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Abstract

Inverse linear multistep methods (ILMMs) for first and second order differential equations
have been proved to be suitable numerical methods for the solution of inverse initial value
problems (IVPs). This paper presents the hybrid version of the ILMMs for the numerical
solution of second order inverse IVPs. The stability of the proposed methods is represented
in the boundary locus graph. The applicability of the schemes is demonstrated herein for
the solution of linear and nonlinear problems. Computational results on the problems are
compared with those from the existing method and ode45 (the explicit Runge—Kutta method).
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Introduction

The modelling of real-life phenomenon may result in second order differential equations of
the form

F(x,9,9,9")=0, y@=y, Y@=y, a<x<b, FeR". (1)
In this regard, we consider the two special classes of (1) which are:
Yi=f,y, ya@=y, Y@=y, a<x<b, feR" 2)
and
y=n(x.y"), y@=y. y@=y),, a<x=<b, neR" 3)
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The initial value problem (IVP) (2) often occur in physical phenomenon such as mechanical
systems without dissipation, satalite tracking and celestial mechanics [1]. Several numerical
techniques have been used to solve the special class of the IVP (2). See for example, the
works presented in [1,7,8,19,21,22,24] and other references herein. An example of a realistic
problem emanating naturally from the theory of viscoelasticity that gives rise to an IVP of
the form (3) is described in [2,3]. However, the IVP (2) sometimes may be converted easily
into the IVP (3). For instance, the situation when

fx,y)=0wy, w#0, weR.
The equivalent IVP (3) is expressed as
n(x.y") =0 flx.y).
That is,

The IVP (2) of the form
fEy)=¢f(xy)

with function ¢ sometimes may be converted into the integration problem (3). As in [4-6],
the LMM for solving the second order IVP (2) is given by

k k
> @jyns; =h*Y_ Bifurj. k=2 @)
j=0 j=0

There is a vast literature on the development of efficient numerical methods from the LMM
(4) for the solution of special second order IVP (for which y’ is explicitly missing) (2). See
the works in [1,7-12,19,22]. The direct application of the LMM (4) on IVP (2) has been
found to be more advantageous than the application of the conventional LMM (4) on IVP (1)
[1]. Alfeld [2] was the first to introduce the idea of ILMM for the first order IVPs. However,
Krishnaiah [13] later extended the ILMM to the second order IVP of (3). To be precised
further, we write the ILMM for IVP (3) as

k k
h_zzajyn+j=2ﬁjfn+j 5)
=0 i=0

where Br = 1, yutj = n(Xp1j, futj). The ILMM (5) is usually explicit when applied to the
problem of the form (3) [13]. To be precise, we give an example of the ILMMs presented in
[13] for k = 4 as

Fura = =B3fuss — Bafusz — Bt — Bofu +h 77 ((3 +2B3 + B2 — o) yn+3
+(=8= 583 = 2Bs + B + AP0y + (T + 483 + B2
— 281 = SB0)yur1 + (<2 = B3 + B + 2800 )-

The order of the method is p = 1 with non-vanishing error constant given in terms of
Bj=0,1,2,3 as

1
Cy= 5 (=35 =115 + fo + 1 — 11fo).
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All the methods proposed in [13] are inspired by the introduction of the ILMM for the first
order IVPs presented in [2]. The ILMM (5) has an associated local truncation error (LTE)
difference operator

k
LIy k1 =Y [h72a;y(ag ) — By Cony )] (6)
j=0

with oy = 0 and the arbitrarily often differentiable test function is y(x,). On expanding
L[y(xn); h], we obtain

Lly(x): il = h™2 [Coy(xn) + Crhy(x,) + -] (7
where

Co=ap+or+- + o
Ci=o1+2a+ -+ kay

1
Co= (01 + 2%y + - + Koy) — (Bt +2972By + -+ + k172 By) s for g > 2.

1
(g —2)!

Definition 1.1 [13] The ILMM (5) is of error order p ifin (7),Co = C1 =--- = Cp42 =0,
and the non-vanishing error constant in (7) is Cp43 # 0.

Lemma 1.2 [13] The ILMM (5) is consistent if it is of error order p > 1.

Remark 1.3 The corresponding definition of consistency for the second order LMM (4) is
given in [4,5,9].

This paper is coordinated as following: In section two, the theory of the stability property
of the family of ILMM(s) is considered. Section three presents the construction of the new
hybrid version of the formula in (5). The stability graphs are considered in section four.
Implementation process of the methods and the numerical results are presented and discussed
in section five, and the concluding part of the paper followings.

