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Abstract
Modeling the transformation of biomass into biogas is complex, because it involves a nonlin-
ear and coupled set of ordinary differential equations. Thus, obtaining an analytical-numerical
solution becomes attractive for this problem. In this paper, five chemical reactions are used
to model the chemical kinetics of the anaerobic digestion process. The rate of production of
each reaction is estimated by Gibbs free energy value. The equation system of the model is
solved by the Modified Adomian Decomposition Method, applied to the time variable. The
results obtained agree with the expected solution.

Keywords Anaerobic digestion · Chemical kinetics · Differential equations system ·
Adomian decomposition method · Simulation

Introduction

Many models of chemical, physical and biological processes are often expressed in terms of
differential equations or systems of differential equations [1–3]. If the systems obtained in
modeling these processes are non-linear, coupled or rigid, their solution becomes difficult and
computationally expensive. For this reason, there is a need for efficient numerical methods
to solve mathematical modeling problems.
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For example, Djouad et al. [4] applied a second order Rosenbrock scheme for gas phase
chemical kinetics, because the stiffness induced by different timescales magnitudes seriously
restricts the integration time step of these models.

Jajarmi et al. [5] presented a new mathematical model for the dengue fever outbreak
based on a system of fractional differential equations. To simulate this model they used a
new and efficient numerical method, in which they transform the system of equations into an
equivalent integral equation. Then the trapezoidal methodwas used to approach the fractional
integral operator. Currently, control techniques also are being used to optimize the solution
of problems of great interest [6–8].

Among these applications, theAnaerobicDigestion (AD)process has becomean important
source of research. Anaerobic Digestion is a biochemical process of producing biogas, which
is the biological degradation of biomass [9–11], the most abundant rawmaterial in the world.
Biomass is composed of substances of organic origin (plants, animals and microorganisms).
Unlike fossil fuels, such as oil and coal, biomass is renewable in a short period of time [12,13].
Biogas can be used to generate electrical, thermal and mechanical energy [14,15].

The anaerobic digestion is a complex process, consisting of several stages of metabolic
interactions, in the absence of oxygen, and performed by a community of microbial pop-
ulations. This process can be divided into four phases of biodegradation: hydrolysis,
acidogenisis, acetogenesis, and methanogenesis [14,16–18]. The mathematical model for
the AD process is obtained according to the number of chemical reactions presented in each
stage of the process. This modeling provides a set of coupled and nonlinear ordinary differ-
ential equations. The numerical integration of these equations allows accurately predict the
concentrations of chemical species at any time given the initial conditions.

The Adomian Decomposition Method (ADM) is a powerful technique that can be used
for solving the AD problem, since it is computationally convenient, accurate and physi-
cally realistic. Adomian [19] demonstrated that with the ADM it is possible to solve linear
and nonlinear differential equations, obtaining continuous solutions. The ADM technique
involves the decomposition of nonlinear terms into the differential equation(s) in a series of
polynomials.

Currently, the ADM technique has been used by many researches in several areas to solve
problems of linear and nonlinear equations, involving initial and/or boundary conditions
[20–23]. In addition, ADM can be used to solve systems of nonlinear differential equations
and also to the solution of higher-order differential equations [24,25]. Some researchers have
introducedmodifications in theADM technique [26,27]. For example, Younker [28]modified
the ADM to solve a system of coupled differential equations describing rates of chemical
reaction.

In this paper, we develop a mathematical model for the AD process with five chemical
reactions, where the pulp is the substrate. In this model, Gibbs free energy (ΔG) is used to
calculate the rate of each reaction and, from the results, it can be concluded that this is a good
alternative in the absence of the respective rates.

Motivated by the efficiency of ADM, the main objective of this article is to show that it is
possible to obtain the solution of the proposed model using only three Adomian terms. For
this, the Adomian polynomials are constructed analytically and the modified ADM is used
to numerically solve the system of ordinary differential equations of the model.

