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Abstract
The present work concerns the general stream function solution of the Brinkman equation in
parabolic cylindrical coordinates, arising in the study of fluid flow through porous medium.
Analytical stream function solutions of this equation are available in the coordinates (Carte-
sian, cylindrical polar, spherical polar and prolate spheroidal coordinates). Stream function
solution of the Stokes equation in parabolic cylindrical coordinates is also investigated ana-
lytically. The parabolic cylinder functions are a class of functions which are the solution of
Weber differential equation. A transformation of parabolic cylinder function into the Whit-
taker function is used. Method of inverse operator is applied to obtain particular integral in
solving the Stokes equation. Explicit expressions of velocity components and vorticity are
also reported.

Keywords Brinkman equation · Weber differential equation · Parabolic cylinder function ·
Whittaker function

Mathematics Subject Classification 35G05 · 35C05 · 76S05

Introduction

The study of viscous fluid flow through porous media is of interest to a wide range of
researchers due to its numerous applications in many fields such as bio-mechanics, physical
sciences, chemical engineering, etc.. Due to vast applications, several conceptualmodels have
been developed for describing fluid flow through porous media [11]. Henry Darcy (1856),
stated that the seepage velocity of fluid flow through porous medium is proportional to the
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driving pressure gradient commonly known as Darcy law. Mathematically,

∇ p = −μ

k
�v. (1)

Brinkman [1] proposed the modified version of the Darcys law for porous medium and
provided an expression of the form

∇ p = −μ

k
�v + μe ��v. (2)

Here, �v is the seepage velocity, p is the pressure,μ is the fluid viscosity, k is the permeability
andμe is the effective viscosity of the fluid, flowing in the porousmedium. Previously, several
authors solved these Eqs. (1) and (2) analytically in various coordinates systems, such as,
Cartesian, cylindrical polar, spherical polar and prolate spheroidal coordinates.

A Cartesian-tensor solution of the Brinkman equation was investigated by Qin and Kaloni
[14] and they also evaluated the drag force on a porous sphere in an unbounded medium.
Pop and Cheng [13] evaluated a particular solution of the Brinkman equation in the cylin-
drical polar coordinates. They also presented the streamlines and velocity profiles for the
flow past a circular cylinder embedded in a constant porosity medium. By using the the-
ory of generalised eigenfunctions, Dassios et al. [2] obtained the complete semi-separable
stream function solution of the Stokes equations in prolate spheroidal coordinates. Khuri and
Wazwaz [9] reported the solution of a second order partial differential equation E2ψ = 0
in the toroidal coordinates which arised in the case of irrotational fluid motion. Zlatanovski
[19] in his celebrated paper, investigated the general Stokes stream function solution of the
Stokes equations and the Brinkman equations for axisymmetric creeping flow in the pro-
late spheroidal coordinates. He also reported the general stream function solutions of these
equations in spherical polar coordinates as a limiting case.

Qudais et al. [15] investigated the twodimensional incompressible fluid flowpast parabolic
bodies with uniform stream, and solved numerically the Navier-Stokes and energy equations
in the parabolic coordinates for stream function. Haddad et al. [7] reported the numerical
solutions for two-dimensional fluid flow past a parabolic cylinder embedded in porous media
using the Brinkman-Forchheimer model in the parabolic cylindrical coordinates. Gil et al.
[6] described the various methods for the evaluation of real parabolic cylinder functions and
their derivatives.

Deo and Tiwari [3] investigated the stream function solution of irrotational flow equation
E2ψ = 0 in the bispherical polar coordinates and toroidal coordinates, where E2 is the well-
known differential operator as defined in the book [8]. Srivastava and Deo [16] solved the
Brinkman equation for variable permeability on the presence of uniform magnetic field in a
channel filled with porous medium. Expressions for velocity and acceleration of a moving
body were obtained in the parabolic cylindrical coordinates by Omonile et al. [12]. Zaytoon
et al. [18] investigated theWeber’s inhomogeneous differential equation for both initial value
problems and boundary value problems. Deo et al. [4] obtained the stream function solution
of the Brinkman equation in the cylindrical polar coordinates. Recently, Deo and Maurya [5]
investigated the generalized stream function solution for the Brinkman equation in cylindrical
polar coordinates. Lack of analytical stream function solutions of the Brinkman/Stokes equa-
tions in parabolic cylindrical coordinates, motivate us to carry forward the present research
work.

