and Ooms [10] and just trivial solution
obtained because of adding a non-oscillatory term into 1st order whereas non-oscillatory
terms such asU f 20(y), V f 20(y),Up20(y), Vp20(y), P20(y), andD20(y) were just added into
the second and higher orders and cannot be neglected in the current solution after time
averaging through the period.

Equations (58) through (63) are substituted into the first-order system of (36–41) and their
corresponding boundary conditions (51–54) resulting in the following first set of equations.

The First-order Set Is

V ′
f 1 + iαU f 1 � (1 − C)iαχ P1. (70)

(71)

−iα (1 − C) RU f 1 � −iα (1 − C) RP1 +U ′′
f 1 − α2U f 1 +

1

3
iα

[
V ′
f 1 + iαU f 1

]

+ CM
[
Up1 −U f 1

] −
( 1
K + H2

a

)
U f 1

( 1 − C )
.

(72)

−iα (1 − C) RU f 1 − iα (1 − C) RV f 1 � − (1 − C) RP ′
1 + V ′′

f 1 − α2V f 1

+
1

3

d

dy

[
V ′
f 1 + iαU f 1

]

+ CM
[
Vp1 − V f 1

] − V f 1

( 1 − C ) K
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−iαRUp1 � −iαRP1 + N
[
U f 1 −Up1

]
(73)

−iαRVp1 � −RP ′
1 + N

[
V f 1 − Vp1

]
(74)

And boundary conditions for 1st order ( 21) are

U f 1(±1) � ∓Kn
∂U f 1(±1)

∂y
(75)

V f 1(±1) � ∓ iα

2
(76)

Vp1(±1) � ∓ iα

2
(77)

(78)

∂2U f 1 (±1)

∂y2
−

[
4

3
α2 − (1 − C) iαR +

( 1
K + H2

a

)
( 1 − C )

]
U f 1 (±1)

+
iα

3

∂V f 1 (±1)

∂y
+ CM

(
Up1 (±1) −U f 1 (±1)

) � (1 − C) Rδ

where

δ � −iα

2(1 − C)2R2

[
(1 − C)2R2mα2 − Bα4 − T α2 + i DαR(1 − C) − K1

]
(78a)

Now, the main concern is to find out the solution for the equations of
U( f ,p)1, V( f ,p)1, andP1.

Following the method introduced by Mekheimer and Abdel-Wahab [31], the equations of
the velocity and the pressure are obtained. Thus, the first-order solution for Eqs. (70)–(74)
subject to the boundary conditions (75)–(78) is obtained as follows:

U f 1(y) � R6C1 cosh(L1y) + R7C2 cosh(L2y ) (79)

V f 1(y) � C1 sinh(L1 y) + C2 sinh( L2 y) (80)

P1(y) � R4C1 cosh(L1y) + R5C2 cosh(L2y ) (81)

Up1(y) � R8C1 cosh(L1y) + R9C2 cosh(L2y ) (82)

Vp1(y) � R10C1 sinh(L1y) + R11C2 sinh(L2y) (83)

where

2 � β2 − H2
a

(1−C)

S � H2
a

(1−C)

⎫⎬
⎭ (83a)

β2 �
[
α2 +

( 1
K + H2

a

)
( 1 − C )

− iαR(1 − C) − iαRCM

N − i Rα

]
(83b)

γ � (1 − C)R − (1−C)iαχ
3 + CMR

N−iαR

B1 � 1 − iα(1−C)χ
γ

υ2 � β2 − β2−α2

B1
Z � υ2 + 2 + S

B1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(83c)
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Z � υ2 + 2 + S
B1

L2
1 � Z+

√
Z2−42υ2

2

L2
2 � Z−√

Z2−42υ2

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(83d)

A1 � (1 − C) χ

(
L2
1−

L1 γ

2
)
+ i L1

α

A2 � (1 − C) χ

(
L2
2−

L2 γ

2
)
+ i L2

α

⎫⎪⎪⎬
⎪⎪⎭

(83e)