The rest of this paper is structured as follow. Section 2 presents the phases of the AD
process. Section 3 presents the mathematical formulation of the problem. In Sect. 4 the
classic ADM and iterative ADM are described. In this section the Adomian polynomials
of the AD system problem are also calculated. In Sect. 5 the results of the simulations are
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Table 1 Reactions related to the methanogenesis phase

Nomenclature Reaction ΔG◦ (KJ/mol)

Hydrogenotrophic methanogenesis 4H2 + CO2 → CH4 + 2H2O −131

Aceticlastic methanogenesis C2H4O2 → CH4 + CO2 −36

presented to illustrate the accuracy and efficiency of the proposed technique. The paper ends
with conclusions and perspectives.

Chemical Modeling

The phases of the anaerobic digestion process are:
Hydrolysis is the first stage of degradation, in which complex organic molecules like car-

bohydrates, proteins and fats decompose to form soluble monomers. Reactions are catalyzed
by enzymes excreted from the hydrolytics and fermentative bacterias, such as cellulase,
protease and lipase. A hydrolysis reaction where the organic waste is divided into a sugar
(glucose) can be represented by Eq. (1).

C6H10O5 + H2O = C6H12O6. (1)

Acidogenesis sugars are fermented to produce simple organic compounds, specially short-
chain (volatile) acids (e.g. propionic, formic, lactic, butyric, or succinic acids), ketones (e.g.
glycerol, acetone) and alcohols (e.g. ethanol, methanol). The following is an example of
product obtained on acidogenesis phase and its respective value of ΔG:

C6H12O6 → C4H8O2 + 2CO2 + 2H2, ΔG = −264, 19 KJ/mol. (2)

Acetogenesis is the third stage, where the fermentation of carbohydrates occurs and results
in a combination of acetate, carbon dioxide (CO2), and hydrogen (H2). The long chain
fatty acids, formed from lipid hydrolysis, are oxidized to acetate or propionate and gaseous
hydrogen is formed. An acetogenesis reaction can be represented by Eq. (3).

2C4H8O2 + 2H2O + CO2 → 4C2H4O2 + CH4, ΔG = −35 KJ/mol. (3)

Methanogenesis performed by methanogen microorganisms, is the last stage of anaer-
obic digestion, where methane and carbon dioxide are produced. At this stage, the
methanogenic archaea mainly converts acetic acid, hydrogen and carbon dioxide into
methane. Methanogenic archaea are divided into two main groups [29]:

Acetoclastic methanogenesis they produce methane from acetic acid or methanol. These
are the predominant microorganisms in anaerobic digestion, responsible for about 60 to
70% of all methane production.
Hydrogenotrophic methanogenesis they produce methane from hydrogen and carbon
dioxide, using carbon dioxide (CO2) as a source of carbon, and hydrogen as a reducing
agent.

Reactions related to the stage of methanogenesis are presented in Table 1, along with the
ΔG◦ value of each reaction.

If the substrate composition is known, and the total conversion of the substrate into biogas
occurs, the theoretical yield of CH4 and CO2 can be estimated from the chemical reaction
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[30,31] given by

CnHpOq +
[
n − p

4
− q

2

]
H2O →

[n
2

+ p

8
− q

4

]
CH4

+
[n
2

− p

8
+ q

4

]
CO2, (4)

where CnHpOq is organic matter, and p, q , and n are dimensionless coefficients.

Mathematical Modeling of the AD Process

The mathematical formulation of the anaerobic digestion process is associated to the four
phases described previously: hydrolysis, acidogenesis, acetogenesis and methanogenesis.
The mathematical model provides a set of ordinary differential equations that must be solved
numerically, due to the coupling of the set of equations.

The general stoichiometric equation of any chemical process can be defined by Eq. (5)

Ns∑
j=1

ν j Y j = 0, (5)

where ν j is the stoichiometric coefficient of j-th species Y j and Ns is the number of species.
The stoichiometric coefficients are negative numbers for reagents and positive for products,
by convention.