Stability Properties of ILMMs

The stability of the ILMM (5) is examined via the application on the scalar test problem for
second order IVPs (2,3)
y' = =22y, Re(}) >0 )
to obtain the stability polynomial
[1E B =p@& + H* o), H>=2h" ©

In this regard, the first and second characteristics polynomial of (5) are

k—1 k
pE) =) ;& and o) =) B;E.
j=0 j=0

The following are definitions, lemmas, and theorem based on the theory of ILMMs (5) in
[13].
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Definition 2.1 [13] The ILMM (5) is said to be absolutely stable for a given H? e C, if for
that H2, all the roots &, of the stability polynomial (9) satisfy | &, |< 1 form = 1(1)k.

Lemma 2.2 [13] The set R = {H* € C/absolutely stablefor H?} is called the interval of
absolute stability.

It follows from the stability polynomial (9), the degree d; of the first characteristic polynomial
p (&) satisfies d; < k — 1 < k whereas the degree d> of the second characteristic polynomial
o (&) satisfies dy = k. Trivially, one of the zeros of the stability polynomial (9) approaches
infinity as H — 0 [13]. The implication is that the ILMM (5) is unstable for small values of
H. It is of great importance to seek for ILMM (5) whose polynomial o (§) posses only roots
of modulus less than unity, i.e., the Schur polynomial [13].

Definition 2.3 [13] The ILMM (5) is said to be infinite-stable if the second characteristics
polynomial o (§) is a Schur polynomial.

Remark 2.4 The concept of infinite-stable is in a way dual to the concept of zero-stability.
In the case of zero-stability, H — 0 while the infinite-stability deals with the case where
H — oo.

Definition 2.5 [13] The ILMM (5) is said to be strong infinite-stable if the first characteristics
polynomial is p(§) = ék, i.e., the roots are located on the origin, with the result that such
formula are highly stable.

As in Krishnaiah [13], the strong infinite-stable ILMM is given by

k—1

ok =Y e . (10)
Jj=0

The coefficient arj; j = 0(1)k — 1 are expected to attain an order k — 3 for a strong infinite-
stable ILMM (5).

Lemma 2.6 [13] A consistent strongly infinite-stable ILMM (5) has step number k > 4.

The maximum attainable order of infinite-stability or strong infinite-stability of the [ILMMs
is stated in the following theorem.

Theorem 2.7 [13] Case 1: Let o (§) be a polynomial of degree k (with By, = 1). Then there
exists a unique polynomial of degree k — 1, such that the ILMM (5) defined by p(§) and o (&)
have order at least k — 3.

Case 2: The maximum attainable order of infinite-stable ILMMs is k — 3. For each k > 4,
there exists a strong infinite-stable ILMM of order k — 3.

The proof of the first order ILMMs version of theorem (2.7) can be found in [2]. However, we
omit the proof for the second order ILMMs as it follows closely the lines of Alfeld’s proof in
[2] for the first order. As far as the authors know, the ILMM developed in [13] is the only type
of LMM (4) that has been applied to solve the second order IVPs. Hence, this paper is aimed
at proposing a new class of ILMM (5) for solving the second order IVP (3). In the following
section, our interest is to extend the ILMM (5) in [2] by adding an hybrid extension which
gives room for hybrid predictors. The motivation behind this is based on the general role that
a hybrid LMM plays in improving the stability and the order of the traditional LMM (4),
see [1,7,9-11,14,15,19,22]. In fact, Felix and Okuonghae [19]; Ibrahim and Ikhile [22] have
recently proposed hybrid methods with orders as high as four and sixteen respectively for
IVP (2). Thus, the effect of relevant parameters in the extension will be discussed as follows.
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Construction of the Generalized Hybrid Extension of ILMM

The class of method under investigation is the inverse hybrid linear multistep methods
(IHLMMs)

K k N
21 ) (21-2) ) 21-2) (21-2) Z i (21-2) (2I-2)
§ :h( : 2 :01 Ynj ZZ‘BJ ( Yntj 0 Yntj ) + Qf,)f <X"+” » ity )