R1 �
[
−

(
L2
1−

L1

2
)

− i A1 L2
1

α
+ i A1 β2

α

]
, R2 �

[
−

(
L2
2−

L2

2
)

− i A2 L2
2

α
+ i A2 β2

α

]
,

R3 �
[
γ − i β2(1−C) χ

α

]
, R4 �

(
L2
1−

L1 γ

2
)
+ R1

R3
, R5 �

(
L2
2−

L2 γ

2
)
+ R2

R3
,

R6 �
[
(1−C) χ R1

R3
+ A1

]
, R7 �

[
(1−C) χ R2

R3
+ A2

]
, R8 �

[−i α R R4 + N R6
N−i α R

]
,

R9 �
[−i α R R5 + N R7

N−i α R

]
, R10 �

[
N− R R4 L1
N−i α R

]
, R11 �

[
N− R R5 L2
N−i α R

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(83f)

w �
[
4

3
α2 − i α ( 1 − C )R +

( 1
K + H2

a

)
( 1 − C )

]
(83g)

g1 � cosh L1 + KnL1 sinh L1

g2 � cosh L2 + Kn L2 sinh L2

g3 � (
R6 L

2
1 − w R6 + C M R8 − C M R6 + i α L1

)
cosh L1

g4 � (
R7 L

2
2 − w R7 + C M R9 − C M R7 + i α L2

)
cosh L2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(83h)

G � R6 g1 g4 − R7 g2 g3

C1 � −(1 − C)Rδ
R7 g2
G

C2 � (1 − C)Rδ
R7 g1
G

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(83i)

The Second-order Set Is

V ′
f 20 � −(1 − C)χ

[
P1 V ′

f 1 + P1 V
′
f 1 + V f 1P ′

1 + V f 1P
′
1

]
(84)

(85)

U ′′
f 20 � (1 − C) R

[
(1 − C) iαχ P1U f 1 − (1 − C) iαχ P1U f 1 +V f 1U ′

f 1 + V f 1U
′
f 1

]

+ CM
[
U f 20 −Up20

]
+

( 1
K + H2

a

)
( 1 − C )

U f 20

−(1 − C)RP ′
20 +

4

3
V ′′
f 20 � (1 − C)R

[
(1 − C)iαχ P1 V f 1 − (1 − C)iαχ P1 V f 1 − iαU f 1V f 1

+iαU f 1V f 1 + V f 1V ′
f 1 + V f 1V

′
f 1

]

+ CM
[
V f 20 − Vp20

]
+

1

( 1 − C ) K
V f 20 (86)

U f 20 −Up20 � R

N

[
Vp1U ′

p1 + Vp1U
′
p1

]
(87)

V f 20 − Vp20 � R

N

[
−iαVp1Up1 + iαVp1Up1 + Vp1V ′

p1 + Vp1V
′
p1

]
+

R

N
P ′
20 (88)
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Fig. 2 The variation of the streamwise velocity under different factors of the wall and flow properties
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Fig. 2 continued

The boundary conditions for the second order
(
ε2

)
are

U f 2o(±1) ± 1

2

(
U f 1

′
(±1) +U ′

f 1(±1)
)

� ∓Kn

[
U ′

f 2o(±1) ± 1

2

(
U f 1

′′
(±1) +U ′′

f 1(±1)
)]

(89)

Vp20(±1) ± 1

2

[
V ′
p1(±1) + V ′

p1(±1)
]

� 0 (90)

V f 20(±1) ± 1

2

[
V ′
f 1(±1) + V ′

f 1(±1)
]

� 0 (91)

Then, the solution of Eqs. (84)–(88) subject to their boundary conditions (89)–(91) is
given by

U f 2o(y) � RE(y) + D2Cosh
√

δc y + D3 Sinh
√

δc y (92)

V f 20(y) � −(1 − C)χ
[
P1(y)V f 1(y) + P1(y)V f 1(y)

]
(93)

(94)

P20(y) � D +
4

3R Z1
V ′
f 20(y) − (1 − C)