The rates of elementary reactions can be calculated from the law of mass action [32], by
the formula

ri = ki

Ns∏
j

Y
νi j
j , (6)

where Y j is the molar concentration of species j , and ki the rate coefficients that can be
calculated using the Gibbs free energy (ΔG) of each reaction [33]

ki = exp

(
− ΔG

RTi

)
, (7)

where R=8.3144 J/Kmol is the universal gas constant and Ti is the absolute temperature (in
Kelvins).

The kinetic system of ordinary differential equations (ODEs) is written as:

dY j

dt
=

NR∑
i

νi j ri , j = 1, · · · , Ns . (8)

In general, the kinetic system of ODEs is of first order and nonlinear. Each species par-
ticipates in several reactions, with its corresponding production rate.

The system of ODEs of the problem considers the reactions of the phases: (I) hydrolysis,
(II) acidogenesis, (III) acetogenesis, (IV) hydrogenotrophic methanogenesis, and (V) aceto-
clastic methanogenesis. Table 2 shows the set of chemical reactions of the stages (I), (II),
(III), (IV) and (V) used to write the kinetic system of ODEs.

Table 3 shows the chemical compounds involved in the anaerobic digestion process,
described previously. Each chemical compound is associated with its chemical formula and
abbreviations.
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Table 2 Set of chemical reactions of the anaerobic digestion process

Phases Reactions Rates

(I) C6H10O5 + H2O = C6H12O6 r0 = k0[C6H10O5][H2O]
(II) C6H12O6 = C4H8O2 + 2CO2 + 2H2 r1 = k1[C6H12O6]
(III) C4H8O2 + H2O + 1

2
CO2 = 2C2H4O2 + 1

2
CH4 r2 = k2[C4H8O2][H2O][CO2]1/2

(IV)
1

2
CO2 + 2H2 = 1

2
CH4 + H2O r3 = k3[CO2]1/2[H2]2

(V) 2C2H4O2 = 2CH4 + 2CO2 r4 = k4[C2H4O2]2

Table 3 Chemical compounds, chemical formulas and abbreviations

j Chemical compounds Chemical formulas Abbreviations (Y j )

1 Cellulose C6H10O5 Y1
2 Glucose C6H12O6 Y2
3 Butyric acid C4H8O2 Y3
4 Acetic acid C2H4O2 Y4
5 Methane CH4 Y5
6 Carbon dioxide CO2 Y6
7 Hydrogen H2 Y7
8 Water H2O Y8

The concentration variations Y j ( j = 1, · · · , 8) are based on Eq. (8). So, the kinetic
system of ODEs is composed of eight ordinary differential equations, providing the initial
value problem: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dY1
dt

= −k0Y1Y8, Y1(0) = 1

dY2
dt

= k0Y1Y8 − k1Y2, Y2(0) = 0

dY3
dt

= k1Y2 − k2Y3Y8Y
1/2
6 , Y3(0) = 0

dY4
dt

= 2k2Y3Y8Y
1/2
6 − 2k4Y

2
4 , Y4(0) = 0

dY5
dt

= 1

2
k2Y3Y8Y

1/2
6 + 1

2
k3Y

1/2
6 Y 2

7 + 2k4Y
2
4 , Y5(0) = 0

dY6
dt

= 2k1Y2 − 1

2
k2Y3Y8Y

1/2
6 − 1

2
k3Y

1/2
6 Y 2

7 + 2k4Y
2
4 , Y6(0) = 0

dY7
dt

= 2k1Y2 − 2k3Y
1/2
6 Y 2

7 , Y7(0) = 0

dY8
dt

= −k0Y1Y8 − k2Y3Y8Y
1/2
6 + k3Y

1/2
6 Y 2

7 , Y8(0) = 1

. (9)
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Adomian DecompositionMethod

Consider the initial value problem for a system of first-order equations of the following form
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

y′
1(t) = f1(t, y1, . . . , ym), y1(0) = y1,0
y′
2(t) = f2(t, y1, . . . , ym), y2(0) = y2,0