I=1 j=0 =1
(11)

with the hybrid predictor

K k—1
— 0 (21-2 ! 212 212
= ST AT e D ().
I= j=0

However, such method can be referred to as an Obreckoff type of method (see [10]). Here,
s = 1(1)k, Br = 1, kis the step number, / is the step length expressed as A = x4 j —xp, v; are
the off-step points to be chosen as v; = k — % for an increasing k, y” (Xp4j, Yntj) = futj
Y (Xn+vs Yn+v) = fontv. The IHLMM (11) has Runge-Kutta’s flavour which is called a
k—stage general linear methods (GLMs), if v # vg. Otherwise, it is called a single stage
GLM [15]. The procedure for the development of this implicit linear multistep methods is
identical to that of the explicit linear multistep methods; the basic difference being the range
of integration [5]. In particular, the IHLMM of interest is given by

k—1 k
h? Z“jynJrj = Zﬂjfn+j + Qv futv (13)

j=0

where s = 1. The hybrid predictor is given by

k—1
Yntv =h" Zy/y”‘H +ZW1fn+1 (14)
Jj=0 Jj=0

The method (13) approximates the hybrid quantities y,4+, by an expression involving the
quantities {y,4;; fu+;} only. The introduction of the hybrid predictor is to improve the
stability and the order of the ILMMs. More importantly, the off-step points is carefully chosen
to ensure an improve stability features and LTE order. The crucial role hybrid predictor play
in this regard is evident in the literature such as [7,14,19,22] and other references herein. For
k = 4 in (13), we have

h? <a3yn+3 +oypp2 oyl + Oloyn)
= futa + B3 fu3 + B2 fur2 + Bifusr1 + Bofu + Ov frio-

We expand (15) using the Taylor’s series approach on Mathematica v11 to obtain the consis-
tent equations in terms of 8;—0,1,2,3 and the off-step point v

5)

h_oz(a0+a1+a2+a3)=0
hl (a1 + 203 +3a3) =0

1
h’zzE(—ZQU—Fa]+4a2+9a3—2(1+ﬂo+,31+/32+ﬂ3))=0

1
h3 ¢ (F6V0y + a1+ 8ar +27a3 — 6 (4 + f1 + 262 +363) =0
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1
e % (—1202Qy + a1 + 1602 + 8laz — 12 (16 + B1 + 4B + 953)) .

On solving the system of equations simultaneously, we obtain
92 — 71v + 1202 4+ 25vfy — 12028y — 1381 + 19vB1 — 6V2B1 — 282 + vB2 + 3383 — 29vB3 + 6v2 B3

= 11— 180 + 612

3 (=84 + 77v — 14v% — 19vBy + 1002 By + 91 — 13vB1 +4v2 By — 22 + SvB2 — 2v> P2 — 333 + 35vB3 — 8v2p3)
“r=- 11— 180 + 612

3(=76 + 83v — 16v% — 13vfy + 8v2Bo + 581 — TvP1 + 2v2B1 — 682 + 11vBy — 4v2 B — 3383 + 41vBs — 10v2B3)

@ = 11— 180 + 612

—68 + 89v — 1802 — Tvfy + 6vV2Bo + B1 — vB1 — 1082 + 17vBy — 6v2 By — 33B3 + 4Tvfs — 1202 B3
@ = 11— 180 + 612

354+ 110 — 1 — fo + 1153
Q, = — .

11— 18v + 607
The IHLMM for k = 4 is given by

35+ 118y — — 11
fm:—(f,,ﬂwfmm+f;,+zﬁ2+f;,+3ﬁz—f;1+r( o= fi=fot ‘33))

11— 18v + 602
+h’2( s (—68 +89v — 18v2 — Tufy + 6v2 By + B1 — vP1 — 108y + 17vhr — 6v2 Py — 33B3 + 4Tv s — 1202 3)
; 11 — 18v + 602

3 (=76 +83v — 1602 — 1300 + 8> o + 51 — TvP1 + 20281 — 62 + 11vfy — 402 By — 33B3 + 41vp3 — 100°B3)
e 11— 180 + 602

3 (=84 4 77v — 1402 — 190y + 1002 By + 981 — 13vB) + 40> B1 — 25 + 5vBy — 207 By — 3363 + 35vB3 — 8v?B3)
nl 11 — 18v 4 6v2
o (92 = 71v + 120% + 250y — 120% By — 1381 + 19vB; — 6V — 22 + vPa + 33P3 — 29vP3 + 6v2/33)>

" 11 — 18v + 602 :

The new IHLMM is of error order p = 2 with non-vanishing error constant given in terms
of Bj=0,1,2,3 and v as

1
LTE, = 5(—4 23 +20(=20 47 51 — 720 + 2202
1 132+72(—3+v)v(( +v)(23 4+ 2v(=20 4 7v)) + v ( v+ 22v°%) By

—(I+v@B+2(=3+vv)B1 — (=2+v)(5+2(—=4 +v)v)B2 — 9983
+u(213 4 20(—63 + 11v)),83)y5(x)h5.