Z1

∫
F1(y)dy

− CM

N Z1

∫
F2(y)dy +

χ

K R Z1

∫
F3(y)dy

Up2o(y) � U f 2o(y) +
R

N

[
Vp1u′

p1 + Vp1U
′
p1

]
(95)

Vp20(y) � −(1 − C)χ
[
P1(y) V f 1(y) + P1(y) V f 1(y)

] − R

N

[
F2(y) + P ′

20(y)
]

(96)

E(y) � (1 − C)

[
δ1

2

(
cosh

(
L1 + L1

)
y(

L1 + L1
)2 − δc

+
cosh

(
L1 − L1

)
y(

L1 − L1
)2 − δc

)
+

δ2

2

(
cosh

(
L1 + L2

)
y(

L1 + L2
)2 − δc

+
cosh

(
L1 − L2

)
y(

L1 − L2
)2 − δc

)
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Fig. 3 The net streamwise velocity distributions along the y-axis and the medium is free from porosity

+
δ3

2

(
cosh

(
L2 + L1

)
y(

L2 + L1
)2 − δc

+
cosh

(
L2 − L1

)
y(

L2 − L1
)2 − δc

)
+

δ4

2

(
cosh

(
L2 + L2

)
y(

L2 + L2
)2 − δc

+
cosh

(
L2 − L2

)
y(

L2 − L2
)2 − δc

)

+
δ5

2

(
cosh

(
L1 + L1

)
y(

L1 + L1
)2 − δc

− cosh
(
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)
y(
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)
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(
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(
L2 + L1

)
y(

L2 + L1
)2 − δc

− cosh
(
L2 − L1

)
y(
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)2 − δc

)
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Fig. 3 continued
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Fig. 3 continued

+
δ11

2

(
cosh

(
L2 + L1

)
y(

L2 + L1
)2 − δc
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(
L2 − L1

)
y(
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)2 − δc

)
+

δ12

2

(
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(
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)
y(
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(
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)
y(

L2 − L2
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)]]
(96a)

Z1 � (1 − C)N + CM

N
(96b)

F1 (y) �
[
(1 − C) iαχ P1(y)V f 1(y) − (1 − C) iαχ P1(y)V f 1(y)

−iαU f 1(y)V f 1(y) + iαU f 1(y)V f 1(y) + V f 1V ′
f 1(y) + V f 1V

′
f 1(y)

]
(96c)
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Fig. 3 continued

F2(y) �
[
−iαVp1(y)Up1(y) + iαVp1(y)Up1(y) + Vp1V ′

p1(y) + Vp1V
′
p1(y)

]
(96d)

F3(y) � [
P1(y) V f 1(y) + P1(y) V f 1(y)

]
(96e)

(96f)

D � P20(y) − 4

3RZ1
V ′
f 20(y) +

(1 − C)

Z1

∫
F1(y)dy

+
CM

N Z1

∫
F2(y)dy − χ

K R Z1

∫
F3(y)dy at y � −1

δc �
( 1
K + H2

a

)
( 1 − C )

(96g)

D2 � − 1

2
(
Cosh

√
δc + Kn

√
δc Sinh

√
δc

) {R [E(1) − E(−1)]

+Kn
[
R E ′(1) − R E ′(−1) + β3 − β4

]
+ β1 + β2

}
(96h)

D3 � − 1

2
(
Sinh

√
δc + Kn

√
δc Cosh

√
δc

) {R [E(1) − E(−1)]

+Kn
[
R E ′(1) + R E ′(−1) + β3 + β4

]
+ β1 − β2

}
(96i)
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β1 � 1

2

(
U ′

f 1(1) +U f 1(1)
′)

β2 � −1

2

(
U ′

f 1(−1) +U f 1(−1)
′)

β3 � 1

2

(
U ′′

f 1(1) +U f 1(1)
′′)

β4 � −1

2

(
U ′′

f 1(−1) +U f 1(−1)
′′)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(96j)