...

y′
m(t) = fm(t, y1, . . . , ym), ym(0) = ym,0

, (10)

where fk(t, y1, . . . , ym), k = 1, 2, . . . ,m are linear and nonlinear functions.
We write the system (10) for the k-th equation as:

Lyk = fk(t, y1, . . . , ym), k = 1, . . . ,m, (11)

where L is the linear operator, in this case the time derivative d/dt .
The Adomian decomposition method consists of separating each function fk in a linear

part and a nonlinear part, writing equation (11) as follows

Lyk = Rk(t, y1, y2, . . . , ym) + Nk(t, y1, y2, · · · , ym), (12)

where Rk(t, y1, y2, . . . , ym) are linear operators and Nk(t, y1, y2, . . . , ym) are nonlinear
operators.

Applying the inverse operator L−1(·) =
∫ t

0
(·) dt on both sides of equation (12) results

yk = yk(0) + L−1 [Rk(t, y1, y2, . . . , ym) + Nk(t, y1, y2, · · · , ym)] , (13)

where yk(0) is the initial condition of the problem.
Based on the ADM [34–37], we seek the solution {y1, · · · , ym} as

yk = lim
n→∞

n∑
i=0

yk,i . (14)

The nonlinear terms of Nk(t, y1, y2, . . . , ym), k = 1, . . . ,m are assumed to be analytic
functions that can be expressed by an infinite series given by

Nk(t, y1, y2, . . . , ym) =
∞∑
n=0

Ak,n, k = 1, . . . ,m, (15)

where the Ak,n are the Adomian polynomials calculated by the formula

Ak,n = 1

n!

⎡
⎣ dn

dλn
Nk

⎛
⎝t,

∞∑
i=0

λi y1,i ,
∞∑
i=0

λi y2,i , . . . ,
∞∑
i=0

λi ym,i

⎞
⎠

⎤
⎦

λ=0

. (16)

Taking the first n + 1 terms of the n-th approximation of yk as

yk =
n∑

i=0

yk,i (17)

and the substitution of Eqs. (15) and (17) in Eq. (13) gives

yk =
n∑

i=0

yk,i = yk (0) +
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+L−1

⎡
⎣Rk (t, y1, y2, · · · , ym ) +

n∑
i=0

Ak,i

⎤
⎦ , k = 1, . . . ,m. (18)

The first term in this series is given by the initial condition

yk(0) = yk,0, k = 1, 2, . . . ,m.

The other terms are given by the following recurrence formula:

yk,i+1 = L−1(Ak,i + Rk), k = 1, 2, · · · ,m, i = 0, . . . , n. (19)

Then, the solution of the system (10) by ADM is given by

yk = yk,0 + yk,1 + · · · + yk,n, k = 1, . . . ,m. (20)

Modified AdomianMethod

In some situations, the polynomial functions may diverge as the independent variable (in
this case, time t) increases. To solve this problem, we use a modification of the Adomian
decomposition, proposed by Younker [28], where the time variable is discretized, so that the
initial value of each interval is given by the final solution of the previous interval. For this,
the mesh is defined as

t j = t0 + jh, j = 0, . . . , n f , (21)

where h is the size of each interval, given by h = tn f − t0
n f

.

Thus, the solution given by equation (18) is valid, within a time interval, as follows:

y j+1
k,i+1 = yk(t j ) + L−1

[
Rk +

n∑
i=0

Ak,i

]
, k = 1, . . . ,m. (22)

For example, consider the following problem
{ dy(t)

dt
= −y(t)3

y(0) = 1
. (23)

This equation is formed only by a nonlinear part N (y) = −y(t)3. Then, the Adomian
polynomials that compose this part are given by equation

An = 1

n!