In this research work, we have obtained the stream function solution (in analytical form)
of the Brinkman equation for parabolic cylindrical coordinates. Analytical stream function
solution of the Stokes equation is also obtained in the same coordinates. Explicit expres-
sions of velocity components and vorticity are reported and the expressions for pressure
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Fig. 1 Geometry of the parabolic cylindrical coordinates

and stress components are evaluated. However, the expressions for pressure and stresses are
cumbersome, so they are not mentioned here.

Mathematical Formulation and Solution

Transformation equations between parabolic cylindrical coordinates (ξ, η, z) and the Carte-
sian coordinates (x, y, z) are:

x = c (ξ2 − η2), y = 2cξη, z = z, (3)

where,

c > 0, −∞ < ξ < ∞, 0 ≤ η < ∞ and − ∞ < z < ∞.

The scale factors (hξ , hη, hz) of the parabolic cylindrical coordinates are:

hξ = hη = 2c
√

ξ2 + η2, hz = 1. (4)

The gradient operator in the parabolic cylindrical coordinates is given by

∇ ≡ ξ̂

2c
√

ξ2 + η2

∂

∂ξ
+ η̂

2c
√

ξ2 + η2

∂

∂η
+ ẑ

∂

∂z
, (5)

where, ξ̂ , η̂, ẑ are unit base vectors along coordinates axes ξ, η, z, respectively. Also, the
Laplacian operator in the parabolic cylindrical coordinates comes out as

� ≡ 1

4c2(ξ2 + η2)

[ ∂2

∂ξ2
+ ∂2

∂η2

]
+ ∂2

∂z2
. (6)
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Assuming that fluid viscosity μ, effective viscosity μe and permeability of porous medium
k are independent of space coordinates (ξ, η, z). Applying the curl operator on both sides
in the Eq. (2), we get

(� − α2)∇ × �v = �0, (7)

where, α2 = μ
μek

.
Let the velocity of an incompressible viscous fluid in the porous medium is perpendicular

to the direction of z-axis, so that we may take

�v = (vξ (ξ, η), vη(ξ, η), 0).

The equation of continuity for an incompressible viscous fluid is

∇ · �v = 0,

i.e.,
∂

∂ξ

[
2c vξ

√
ξ2 + η2

]
+ ∂

∂η

[
2c vη

√
ξ2 + η2

]
= 0. (8)

Introducing the stream function ψ(ξ, η) in terms of velocity components satisfying the Eq.
(8) by

vξ = − 1

2c
√

ξ2 + η2

∂ψ

∂η
, vη = 1

2c
√

ξ2 + η2

∂ψ

∂ξ
. (9)

Now, since
∇ × �v = ẑ �ψ. (10)

So, from Eqs. (7) and (10), we obtain

�(� − α2)ψ(ξ, η) = 0. (11)

Let ψ(ξ, η) = ψ1(ξ, η) + ψ2(ξ, η) be the general stream function solution of the Eq. (11)
such that

�ψ1(ξ, η) = 0, and (� − α2)ψ2(ξ, η) = 0.

Solving the equation �ψ1(ξ, η) = 0 by applying the method of separation of variables, we
get

ψ1(ξ, η) =
∞∑
l=0

[
Al e

lξ + Bl e
−lξ

]cos lη
sin lη

, (12)

where, Al and Bl are arbitrary constants. It is also mentioned that ψ1(ξ, η) is general stream
function solution of the irrotational flow equation�ψ1(ξ, η) = 0, in the parabolic cylindrical
coordinates (ξ, η, z).

Solution for ψ2(ξ, η):
Since,ψ2(ξ, η) is satisfying the equation (�−α2)ψ2(ξ, η) = 0. Then, inserting the value

of the Laplacian operator � by the Eq. (6) in the above equation, we obtain

∂2ψ2

∂ξ2
+ ∂2ψ2

∂η2
− 4α2c2(ξ2 + η2)ψ2 = 0. (13)

To find the general solution of the Eq. (13), we shall apply the technique of separation of
variables by assuming that ψ2(ξ, η) = G(ξ)T (η). Thus, we have

1

G

[
d2G

dξ2
− β2ξ2G

]
= − 1

T

[
d2T

dη2
− β2η2T

]
= m, (14)
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where, β2 = 4α2c2 and m = 1, 2, 3, · · · .
The Eq. (14) can be separated into two ordinary differential equations

d2G

dξ2
− (β2ξ2 + m)G = 0, (15)

and
d2T

dη2
− (β2η2 − m)T = 0. (16)