Similarly for the hybrid predator (14), at k = 4, we have

Yot = h2 (VoYn + V1¥nt1 + V2Yns2 + V3¥nt3) + Vo fu + Vi fati
+ V2 fur2 + V3 futs + Vafrra.

We employ the Taylor’s series approach to obtain the consistent equations

(16)

hO0:—(1+pw+y+yr+y)=0
h1:(w—y1—2y2—3y3) =0

1
72 (02— 1 =42 = 93 — 2400 — 291 — 292 — 293 — 24) =0
1
h3ie (v = y1 — 8y» — 2Ty3 — 69 — 1295 — 18y3 — 24¢4) = 0.
On solving the system, we obtain

Yo = — (6= 11v+6v2 — v¥ — 129 — 6Yr1 + 63 + 1294)

v = = (6v — 50 + 0% + 1090 + 4y — 290 — 8Y3 — 14yn)

N[ — O\ —
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A==

) (=3v +4v? — v} — 8y — 241 + 4y + 10y3 + 16y4)

y3 = — (2v = 30> + v + 6y — 6y — 1293 — 18¢) .

The hybrid predictor for k = 4 is given by

1
Vit = h_2(6y11+3 (20 = 307 + v + 690 — 6v2 — 1293 — 18y4)

I

+§yn+1 (6U — 502 + U3 + 10y + 4¢1 — 29y — 8Yr3 — 141,04)
1 2 3

+6yn<6 — v+ 60 — 03 — 1291 — 691 + 6Y3 + 121p4)

1
+§yn+2( ~ 3y dv? — 03— 8 — 291 + 4y + 10y + 161//4))

+ o + far1¥1 + faro¥2 + fur3¥s + furata.

The error order p = 1 and the LTE is given by
1
LTE; = 2 (=3 +)(=2+ v)(= 1+ v)v = 220 + 291 + 22 = 2293 — T004) y* (4",
For k =5, see the appendix.
Stability of the Inverse Hybrid Linear Multistep Methods
We present the k-step IHLMM (13) for k = 4 with free parameters that does not only allow
total control over the coefficients but also, ensure that the stability criteria described in Sect. 2

holds. The off-step point is given by k — % Fork =4,v = %, we have the new IHLMM of
error order p = 2 as

2
Jan = — <fn/30 + fur1B1 + fos2B2 + fur3B3 — Ef”% B35+ 110 —p1 — P2 + 11/33)>

_ 2 581 318
2
— s (234498, — 2PL g, — 2P
h ( 43y+3( 344960 — 22 pr- =) )
6 37 1058 338,
2 (2 5p — P2 _qp
+43y+2(2+ > + 581 2 /33)
6 251 1783
— (l4+56/30 + =2 - 9p - T)

2 19 1198, 36,
_Ey"<_7_ 2 ‘2°ﬂl+7+5ﬂ3>)-

a7

@ Springer



158 Page8of17 Int. J. Appl. Comput. Math (2020) 6:158

Im(H) Im(H) Im(H)

2}

Fig. 1 The stability graphs of IHLMM for k = 4 with B;—¢ 12,3 = 0 (left), Bj=0,1,2,3 = 1 (middle),
Bj=0,1,2,3 = 10 (right)

The corresponding IHLMM predictor for (17) is given by

/1 105
¥3an =2 (2omss (5 + 6V0 — 6v2 — 1295 — 18y

1 21
+ 5)’n+1 <§ + 10y + 4y — 29 — 8Y3 — 141&4)

+ éyn (—% — 120 — 6y + 6Y3 + 121/f4> (18)

1 35
+§ﬁu(—§“—Wm—2%%4Wr+mwy+m¢0)

+ fuo + fur1¥1 + fas2¥2 + fat3¥s + forata.

The stability polynomial is obtained by substituting the hybrid predictor (18) into the main
method (17), and then apply it on the scalar test problem (8). Where v = %, Bj=0,1,.2,3 =1,
¥j=0,1,2,3,4 = 0, have been incorporated to satisfy the stability polynomial

165  390e5 285 ,. 60 s

H) = — — =07 2i PV 3iE
[Tem 43 5 T Be T

110< 5

43\ 16

+<1 + el + M 4 M8 oM
2le$ 35 5. 35 5

_ 2228 4 22 3:5)) H.
6 165 T16°
Figure 1 presents three stability graphs for 8j—o1,2,3 = 0, 1, 10, by keeping v = % and
¥j=0,1,2,3,4 = 0 fixed.
Furthermore, we present the summary of the interval of absolute stability of the IHLMM
(11) fork = 4,5, 6 in Table 1.
The advantages of the proposed IHLMM (11) over the ILMM (5) in [13] are:

1. The IHLMM (11) can easily be extended to other forms of methods for an increasing k
and s. The new formula (11) of ours generalises the work presented in [2] and [13].
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Table 1 Summary of the stability 4 5 6

intervals of the IHLMM (11) for

k=4,506 order p 2 3 4
Bj=0,1,2,345=0 (=0.56,0) (=0.90, 0) (—3.30,0)
Bj=0.1,2,3.4,5=1 (—1.29,0) (—3.81,0) (—10.0,0)

Bi—0.12345=10  (=2.350)  (—48.00,0)  (—4.70,0)

Table 2 Comparison of the order X 4 5 6

p of ILMM (5) in [13] and

IHLMM (11) ILMM [13] order p 1 2 3
IHLMM (11) order p 2

Table 3 Comparison of ILMM (5) [13], IHLMM (11), and predictor (pre.) IHLMM (12)

Class of linear multistep methods: ILMM IHLMM pre. IHLMM
Minimum order of consistent method: 1 2

Minimum step number of zero-stable (infinite-stable) consistent method: 4 4

Maximum order of zero-stable (or infinite-stable) k-step method : k—3 k-3 k-3

2. Also, the LTE order p of the proposed IHLMM (11) is higher than the LTE order of the
ILMM (5) in [13] for the same step number.

3. The methods IHLMM (11) and ILMM (5) allow the §; variation to attain strong-infinity
stability criteria in Sect. 2 but the proposed IHLMM (11) has an additional hybrid pre-
dictor coefficients ¥; that could be varied for desired stability.

The Table 2 presents the order of ILMM (5) in [13] as compared to the order of [HLMM
(11).

In respect of the above advantages, we claim that the order of IHLMM (11) is higher than that
of the ILMM (5) for thesame step number because of the introduction of hybrid parameter.
We have also observed that choice of the hybrid parameter can be manipulated to guarantee
a better stability. Furthermore, we established the following.

Lemma 4.1 Case 1: The minimum order of a consistent IHLMM (11) is p > 2.
Case 2: The minimum order of a consistent hybrid predictor (12) of the IHLMM (11)is p > 1.

However, we conjecture that for an increasing value of k with s fixed at one, the proposed
IHLMM (11), will continue to satisfy the stability conditions presented in Sect. 2. Further
comparison is the methods is given in Table 3.

Implementation of Methods and Numerical Results

This section presents the numerical experiment of the developed scheme using the GNU
Octave v3 software. A class of IVPs to which the method (11) can be adopted is

Z//_ X,
y= b( y)JrZ

—A2 (x)
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where X is large and z(x) is the theoretical solution and ¢ could be linear or nonlinear.
However, we shall consider implementing method (17) following the idea in [1,7,10,11].
The approach of Newton-Raphson iterative method will be used to implement the method
(17), unlike the method of Picard iterative techniques employed in [13]. In the method (17),
we set 3; to one (as in [13]), v/} to zero, and then carefully choose the off-step point v = %
to ensure desirable stability. The method (17) can be expressed as

110
o+ for1 + foan + frgn — an_q_% + futa

_ h72(165)7n _ 390y14n T 285yn+2 _ 60)’n+3>
B 43 43 43 43

with the hybrid predictor given by

= _Sﬂ 21ynt1 _ 35yn42 35yn43
s T 16 16 6
However, we adopt the use of the exact solution for the {y,+;};=0,1,2,3 while the functions

{fu+j}j=0,1,2,3 are obtained from the respective IVPs in Examples 1 and 2 for the case of
IHLMM (17). Thus the Newton-Raphson iteration becomes

—1
A=t = (Jomln) oD, w=012. 0w (19)
with the Jacobian,
IF(y)
J(y) = (20)
dy

The numerical method (17) is applied to solve the Examples 1 and 2. In the case of the
IHLMM in (17),

[u]
oty = 165 _ 390t | 285ynia 60N
3 43 43 43 43

+h2<fn + fn-H + fn+2 + fn[i]3 + fn+4

_@(_ Syn | 21yng1 35y 35%%3))
43 16 16 16 16 /)

Furthermore, the numerical results of the method (17) are compared with the results obtained
from the work in [13], ode45 (based on the explicit Runge—Kutta method).