δ1 � R6C1C1L1 + L1C1C1R6 , δ2 � R7C2C1L1 + L2C2C1R6

δ3 � R6C1C2L2 + L1C1C2R7 , δ4 � R7C2C2L2 + L2C2C2R7

δ5 � C1R6C1L1 + L1C1R6C1 , δ6 � C1R7C2L2 + L1C1R6C2

δ7 � C2R1C1L1 + L1C1R6C1 , δ8 � C2R7C2L2 + L2C2R7C2

δ9 � R10C1R8C1L1 + R10C1R8L1C1

δ10 � R10C1R9C2L2 + R11C2R8L1C1

δ11 � R11C2R8C1L1 + R10C1R9L2C2

δ12 � R11C2R9C2L2 + R11C2R9L2C2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(96k)

The net axial streamwise velocities may now be written as

< V f x (y) > � ε2U f 20(y) (97)

< Up(y) >� ε2Up20(y) (98)

Themean velocity perturbation functionG(y) according to Fung andYih [2] andSrivastava
and Srivastava [6] takes the form

G(y) � − 200

α2R2 (E(y) − E(1)) (99)

It is noticed for the current problem that the results of Fung and Yih [2] can be obtained
in case of [χ � 0] incompressible liquids under the assumption of the absence of the wall
properties [B, D, T , K1, andm], the magnetic field parameter [Ha], and the space porosity
parameter [K ] in case of non-slip wall conditions and free from solid suspensions [C � 0].
It is also remarked that the results of Mekheimer and Abdel-Wahab [31] can be covered if
[C � 0], [Ha � 0], and[1/K � 0].

Results and Discussion

Validation Section

Results are compared with the article of Mekheimer and Abdel-Wahab [31]. The mathemat-
ical calculations and the results are obtained for the present analysis under the assumptions
of ignoring the effect of particles suspensions [C � 0], transverse magnetic field [Ha � 0]
and free from porosity [1/K � 0]. Figure 2 shows the results from the present study under
the previous assumptions which exactly matches with Mekheimer and Abdel-Wahab [31].

Studying the behavior of the net flow requires analytical calculations for the combined
effects of the magnetic field, the space porosity, the wall properties, the slip parameters,
the suspension parameter, and the compressibility parameter on the viscous compressible

123



Int. J. Appl. Comput. Math (2021) 7 :37 Page 23 of 37 37

Ta
bl
e
1
C
or
re
sp
on

di
ng

to
Fi
g.

3

W
al
la
nd

flo
w
pa
ra
m
et
er
s

A
b

C
d

e
f

g

D
(0
–1

–2
–3

)
10

50
50

50
10

50

K
1

10
(1
0–

20
–3

0–
40

)
10

10
10

10
10

χ
0.
5

0.
5

(0
.0
01

–0
.1
–0

.2
–0

.3
–0

.5
)

0.
00

1
0.
00

1
0.
5

0.
00

1

T
20

0
20

98
66

.7
(5
00

0–
70

00
–7

57
4.
36

–9
00

0)
55

81
20

0
55

81

K
n

0.
0

0.
15

0.
15

0.
15

(0
.0
–.
05

–0
.1
–0

.1
5)

0.
15

0.
15

C
0.
3

0.
3

0.
3

0.
3

0.
3

(0
.0
–0
.3
–0
.4
–0
.5
)

0.
3

H
a

2
2

2
2

2
2

(1
–1

.5
–2

–3
)

R
10

10
20

20
20

10
20

α
0.
5

0.
9

0.
5

0.
5

0.
5

0.
9

0.
5

B
20

20
2

2
2

20
2

m
0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

1/
K

0
0

0
0

0
0

0

123



37 Page 24 of 37 Int. J. Appl. Comput. Math (2021) 7 :37

(a) 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Vfx / ε  2

y

D=0.0
D=1.0
D=2.0
D=3.0

(b) 