⎡
⎣ dn

dλn

⎛
⎝−

(
n∑

i=0

λi yi

)3
⎞
⎠

⎤
⎦

λ=0

, A0 = −y30 ; (24)

So, the first term to approximate the solution of the problem is given by the initial condition
y0 = y(0). The second term of the approximation, y1, is calculated by:

y1 = L−1(A0) =
∫ t

0
A0dt, (25)

or,

y1 =
∫ t

0
A0dt = −y30 t, (26)
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Fig. 1 Analytical solution of the initial value problem given in (23) and approximations obtained by the classic
and modified Adomian methods

and with this new approximation, the next Adomian polynomial is calculated as follows

A1 = 1

1!

⎡
⎣ d1

dλ1

⎛
⎝−

(
1∑

i=0

λi yi

)3⎞
⎠

⎤
⎦

λ=0

= d1

dλ1

(−(λ0y0 + λ1y1)
3) = 3y50 t . (27)

Thus, the approximation of y2 is given by

y2 = L−1(A1) =
∫ t

0
A1dt =

∫ t

0
3y50 tdt = 3

2
y50 t

2. (28)

Using three terms, we obtain the following solution:

y = y0 + y1 + y2 = y(0) − y(0)3t + 3

2
y(0)5t2. (29)

After replacing the value of y(0) results:

y = 1 − t + 3

2
t2. (30)

Equation (30) was obtained by the classical method of decomposition of Adomian. Figure
1 shows the analytical solution of the PVI given in (23), for the approximations obtained
through the classic ADM with two terms and three terms, and the approximation using the
modified ADMwith three terms. The integration interval was divided into 15 subintervals of
h = 0.1.
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The classic Adomian method has disadvantages, as shown in Fig. 1. Increasing the num-
ber of Adomian terms only causes a delay in the divergence of the solution. The modified
technique, proposed by Younker [28], solved the problem with only three Adomian terms
with h = 0.1.

Solution of the Problem by the Adomian DecompositionMethod

The Adomian polynomials of the system (9) are calculated as follow:

(1) A1,n = 1

n!

[
dn

dλn

(
−k0

n∑
i=0

λi y1,i y8,i

)]

λ=0

(2) A2,n = 1

n!

[
dn

dλn

(
k0

n∑
i=0

λi y1,i y8,i

)]

λ=0

(3) A3,n = 1

n!

[
dn

dλn

(
−k2

n∑
i=0

λi y3,i y8,i
√
y6,i

)]

λ=0

(4) A4,n = 1

n!

[
dn

dλn

(
k2

n∑
i=0

λi y3,i y8,i
√
y6,i − 2k4

n∑
i=0

λi y24,i

)]

λ=0

(5) A5,n= 1

n!

[
dn

dλn

(
1

2
k2

n∑
i=0

λi y3,i y8,i
√
y6,i+1

2
k3

n∑
i=0

λi y27,i
√
y6,i+2k4

n∑
i=0

λi y24,i

)]

λ=0

(6) A6,n= 1

n!

[
dn

dλn

(
−1

2
k2

n∑
i=0

λi y3,i y8,i
√
y6,i−1

2
k3

n∑
i=0

λi y27,i
√
y6,i+2k4

n∑
i=0

λi y24,i

)]

λ=0

(7) A7,n = 1

n!

[
dn

dλn

(
−2k3

n∑
i=0

λi y27,i
√
y6,i

)]

λ=0

(8) A8,n= 1

n!

[
dn

dλn

(
−k0

n∑
i=0

λi y1,i y8,i−k2

n∑
i=0

λi y3,i y8,i
√
y6,i+k3

n∑
i=0

λi y27,i
√
y6,i

)]

λ=0

Then, the second and third terms of the series are obtained for each equation of the system
Second term

Equation 1.

A1,0 = −k0y1,0y8,0

y1,1 =
∫ t

0
A1,0dt = A1,0t

Equation 2.

A2,0 = k0y1,0y8,0

y2,1 =
∫ t

0
A2,0dt −

∫ t

0
k1y2,0dt = (A2,0 − k1y2,0)t

Equation 3.

