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Abstract
In this article, we establish exact solutions for the generalised third-order nonlinear
Schrödinger equation. The elliptic function expansion and He’s semi-inverse techniques
are employed to establish exact solutions for this equation. These solutions are so important
and vital for mathematicians and physicists to prescribe some complex physical phenomena.
Using Matlab 18, we plot 2D and 3D graphs of acquired solutions for certain values of the
parameters. The proposed techniques are direct, sturdy and efficient tools to solve different
types of nonlinear partial differential equations arising in engineering and physics.
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Introduction

Nonlinear wave is one of the main area of focus for researchers and scientists doing research
in applied science, such as biology, engineering, electromagnetic theory, optics, chemical
physics, fluidmechanics, ecology, deep water, plasma physics, elastic media, [1–10]. Nonlin-
ear complex features in plasma physics, quantummechanics, optoelectronics hydrodynamics,
semiconductors and bimolecular dynamical modes can be formulated in the form of the non-
linear Schrödinger equations (NLSEs). These equations are the nonlinear partial differential
equations (NLPDEs), which have been studied in various areas of applied science [11–13].
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Studying of their soliton solutions is so important in explaining various interesting physi-
cal phenomena in nature, and this branch turns into one of the most vital area of scientific
research [14–20].

Because of the complexity structure of the nonlinear wave equations, there is no uni-
fied technique to extract all solutions of these equations. Different analytical and numerical
methods are used to find solutions of these equations, such as tanh-sech method [21], sine-

cosine method [22], Jacobi elliptic function method [23], (G
′

G )− expansion method [24],
F-expansion method [25], exp-function method [26], extended tanh-method [27], homo-
geneous balance method [28] and Riccati-Bernoulli sub-ODE technique [29,30]. Recently,
there are a great development in analytical and numerical techniques for extracting solutions
for NLPDEs, see for example [31–42].

The generalised third-order nonlinear NLSE given as follows [43]

i (ψt + ψxxx ) + (α1 ψ + iα2 ψx ) | ψ |2 +iα3 | ψ2 |x ψ = 0 , (1)

where α1, α2, α3, are real-valued parameters and ψ is a complex-valued function. Eq. (1)
has been utilized to prescribe the propagation of ultra-short pulses in nonlinear optical fibres.
The present work is motivated to find new and more general solutions to (1). Namely, the
main interest is to introduce some new exact solution of the generalised third-order nonlinear
Schrödinger equation, using extended Jacobian elliptic function expansion method (JEFEM)
and He’s variational principle. To the best of our knowledge, no previous article has been
done utilizing the techniques in this paper for solving this equation.

This paper is arranged as follows. In Sect. 2, some new exact solutions for the generalised
third-order nonlinear Schrödinger equation are presented. Indeed, some 2D and 3D graphs
of acquired solutions are illustrated. The conclusions are reported in Sect. 3.

Soliton Solutions of the Generalised Third-Order NLSE

ψ(x, t) = eiϕ(x,t)q(ξ), ϕ(x, t) = px + μt + ε, ξ = kx + wt, (2)

k, p, w and μ are constants and ε is the phase constant.
Superseding (2) into Eq. (1) yields:

3pk2q ′′ + (α2 p − α1)q
3 + (μ − p3)q = 0 , (3)

k3 q ′′′ + (w − 3p2k)q ′ + k(α2 + 2α3)q
2q ′ = 0. (4)

Integrating Eq. (4) and taking the integration constant as zero, we have

k3q ′′ + k

3
(α2 + 2α3)q

3 + (w − 3p2k)q = 0. (5)

Eqs. (3) and (5) are the same under the constraint conditions

α1 = −2α3 p, μ = 3pw − 8p3k

k
. (6)

In the sequel we use the extended JEFEM and He’s principle for solving Eq. (1).
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The Extended JEFEM

According to the extended JEFEM [24,44–46], the solution of Eq. (1) is

q = a0 + a1sn(ξ,m) + b1cn(ξ,m). (7)