Example 1 Consider the linear inverse problem in [13]

y"(x) + cos x

2 + cosx 21

yx) =
where A2 = 10. The initial conditions are given by
@: yO =1, y(©) =0
and
B : yO)=1+A, Y(0)=0, A =0.0001.
The exact solution is given by

y(x) = (y(0) — 1) cos 100x + y’(0) sin 100x + cos x,
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2 ~
Exact Solution
156 —©— IHLMM k = 4 Solution
: —*— ode45

y(x)

-2 L L L L I )
0 5 10 15 20 25 30
X

Fig.2 The schematic diagram of exact, IHLMM (17), and ode45 solutions for Example la (x, = 25)

2 —
Exact Solution
150 : —©&— IHLMM k = 4 Solution
. —*— ode45

y(x)

Fig.3 The schematic diagram of exact and IHLMM (17) solutions for Example 1b (# = 0.1, A = 0.1, x, =
25)

where xo = 0 is the initial point while the absolute error will be taken at x,, = 25 (that is,
the output point is taken at x, = 25).

Example 2 Consider the nonlinear inverse problem in [13]

Y —exp(2y)

—2 — log(1 +x) (22)

where A% = 100. The initial conditions are given by

y(0)=0, y'(0)=-1.
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Exact Solution

0 O IHLMM k = 4 Solution | :
—#— ode45

Fig.4 The schematic diagram of exact and IHLMM (17) solutions for Example 2 (h = 0.1, x,, = 20)

Table 4 Comparison of the absolute error | y;, — y(x) | of the IHLMM (17), ILMM (5) in [13] and ode45
for Example 1a

n h y(xn) ILMM [13] IHLMM (17) oded45

50 0.5 0.991202811863474 1.245%x10705 4.44089209850063x 10716  8.79718813652597x 1003
250 0.1 0.991202811863474 2.219x107% 1.08801856413265x 1014 8.79718813652597x 1093

Table 5 Comparison of the absolute error | y, — y(x;) | of the IHLMM (17) and ILMM (5) in [13] for
Example 1b (A = 0.0001, x;,, = 25)

n h y(xn) ILMM [13] IHLMM (17) oded5

50 0.5 0.991278794374823 9.646x10~0%  4.44089209850063x 10710  8.79718813652597x 103
250 0.1 0.991278794374823 9.544x10~9% 1.14352971536391x 1014 8.72120562517698x 103

Table 6 Comparison of the absolute error | y, — y(x;) | of the IHLMM (17) solution with the exact solution
for Example 1b (A = 0.1, x;, = 25)

n h y(xn) ILMM [13] IHLMM (17) oded45
50 0.5 1.06718532321249 NA 2.22044604925031x 10715 6.71853232124899x 102
250 0.1 1.06718532321249 NA 5.75317571360756x10~13  6.71853232124899x 102

The exact solution is given by
y(x) = —log(l + x).

With respect to Sect. 4 and applying the Newton-Raphson iterative method to the Problems
1 and 2; it is seen that the numerical results from IHLMM (17) yielded better accuracy than
that of the results in [13] and ode45 as shown in the graphical and numerical solutions (see
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Table 7 Comparison of the absolute error | y, — y(x,) | of the IHLMM (17) and ILMM (5) in [13] for
Example 2 with 7 = 0.1

n Xn  y(xn) ILMM [13] IHLMM (17) oded45

200 20 —3.04452243772342 4.507x107% 3.55271367880050x 1015 1.55659321392054x 10~
400 40 —3.71357206670431 1.189x10~95 4.88498130835069x 101>  1.50165655859791x 1004
600 60 —4.11087386417331 5.381x10790 11.54631945610163x 10715 4.18996691715634x 10~0°
800 80 —4.39444915467244 3.031x1079 4.44089209850063x10~15  2.07826583009663x 10~
1000 100 —4.61512051684126 1.968x107% 14.21085471520200x 10~15 6.67078378002728 x 10~03

Figures 2, 3, 4 and Tables 4, 5, 6, 7 respectively). This confirms the earlier discussion on the
effect of introducing hybrid parameter in Sect. 3.

Furthermore, the order of the proposed IHLMMs (11) increases as the step number
increases more than the order of a RKM for a comparable number of stages. The intro-
duction of the hybrid improves the order and the stability of the method (11) as evident in
Tables 1, 2, 3. In particular, the IHLMM of order p = 4 possess an interval of absolute
stability that is larger than the order p = 4 of the RKM.

Itis also important to note that the choice of step size is limited in the Runge—Kutta method
likewise the order and region of absolute stability.