Equations (15) and (16) are particular cases of the Weber differential equation [10]. The
parabolic cylinder functions D−m−β

2β
(ξ

√
2β) and Dm−β

2β
(iξ

√
2β) are two linearly independent

solutions of Eq. (15). To get real solutions, we shall transform the parabolic cylinder function
Dν(ξ) in the Whittaker function Wr ,s(ξ) by using the following relation

Dν(ξ) = 2
ν
2+ 1

4 ξ− 1
2 W ν

2+ 1
4 ,− 1

4

(
ξ2

2

)
.

Thus,

G(ξ) = C (1)
m 2− m

4β ξ− 1
2 β− 1

4 W− m
4β ,− 1

4

(
ξ2β

) + D(1)
m 2

m
4β ξ− 1

2 β− 1
4 W m

4β ,− 1
4

(−ξ2β
)
. (17)

Similarly, the general solution of the Eq. (16) can be obtained as:

T (η) = C (2)
m 2

m
4β η− 1

2 β− 1
4 W m

4β ,− 1
4
(η2β) + D(2)

m 2− m
4β η− 1

2 β− 1
4 W− m

4β ,− 1
4
(−η2β). (18)

Therefore,

ψ2(ξ, η) = (ξηβ)−
1
2

[
C (1)
m 2− m

4β ξ− 1
2 β− 1

4 W− m
4β ,− 1

4
(ξ2β) + D(1)

m 2
m
4β ξ− 1

2 β− 1
4 W m

4β ,− 1
4
(−ξ2β)

]

[
C (2)
m 2

m
4β η− 1

2 β− 1
4 W m

4β ,− 1
4
(η2β) + D(2)

m 2− m
4β η− 1

2 β− 1
4 W− m

4β ,− 1
4
(−η2β)

]
, (19)

where, C (i)
m and D(i)

m , i=1, 2, are arbitrary constants.
Hence, the general stream function solution of the Brinkman equation in parabolic cylin-

drical coordinates is:

ψ(ξ, η) =
∞∑
l=0

[
Al e

lξ + Bl e
−lξ

]cos lη
sin lη

+ (ξηβ)−
1
2

∞∑
m=0

[
C (1)
m 2− m

4β ξ− 1
2 β− 1

4 W− m
4β ,− 1

4
(ξ2β)

+D(1)
m 2

m
4β ξ− 1

2 β− 1
4 W m

4β ,− 1
4
(−ξ2β)

][
C (2)
m 2

m
4β η− 1

2 β− 1
4 W m

4β ,− 1
4
(η2β)

+D(2)
m 2− m

4β η− 1
2 β− 1

4 W− m
4β ,− 1

4
(−η2β)

]
. (20)

Expressions for Velocity Components, Vorticity, Pressure and Stress
Components

Velocity components from Eq. (9) comes out to be

vξ = 1

2c
√

ξ2 + η2

[ ∞∑
l=0

[
l2

(
Al e

lξ + Bl e
−lξ )]cos lη

sin lη
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+
( η

βξ

)1/2 ∞∑
m=0

2− m
2β

[
C (1)
m W− m

4β ,− 1
4
(ξ2β) + 2

m
2β D(1)

m W m
4β ,− 1

4
(−ξ2β)

]

[
2

m
2β C (2)

m

(
mW m

4β ,− 1
4
(η2β) + (β − m)W m

4β , 34
(η2β)

)

+D(2)
m

[
mW− m

4β ,− 1
4
(−η2β) − (β + m)W− m

4β , 34
(−η2β)

]]]
. (21)

vη = 1

2c
√

ξ2 + η2

[ ∞∑
l=0

[
l2(Al e

lξ + Bl e
−lξ )

]cos lη
sin lη

+(
ξ

βη
)1/2

∞∑
m=0

2− m
2β

[
D(2)
m W− m

4β ,− 1
4
(−η2β) + 2

m
2β C (2)

m W m
4β ,− 1

4
(η2β)

]

[
C (1)
m

(
mW− m

4β ,− 1
4
(ξ2β) − (β + m)W− m

4β , 34
(ξ2β)

)

+2
m
2β D(1)

m (mW m
4β ,− 1

4
(−ξ2β) + (β − m)W m

4β , 34
(−ξ2β))

]]
. (22)

Now, since the vorticity vector is defined as the curl of the velocity vector, i.e.