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Vfx / ε  2

y

K1=10

K1=25

K1=40

K1=55

Fig. 4 The streamwise velocity profiles versus y axis in the absence of the magnetic flux

peristaltic transport in a flexible channel. These calculations are mathematically carried out
in the previous section. In this section, results are graphically plotted for the velocity profiles to
show these effects on themean axial velocity and the reversal flow. There are three divisions of
this study: the first case is showing the influences of all parameters such as the magnetic field,
the wall parameters, the slip parameter, the compressibility parameter, the flow parameters,
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Fig. 4 continued

and the suspension parameters except the effect of the space porosity, which does not exist in
this case. The second case of the discussion is handling the same previous effects but taking
into consideration the effect of space porosity parameter in the absence of the magnetic field.
The final case is to study the influence of all parameters in the presence of the space porosity
parameter and the magnetic field parameter. Each case is described graphically as follows.

123



37 Page 26 of 37 Int. J. Appl. Comput. Math (2021) 7 :37

(e) 

-1 0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Vfx / ε  2

y

Kn=0.0
Kn=0.05
Kn=0.1
Kn=0.15

(f) 

0 1 2 3 4 5 6 7 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Vfx / ε  2

y

C=0.0
C=0.2
C=0.4
C=0.5

Fig. 4 continued

In the first case, Fig. 3 shows the effect of various parameters on the mean axial velocity
in the presence of the magnetic field and the absence of the porosity effect (Table 1).

Figure 3 indicates explicitly the effects of the various parameters on the mean streamwise
velocity < V f x/ε

2 > then plotting the velocity profiles along the y-axis. These parameters
are the flow andwall parameters. The flow parameters are the compressibility parameters [χ],
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Fig. 4 continued

the Reynolds number [R], the wall slip [Kn], the suspensions parameter [C], the magnetic
field parameter called Hartmann number [Ha]. The wall compliance parameters are the
flexural wall rigidity [B], the longitude wall tension [T ]. [K1] represents the wall stiffness.
The parameter [D] represents the dissipative feature of the wall. The choice D � 0 implies
that the wall moves up and down, with no damping force on it.

It is noticed in Fig. 3a that there is a high resistance for the flow. The rise in the wall
damping [D] is reducing the mean streamwise velocity. Whereas the wall stiffness [k1] and
the compressibility factor [χ] are enhancing the streamwise velocity profiles as illustrated
in Fig. 3b, c. Obviously, it is noted in Fig. 3d that the velocity profile near the boundaries
increases by increasing the longitude tension parameter [T ] but it is reduced near the center
with raising the wall tension [T ]. In contrast, no-slip conditions mean that the fluid particles
stickwith the solidwalls. The slip conditionsmean that the fluid velocity at thewall is allowed
to slip along the contour of the surface (move on the surface and tangent to the surface). and
this condition is defined by the Knudsen number [Kn]. Its effect is shown in Fig. 3e as [Kn]
boosts the net streamwise velocity. Figure 3g shows that the mean axial velocity is enhanced
by increasing themagnetic parameter [Ha]. The suspension parameter [C] effect is illustrated
in Fig. 3f, as the increase in the concentration [C] reduces the path area then the mean axial
velocity is raised as shown.

Now, the second case of the study is illustrated graphically. Figure 4 shows the simultane-
ous effects of the various physical parameters on the net streamwise velocity in the presence
of the porosity parameter [K ] and the absence of the magnetic field parameter [Ha].

Figure 4a shows the effect of the damping parameterwhich resists the flow. The parameters
[k1, χ, and Kn] have similar effects on themean streamwise velocity. There is a proportional
relation between these parameters and velocity profile as shown in Fig. 4b, d, e. The effects
of longitude wall tension [T ] and suspension parameter [C] are shown in Fig. 4c, f. There is
a significant effect near the boundaries as these parameters are boosting the net streamwise
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Fig. 5 The mean streamwise velocity distribution along the y-axis in the presence of the magnetic flux and the
space porosity

velocity. This effect is less at the channel core where the velocity profiles close to each other
and the relationship between these parameters and mean velocity remains proportional. The
range of the permeability parameter of the porous medium is [0 ≤ k ≤ ∞]. At [K � ∞],
this means that