Conclusion

We have successfully developed the new IHLMMSs (11) through the modification of the
ILMMs (5) in [13]. The IHLMMSs (11) attain higher order than that of ILMMs (5) for the
same step number. We have also shown the pictorial representation of the interval of absolute
stability by employing the boundary locus approach. The strength of the new method is
shown by the encouraging numerical results when compared with the existing results in the
literature and that of the explicit Runge—Kutta method (See Tables 4, 5, 6, 7) and (Figs. 2,
3, 4). More importantly, the numerical accuracy is as a result of larger interval of absolute
stability which the [HLMMs (11) (with order p = 4 on Table 1) attain as compared to that of
the ode45 (based on Runge-Kutta method of order p = 4 with stability interval of (—2.8, 0))
[6]. Hence, the results herein outperform the ones presented in [13], ode45 and could further
compete with other emerging numerical methods proposed in [16,19,20,22,23] for solving
IVPs.
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Appendix
We go further for £ = 5 in (13) to obtain

h~? <a4yn+4 + 03Yn43 + 02yt + A Y1 + Otoyn)
= futs5Bafnra + B3 fus3 + B2 furz + Bifar1 + Bofu + Qv futo-

(23)

We expand (23) using the Taylor’s series approach on Mathematica v11 to obtain the consis-
tent equations in terms of 8o 1,2,3,4 and the off-step point v

h0:ap+a;+ax+a3+ag =0
h™1: (a1 + 202 + 303 +4a4) =0

1
h_zi5(—2Qv+0!1+40t2+90l3+16064—2(1+50+131+ﬂ2+ﬂ3+ﬂ4))ZO

1
h~3: 3 (—6vQy + a1 + 8ap + 2703 + 64y —6 (S + B1 +2B2+ 383 +4B4)) =0

1
hA (—120%Qy + a1 + 1602 + 8las + 25604 — 12 (25 + 1 + 4>
+983 +1684)) =0
1
h75: 0 (=200* Oy + a1 + 3205 + 24303 + 1024as — 20 (125 + B

+862 + 2783 + 64B4)) = 0.
On solving the system of equations simultaneously, we obtain

1
W =—1r (1925 — 2085v + 690v% — 70v> — 43508, + 360v> By — 70V By

+1458) — 261vB; + 138v>B1 — 22v°B1 — 108>
+21vBs — 120% By 4+ 2v° o — 4583 + 51v83 — 182 B3 + 203 B3

46084 — 53104 + 19202 B4 — 2203 ﬂ4>

1
o) = —372( — 790 + 1038v — 381v% + 41v> + 138v8y — 126V By + 26v° By — 381
+66v81 — 33021 + 50381 + 208, — 420, + 24v% B>
—4v° By + 183 — 24vB3 + 90”3 — v’ s
—20084 + 282vf4 — 114024 + 14v3;34)

1
a = —ﬁ(1345 —2109v + 858v% — 98v> — 159vA,

+168v% By — 380> By + 2981 — 4508 + 18v%4,
—203B1 — 5082 + 10508 — 60v% B2 + 10V B> — 983 + 3vB3
+6v2 83 — 20° B3 + 38084 — 639v 4 + 288v> B4 — 38v> B4 Big)

1
a3 = ﬁ2(610 — 1092v + 489v% — 5903 — 4208y + 54v° By

—14v3 By + 2B1 — 3v*B1 + v>B1 — 2082 + 42vBs — 2402 B + 403 B
+18B3 — 42083 + 27v% B3 — 50> B3 + 20084 — 378v 4 + 186v% B4 — 26v3,34)
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1
oy = —m(IZOS —2301v + 11220 — 1420 — 51vBo + 720 B

—2203Bo + Bi + 3vB1 — 6V B1 + 203 B1 — 1082 + 21vBs — 1207 B
+203 By + 9983 — 213vB3 + 126v° B3 — 220° B3 + 46084

—915084 + 48002 B4 — 7Ov3ﬂ4>

451080+ B1 — B3 + 1084
A

where A = (=10 + 21v — 12v% 4 2v?). The IHLMM for k = 5 is given by

Qu:

1
—my,,+4(1205 —2301v + 112202 — 14203 — 51080 + 72v> By — 22v° By

+B1 +3vB1 — 6V2B1 +2v°B1 — 1082 + 21vBr — 1202 B2 + 203 B0 + 9983 — 213083
11260285 — 220° B3 + 46084 — 91504 + 480024 — 70v3,84)

1
—ﬁyn+2(1345 —2109v + 858v% — 98v> — 159v8, + 168v>By

—38v3 By + 298, — 4508 + 18281 — 2038, — 508,
+105v8, — 60v2 B2 + 1003 By — 983 + 3vB3 + 6V B3