A3,0 = −k2y3,0y8,0
√
y6,0

y3,1 =
∫ t

0
A3,0dt +

∫ t

0
k1y2,0dt = (A3,0 + k1y2,0)t
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Equation 4.

A4,0 = 2k2y3,0y8,0
√
y6,0 − 2k4y

2
4,0

y4,1 =
∫ t

0
A4,0dt = A4,0t

Equation 5.

A5,0 = 1

2
k2y3,0y8,0

√
y6,0 + 1

2
k3

√
y6,0y

2
7,0 + 2k4y

2
4,0

y5,1 =
∫ t

0
A5,0dt = A5,0t

Equation 6.

A6,0 = −1

2
k2y3,0y8,0

√
y6,0 − 1

2
k3

√
y6,0y

2
7,0 + 2k4y

2
4,0

y6,1 =
∫ t

0
A6,0dt +

∫ t

0
2k1y2,0dt = (A6,0 + 2k1y2,0)t

Equation 7.

A7,0 = −2k3
√
y6,0y

2
7,0

y7,1 =
∫ t

0
A7,0dt +

∫ t

0
2k1y2,0dt = (A7,0 + 2k1y2,0)t

Equation 8.

A8,0 = −k0y1,0y8,0 − k2y3,0y8,0
√
y6,0 + k3

√
y6,0y

2
7,0

y8,1 =
∫ t

0
A8,0dt = A8,0t

Third term
Equation 1.

A1,1 = −k0y1,1y8,1 = −k0(A1,0t)(A8,0t)

y1,2 =
∫ t

0
−k0A1,0A8,0t

2dt = −k0A1,0A8,0
t3

3

Equation 2.

A2,1 = k0y1,1y8,1 = k0(A1,0t)(A8,0t)

y2,2 = k0A1,0A8,0
t3

3
− k1(A2,0 − k1y2,0)

t2

2

Equation 3.

A3,1 = −k2y3,1y8,1
√
y6,1 = −k2(A3,0 + k1y2,0)A8,0t

2
√

(A6,0 + 2k1y2,0)t

y3,2 = k1(A2,0 − k1y2,0)
t2

2
− 2

7
k2(A3,0 + k1y2,0)A8,0

√
(A6,0 + 2k1y2,0)t t

3

Equation 4.

A4,1 = 2k2(A3,0 + k1y2,0)A8,0t
2
√

(A6,0 + 2k1y2,0)t − 2k4A
2
4,0t

2
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y4,2 =
[
4

7
k2(A3,0 + k1y2,0)A8,0

√
(A6,0 + 2k1y2,0)t − 2

3
k4A

2
4,0

]
t3

Equation 5.

A5,1 = 1

2
k2(A3,0 + k1y2,0)A8,0

√
(A6,0 + 2k1y2,0)t t

2

+1

2
k3(A7,0 + 2k1y2,0)

2
√

(A6,0 + 2k1y2,0)t t
2 + 2k4A

2
4,0t

2

y5,2 =
[
1

7
k2(A3,0 + k1y2,0)A8,0

√
(A6,0 + 2k1y2,0)t

+ 1

7
k3(A7,0 + 2k1y2,0)

2
√

(A6,0 + 2k1y2,0)t + 2

3
k4A

2
4,0

]
t3

Equation 6.

A6,1 = −1

2
k2(A3,0 + k1y2,0)A8,0

√
(A6,0 + 2k1y2,0)t t

2

− 1

2
k3(A7,0 + 2k1y2,0)

2
√

(A6,0 + 2k1y2,0)t t
2 + 2k4A

2
4,0t

2

y6,2 = k1(A2,0 − k1y2,0)t
2 − 1

7

√
(A6,0 + 2k1y2,0)t

[
k2(A3,0 + k1y2,0)A8,0)

+ k3(A7,0 + 2k1y2,0)
2] t3 + 2

3
k4A

2
4,0t

3

Equation 7.