Eq. (7) yields

q ′ = a1cn(ξ,m) dn(ξ,m) − b1sn(ξ,m) dn(ξ,m), (8)

q ′′ = −m2sn(ξ,m) a1 + 2 a1sn(ξ,m)3m2

+2m2sn(ξ,m)2cn(ξ,m) b1 − a1sn(ξ,m) − b1cn(ξ,m). (9)

Superseding Eqs. (7)-(9) into Eq. (3) and putting the coefficients of sn3, sn2cn, sn2, sncn,
sn, cn, sn0 with zero, gives

6pk2 m2a1 + (α2 p − α1)
(
a31 − 3 a1b

2
1

) = 0, (10)

6pk2 m2b1 + (α2 p − α1)
(
3 a21b1 − b31

) = 0, (11)

a0
(
a21 − b21

) = 0, (12)

a0a1b1 = 0, (13)

−3pk2 a1
(
1 + m2) + (α2 p − α1)

(
3 a20a1 + 3 a1b1

2) + (μ − p3)a1 = 0, (14)

−3pk2 b1 + (α2 p − α1)
(
3 a20b1 + b31

) + (μ − p3)b1 = 0, (15)

(α2 p − α1)
(
a30 + 3 a0b

2
1

) + (μ − p3)a0 = 0. (16)

Solving these algebraic equations, gives:

Family 1.

a0 = 0, a1 = ±
√
6p km√

α1 − α2 p
, b1 = 0, w = k3(1 + m2) + 3kp2.

The first family of solutions is

q1(x, t) = ±
√
6p km√

α1 − α2 p
sn(kx + wt) ei(px+μt+ε). (17)

When m → 1, Eq. (17) becomes

q1(x, t) = ±
√
6p k√

α1 − α2 p
tanh(kx + wt) ei(px+μt+ε), w = 2k3 + 3kp2. (18)

Family 2.

a0 = 0, a1 = ±
√
3

2

km
√
p√

α1 − α2 p
, b1 = i

√
3

2

km
√
p√

α1 − α2 p
, w = −1

2
k3(m2 − 2) + 3kp2.

The second family of solutions is

q2(x, t)=
(√

3

2

km
√
p√

α1 − α2 p
sn(kx + wt)+i

√
3

2

km
√
p√

α1 − α2 p
cn(kx + wt)

)

ei(px+μt+ε).

(19)
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Fig. 1 Real and imaginary travelling wave solutions for Eq. (18) are illustrated: real solutions in (a), imaginary
solutions in (b). c presents 2D real and imaginary solutions for Eq. (18). The parameter values are given by
α2 = 2.1, α3 = 1.2, p = 1.5, k = 0.1, ε = 2.2. x ∈ [−5, 5] and t = 0 → 6. The values of α1 and μ are
taken by Eq. (6). c plotted at t = 6.

When m → 1, Eq. (19) becomes

q2(x, t) =
(√

3

2

k
√
p√

α1 − α2 p
tanh(kx + wt)

+i

√
3

2

k
√
p√

α1 − α2 p
sech(kx + wt)

)

ei(px+μt+ε),

w = 1

2
k3 + 3kp2. (20)

Family 3.

a0 = 0, a1 = ±
√
3

2

km
√
p√

α1 − α2 p
, b1 = −i

√
3

2

km
√
p√

α1 − α2 p
, w = −1

2
k3(m2 − 2) + 3kp2.

The third family of solutions is

q3(x, t)=
(√

3

2

km
√
p√

α1 − α2 p
sn(kx + wt)−i

√
3

2

km
√
p√

α1 − α2 p
cn(kx + wt)

)

ei(px+μt+ε).

(21)
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Fig. 2 3D real and imaginary travelling wave solutions for Eq. (20) are plotted: real solutions in (a), imaginary
solution in (b). 2D real and imaginary solutions are presented in (c) at t = 6. The parameter values are taken
by α2 = 2.1, α3 = 1.2, p = 1.5, k = 0.1, ε = 2.2. x ∈ [−5, 5] and t = 0 → 6. The values of α1 and μ

are taken by Eq. (6)

When m → 1, Eq. (21) becomes

q3(x, t) =
(√

3

2

k
√
p√

α1 − α2 p
tanh(kx + wt)

−i

√
3

2

k
√
p√

α1 − α2 p
sech(kx + wt)

)

ei(px+μt+ε),

w = 1

2
k3 + 3kp2. (22)

Family 4.

a0 = 0, a1 = 0, b1 = ±
√
6p km√

α2 p − α1
, w = k3(1 − 2m2) + 3kp2.