—203B3 4 38084 — 63904 + 288v% B4 — 38v3ﬁ4)

1
34 203 (610 — 10920 + 489v% — 59v° — 4208 + 54v> By — 14v3 By

+2B1 — 302 B1 + v B1 — 208> + 420, — 2407 B + 40 B + 186
—420B3 4 27v* B3 — 503 B3 + 20084 — 378vB4 + 186V B4 — 26v3ﬁ4)

1
— (1925 — 2085v 4+ 69002 — 700> — 435v8y + 360v° By
—700 By + 14581 — 261vB; + 138v2 B — 220381 — 108, + 2108, — 120%p,

+203 By — 4583 + 51vB3 — 18v% B3 + 203 B3 + 46084 — 531vp4

1
+192028, — 22v3ﬂ4> — 52 ( — 790 + 1038v — 38102 + 4103

+138v80 — 126v2 B + 26v° By — 3861

+66vB1 — 330281 + 5v°B1 + 2082 — 42085 + 24v2 By — 4v3 By + 1883

24083 + 902 B3 — 03By — 20084 + 282vBs — 11402 B4 + 14v3ﬂ4> - h2< Fuss + fuBo
+a+1B1 + fog2B2 + fut3B3 + futaBa

(45— 108y + B1 — B3 + 10,34))
" )

—Jnt+v

The new IHLMM for k = 5 is of error order p = 3 with non vanishing LTE given in terms
of Bj=0,1,2,3,4, v, A as

1
LTE = —2ot (78680 + 93754 — v(160746 + v(—86262 + v(11452 + 675v)))
+(136 + 154)B; + 40(59 + 6A) B2 + 9(1376 + 135A4) B3 + 3592084 + 384044

—v(2(498 + (=906 + (476 — 75v)v))Bo + (186 + v(18 + v(—68 + 15v)))B;
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16/(8268 + 435185 + 1240684) + v(472(—6 +0)Ba
+(—15042 + (2572 — 15v)v) B3 + 2(—20646 + v(3116 + 75v))/34)>>.
Similarly for k£ = 5 in the hybrid predictor (14), we have

Yntv = h 2 (VoY + V1Ynt1 + V2Yns2 + V3Ynts + VaVutd)
+Vofu + VY1 furt + V2 Sfurz + U3 furs + Vafura + s furs.

The consistent equations obtained using the Taylor’s series approach are given by

0O:—(1+vw+ri+rntrys+wm=0
TL:(w—y1 =22 —3y3 —4y) =0

1
W23 (v — y1 — 4y — 9y3 — 16y — 29000 — 241 — 240 — 293 — 294 — 245) = 0

1
h3: (v = y1 — 82 — 27y3 — 64ys — 6y — 1291, — 1843 — 244y — 3095) = 0
1

A (v* — 71 — 16y2 — 81y3 — 256y4 — 129/ — 482 — 10893 — 192474 — 3005) = 0.

The coefficients after solving the system is given by
1

w=5 (24 — 50v + 3502 — 100 + v* — 70y — 2291 + 242 + 293 — 2294 — T0s)
v = é (24v — 2607 + 9v® — v* + 52y + 10y — 8y — 293 + 28Yy + 82¢s)

v = % (=120 + 190? — 8v® + v* — 38y — 291 + 10y — 243 — 38y — 98Yss)

vy = é (8v — 1402 + Tv? — v* + 28y — 291 — 8y + 1093 + 524 + 118s)

vs= (=6v + 11v? — 6v° + v* — 229 + 291 + 29, — 2243 — 0y — 14295) .

The hybrid predictor is then given by

Yngv = h_2(%yn+4< — 60+ 1102 — 60° + v* — 2290 + 291 + 202 — 223 — TOY4 — 1421/5)
+%yn+2( — 120+ 1907 — 803 + v* — 38y — 201 + 10¥2 — 23 — 384 — 98%)
+21—4y,, (24 — 500 4 350% — 100° + v* — 7000 — 22911 + 202 + 203 — 22004 — 701//5)

1
et (2411 — 2607 + 90> — v* + 5290 + 10y — 8y — 293 + 28y + 821//5)

1
s (8v — 1402 + 703 — v 4 28y — 201 — 8va + 103 + 529 + 118%))

+<fn')/f0 + fn+1‘lfl + fn+2‘l’2 + fn+31/13 + fn+41/f4 + fn+51/f5>~
Thus, the LTE is given by

LTE, = % (=4 4 v)(=3 4+ V) (=2 + v) (=1 + V)v + 100
—10y; + 1093 — 10094 — 450v5)

with the error order p = 2.
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