�ω = ∇ × �v.

So, vorticity will be

�ω = ωz ẑ,

where,

ωz = 1

4c2(ξ2 + η2)2(βξη)5/2

[ ∞∑
l=0

2l2(l − η)(βξη)5/2
[
Al e

lξ + Bl e
−lξ ]cos lη

sin lη

+
∞∑
l=0

[
(−2− m

2β βη2ξ2)
[
D(2)
m

(
4βW− m

4β +1,− 1
4
(−βη2) + (−m + β

+2β2η2)W− m
4β ,− 1

4
(−βη2)

)
+ 2

m
4β C (2)

m

(
4βW m

4β +1,− 1
4
(βη2)

+(m + β − 2β2η2)W m
4β ,− 1

4
(βη2)

)]

−2−2− m
2β ξ2(ξ2 + η2)

[
D(2)
m

[
− 8β(m − 2β(2 + βη2))W1− m

4β ,− 1
4
(−βη2)

+16β2W2− m
4β ,− 1

4
(−βη2) + [

m2 − 4mβ(1 + βη2) + β2(3 + 4β2η4)
]
W− m

4β ,− 1
4
(−βη2)

]

+2
m
2β C (2)

m

[
8β(m − 2β(−2 + βη2))W1+ m

4β ,− 1
4
(βη2) + 16β2W2+ m

4β ,− 1
4
(βη2)

+(
m2 − 4mβ(−1 + βη2) + β2(3 + 4β2η4)

)
W m

4β ,− 1
4
(βη2)

]]]

[
C (1)
m W− m

4β ,− 1
4
(βξ2) + 2

m
2β D(1)

m W m
4β ,− 1

4
(−βξ2)

]

+2−2− m
2β η2(ξ2 + η2)[D(2)

m W− m
4β ,− 1

4
(−βη2) + 2

m
2β C (2)

m W m
4β ,− 1

4
(βη2)]

[
C (1)
m [−8β(m + 2β(−2 + βξ2))W− m

4β ,− 1
4
(βξ2) + 16β2W2− m

4β ,− 1
4
(βξ2)

+(
m2 + 4mβ(−1 + βξ2) + β2(3 + 4β2ξ4)

)
W− m

4β ,− 1
4
(βξ2)] + 2

m
2β
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D(1)
m

[
8β((m + 2β(2 + βξ2)))W1+ m

4β ,− 1
4
(−βξ2) + 16β2W2+ m

4β ,− 1
4
(−βξ2)

+(
m2 + 4mβ(1 + βξ2) + β2(3 + 4β2ξ4)

)
W m

4β ,− 1
4
(−βξ2)

]]]
.

The fluid pressure p(ξ, η) can be evaluated from the expression

dp = 1

2c
√

ξ2 + η2

[
−μ

k
vξ + μe

(
�vξ − vξ

4c2(ξ2 + η2)2

)]
dξ

+ 1

2c
√

ξ2 + η2

[
−μ

k
vη + μe

(
�vξ − vη

4c2(ξ2 + η2)2

)]
dη, (23)

by using MATHEMATICA software. Due to cumbersome expression, fluid pressure is not
mentioned here. Stress components Tξξ , Tηη, Tηξ and Tξη [17] can be computed by using
following expressions:

Tξξ = −p + μ

c
√

ξ2 + η2

[
∂vξ

∂ξ
+ ηvη

ξ2 + η2

]
, (24)

Tηη = −p + μ

c
√

ξ2 + η2

[
∂vη

∂η
+ ξvξ

ξ2 + η2

]
, (25)

and

Tξη = Tηξ = μ

2c
√

ξ2 + η2

[
∂vη

∂ξ
+ ∂vξ

∂η
+ ηvξ + ξvη

ξ2 + η2

]
. (26)

General Stream Function Solution of the Stokes Equation in Parabolic
Cylindrical Coordinates

Consider the steady flow for an incompressible, two dimensional and highly viscid fluid is
governed by the Stokes equation

∇ p = μ��v, ∇ · �v = 0, (27)

where, p, �v, μ are the pressure, velocity and dynamic viscosity of the fluid, respectively.
Operating curl on the Eq. (27), we obtain

� [�ψ(ξ, η)] = 0. (28)

Now, we have to find the general solution of the equation (28). For this, we may take