A7,1 = −2k3
√
y6,1y

2
7,1 = −2k3

√
(A6,0 + 2k1y2,0)t(A7,0 + 2k1y2,0)

2t2

y7,2 = k1(A2,0 − k1y2,0)t
2 − 4

7
k3

√
(A6,0 + 2k1y2,0)t(A7,0 + 2k1y2,0)

2t3

Equation 8.

A8,1 = −k0(A1,0t)(A8,0t) − k2(A3,0 + k1y2,0)A8,0
√

(A6,0 + 2k1y2,0)t t
2

+k3(A7,0 + 2k1y2,0)
2
√

(A6,0 + 2k1y2,0)t t
2

y8,2 = −1

3
k0A1,0A8,0t

3 − 2

7

√
(A6,0 + 2k1y2,0)t

[
k2(A3,0 + k1y2,0)

− k3(A7,0 + 2k1y2,0)
2] t3

Then, the solution of the system (9) by the method of Adomian using two and three terms,
respectively, is given by

For two terms With three terms
Y1 = y1,0 + y1,1 Y1 = y1,0 + y1,1 + y1,2
Y2 = y2,0 + y2,1 Y2 = y2,0 + y2,1 + y2,2
Y3 = y3,0 + y3,1 Y3 = y3,0 + y3,1 + y3,2
Y4 = y4,0 + y4,1 Y4 = y4,0 + y4,1 + y4,2
Y5 = y5,0 + y5,1 Y5 = y5,0 + y5,1 + y5,2
Y6 = y6,0 + y6,1 Y6 = y6,0 + y6,1 + y6,2
Y7 = y7,0 + y7,1 Y7 = y7,0 + y7,1 + y7,2
Y8 = y8,0 + y8,1 Y8 = y8,0 + y8,1 + y8,2
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Table 4 Data for simulations of
the process of biogas production

Parameters Values

k0 1.0000

k1 1.1125

k2 1.014

k3 1.054

k4 1.015
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Fig. 2 Concentration of biogas and cellulose obtained by the modified Adomian Decomposition method

Simulation and Discussion

To simulate the anaerobic digestion process, the set of chemical reactions are presented in
Table 2, where the cellulose is the substrate.

Calculate the constants k1, . . . , k4, with Eq. (7), where k0 = 1 [38], Ti= 298.15K andΔG
values given in Equations (2), (3) and in Table 1. The results are shown in Table 4.

According toAdomian decomposition convergence theory, it is suggested to usemore than
one term in the series to obtain the solution. Then, the system (9) is solved by the modified
Adomian method, considering h = 0.1 and three Adomian terms.

Figure 2 shows the solution obtained for the biogas production and the consumption of the
substrate. Biogas production increases rapidly in the first days of the process. Thereafter, the
solution tends to the value six, and the methanogenic phase continues for the entire period.
Figure 2 also shows the consumption of cellulose (substrate). The concentration of cellulose
decreases over time, tending to zero, indicating the consumption of all substrate. In addition,
anaerobic decomposition of glucose, as a 100% cellulose substrate product, is possibly given
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globally as C6H12O6 → 3CH4 + 3CO2 (see Eq. (4)), i.e. with 1 kmol of glucose, 6 kmols
of biogas can be produced, which is consistent with the result obtained.

Conclusions and FutureWork

In this work, a model for the biogas production process was presented, considering cellulose
as a substrate. With the Gibbs free energy value, the rate of production of each reaction
was estimated. The problem was solved by the Modified Adomian Decomposition Method,
providing values that agree with the global solution. The results show that, with the mod-
ified ADM, the coupled set of nonlinear ordinary differential equations, obtained from the
anaerobic digestion problem, can be solved efficiently. This is the main contribution of this
research. In addition, the use of just three Adomian terms makes the problem attractive
for future research. Thus, based on the references of Jajarmi et al. [39,40], who use the
modal series method to solve nonlinear optimal control problems (OCPs), future work will
be focused on the ADM applied to the OCPs.
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