[ 1
K � 0

]
. Then, the open path will be free from porosity. But [K � 0] means

that [ 1K � ∞]. Then, the path is fully filled with the space porosity which is closing the path.
It is noted in Fig. 4g that the mean axial velocity is enhanced by increasing K (Table 2).
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Fig. 5 continued

Finally, the combined effects of themagnetic flux [Ha] and the space porosity [K ] are taken
into consideration in the graphical plots beside the wall properties, the wall slip conditions,
and the compressibility parameter as shown in Fig. 5 (Table 3).
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Fig. 5 continued

The time average flowvelocity< V f x/ε
2 > is graphically discussed under the assumption

of existing the magnetic field [Ha] and the space porosity [K ] as follows.
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Fig. 5 continued

Figure 5a shows the effect of the damping parameter [D] which also is resisting the
flow. It is noticed that the reversal flow begins to occur for higher values of [D]. As the
parameters [K1, T ,C, χ, andKn] are increasing, the net streamwise velocity is enhanced
near the boundaries as illustrated in Fig. 5b–e, g. This effect is small at the channel core. It is
also noticed in Fig. 5d that, for small values of the compressibility parameter [χ � 0.001],
the velocity profile seems to be constant along the y-axis and it is plotted as a straight line.
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The rise in the magnetic flux [Ha] reduces the mean streamwise velocity as shown in Fig. 5f.
Finally, Fig. 5h shows that as permeability parameter [K ] is increased then the path will let
the flow be easier with low resistance. Therefore, the net streamwise velocity is enhanced.

Conclusion

This paper is analyzing the combined effects of the wall properties [D, T , andK1], the mag-
netic field [Ha], the wall slip [Kn], the liquid compressibility [χ], and the space porosity [K ]
interacted with a solid suspensions [C] in the presence of the peristaltic transport through
a rectangular channel. The used methodology is the analytical perturbation technique under
the assumption of a small amplitude ratio. The governing equations are solved under a certain
procedure to obtain mathematical relations for both fluid and particles velocities. The mean
streamwise velocity profiles are plotted for three cases of study.

In the first case of the study, the influences of the parameters [D, T , K1, Kn, χ, andC]
on the mean axial velocity in the presence of magnetic field parameter [Ha] are investigated
and neglecting the effect of the space porosity as the path of motion is open “free from
porosity”[K � ∞sothat1/K � 0].

The second case is studying the effects of the same parameters of the first case but the
space porosity K is the parameter of effect and neglecting the effect of the magnetic field.

The third case is combining the effects of the space porosity [K ] and magnetic field [Ha]
in addition to the wall and flow parameters [D, T , K1, Kn, χ, andC] as cases 1 and 2.

The following are some important observations:

• In the three cases the damping parameter has significant resistance effect as the mean
streamwise velocity is reduced by increasing [D].

• The reversal flow occurs at higher values of the damping parameter [D].
• For the first case of the study, the parameters [K1, χ, Kn,C, andHa] have a proportional
relation with the mean axial velocity.

• In the first case of the study, the rise in the wall tension [T ] enhances the mean streamwise
velocity near the boundaries. Whereas, at the center this effect is the opposite as the mean
velocity is reduced.

• For the second case of the study, as the compressibility parameter [χ] and the permeability
parameter [K ] increase, the streamwise velocity is enhanced in such a manner.

• The increase in the parameters [K1, T , Kn, andC] boosts the mean streamwise velocity
near the boundaries and causes a minor increase at the center.

• For the third case of the study, as permeability [K ] increases, this mean flow has less
restriction to the flow then the mean streamwise velocity increases.

• By increasing [Ha], the mean streamwise velocity is reduced.
• For higher values of the compressibility parameter [χ ≥ 0.1upto1], themean axial velocity
increases.

• For small values of the compressibility parameter as [χ � 0.001], the velocity profile
seems to be constant.

• The mean streamwise velocity is enhanced by increasing the parameters
[T , K1, Kn, andC].
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