�ψ = �(ξ, η). (29)

Then,

�(ξ, η) =
∞∑

m=0

[
(Am emξ + Bm e−mξ )

]cosmη

sinmη
, (30)

where, Am and Bm are arbitrary parameters.
Therefore, from Eqs. (29) and (30), we may write

�ψ =
[
Am emξ + Bm e−mξ

]cosmη

sinmη
,

i.e., [
D2

ξ + D2
η

]
ψ = 4c2(ξ2 + η2)[(Am emξ + Bm e−mξ )

]cosmη

sinmη
, (31)
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where, D2
ξ ≡ ∂2

∂ξ2
and D2

η ≡ ∂2

∂η2
.

The particular solution of Eq. (31) can be determined by using the method of inverse
operator:

1

D2
ξ + D2

η

[
4c2(ξ2 + η2)

[(
Am emξ + Bm e−mξ

)]cosmη

sinmη

]

≡ Real Part of

[
1

D2
ξ + D2

η

[
4c2(ξ2 + η2)

[
(A(1)

m emξ + B(1)
m e−mξ )eimη

]]]

+Imaginary Part of

[
1

D2
ξ + D2

η

[
4c2(ξ2 + η2)

[
(A(2)

m emξ + B(2)
m e−mξ )eimη

]]]
,

(32)

where, A(i)
m and B(i)

m for i = 1, 2, are arbitrary constants.
Therefore, the stream function solution of the Stokes equation is:

ψ(ξ, η) =
∞∑

m=0

[[
A(m) +

(
mξ(−3 + mξ) + m2η2(−1 + 2mξ)

)
B(m)

+η
(
3 + 2mξ(−2 + mξ)

)
C (m)

]
emξ +

[
η2ξD(m)

+ηξ(1 + mξ)E (m)
]
e−mξ

]cosmη

sinmη
, (33)

where, A(m), B(m), C (m), D(m) and E (m) are arbitrary parameters.
Now, we are able to evaluate the velocity components vξ and vη using Eq. (9), fluid

pressure by Eq. (27) and stresses by Eqs. (24)–(26).

Discussion of Results

Analytical expressions of general stream function solution of an incompressible and irro-
tational fluid flow equation (�ψ1(ξ, η) = 0), the Stokes equation (�2ψ(ξ, η) = 0) and
the Brinkman equation (�(� − α2)ψ = 0), are investigated for parabolic cylindrical
coordinates. Mathematical expressions of stream function, fluid velocity, fluid pressure,
vorticity of fluid particles and fluid stresses are obtained in the combinations of transcen-
dental functions. To compute the particular solution of the Stokes equation, method of
inverse operator is used. Analytical solutions are also suitable for heat and mass transfer
calculations of flow problems. Further development and utilization of these solutions are
possible to obtain results for engineering applications, such as drag force and permeabil-
ity.

Conclusion

The analytical stream function solution of irrotational fluid flow equation �ψ1(ξ, η)=0,
and the Brinkman equation �(� − α2)ψ = 0, are investigated in the parabolic cylindrical
coordinates. Explicit expressions of velocity components and vorticity are reported and the
expressions for pressure and stress components are also evaluated by using Mathematica
software. This analytical solution is applicable to the uniform flow, creeping flow as well as
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three dimensional vortex flow. One can use this stream function solution of the Brinkman
equation in various fluid flow problems past bodies whose geometry is based on parabolic
cylindrical coordinates. Stream function solution of the Stokes equation �2ψ(ξ, η) = 0, is
investigated analytically for the same coordinates. Expressions of stream function ψ(ξ, η),
velocity, pressure, vorticity and stresses are combinations of trigonometric, exponential and
Whittaker functions. Since, the parabolic cylindrical coordinate system is the generalized
version of cylindrical coordinate system, so using suitable substitutions, this solution can
be reduced to a stream function solution that is available in the cylindrical polar coor-
dinates. The reported analytical solutions of the Brinkman/Stokes equation can be used
to investigate real life problems based on parabolic cylindrical coordinates, i.e. fluid flow
through a swarm of fibrous parabolic cylindrical particles, in the process of extraction of
oils/minerals through the porous parabolic cylindrical pipes, Stokes flow past a parabolic
cylinder, etc..

Acknowledgement Authors are thankful to reviewers for their valuable suggestions which led to much
improvement in the presentation of the paper.
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