The fourth family of solutions is

q1(x, t) = ±
√
6p km√

α2 p − α1
cn(kx + wt) ei(px+μt+ε). (23)

When m → 1, Eq. (23) becomes

q1(x, t) = ±
√
6p k√

α2 p − α1
sech(kx + wt) ei(px+μt+ε), w = −k3 + 3kp2. (24)
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Fig. 3 3D real and imaginary travelling wave solutions for Eq. (22) are depicted: real travelling wave solutions
in (a), imaginary travelling wave solutions in (b). c 2D graph for the real and imaginary solutions of Eq. (22) at
t = 6.. The considered parameters are given by the values α2 = 2.1, α3 = 1.2, p = 1.5, k = 0.1, ε = 2.2.
x ∈ [−5, 5] and t = 0 → 6. The values of α1 and μ are taken by Eq. (6)

The He’s Semi-inverse Technique

Based on the He’s semi-inverse technique [47–49], the variational formulation corresponding
to Eq. (3) is

J =
∫ ∞

0

[
−3

2
pk2(q ′2) + 1

4
(α2 p − α1)q

4 + 1

2
(μ − p3)q2

]
dξ. (25)

By Ritz-like method, we search for the following solitary wave solution

ψ(ξ) = A sech(Bξ). (26)

superseding Eq. (26) into Eq. (25), gives

J =
∫ ∞

0

[
−3

2
pk2A2B2sech2(Bξ)tanh2(Bξ)

+ A4

4
(α2 p − α1)sech

4(Bξ) + A2

2
(μ − p3)sech2(Bξ)

]
dξ

= − 3

2B
pk2A2B2

∫ ∞

0
sech2(θ)tanh2(θ)dθ

+A4

4B
(α2 p−α1)

∫ ∞

0
sech4(θ)dθ+ A2

2B
(μ− p3)

∫ ∞

0
sech2(θ)dθ

= −1

2
pk2A2B + A4

6B
(α2 p − α1) + A2

2B
(μ − p3).
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Fig. 4 a, b show the real and imaginary travelling wave solutions for Eq. (24), respectively. 2D graph for the
real and imaginary travelling wave solutions of Eq. (24) are demonstrated in (c) at t = 6. The parameter values
are given by α2 = 2.1, α3 = 1.2, p = 1.5, k = 0.1, ε = 2.2. x ∈ [−5, 5] and t = 0 → 6. The values of α1
and μ are taken by Eq. (6)

For getting stationary with respect to A and B results in

∂ J

∂A
= −pk2AB + 2A3

3B
(α2 p − α1) + A

B
(μ − p3) = 0, (27)

∂ J

∂B
= −1

2
pk2A2 − A4

6B2 (α2 p − α1) − A2

2B2 (μ − p3) = 0. (28)

Solving Eqs. (27) and (28), we can easily obtain the following relations:

A = ±
√
2
√

μ − p3√
α1 − α2 p

, B = ±
√
p3 − μ√
3pk

. (29)

The solitary wave solution is, therefore, given as follows

q̂(x, t) = ±
√
2
√

μ − p3√
α1 − α2 p

sech(±
√
p3 − μ√
3pk

(kx + wt)) ei(px+μt+ε). (30)

Shortly, it has been investigated that the exact solutions of the generalised third-order
nonlinearNLSEwere obtained in the explicit form. The behavior of solutions for this equation
being solitons, rouge, periodic, breather or shock, is a significance for the values of the
physical parameters of the generalised third-order NLSE. Moreover, the obtained solutions
may be interpreted the telecommunications experiments, nuclear physics, chaotic pulses
laser, capillary profiles and transistor [50–55]. Finally, the gained solutions is so vital in
the developments of quantum mechanics, namely in quantum hall effect, entire computer
industry and nuclear medicine.
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Fig. 5 3D real and imaginary travelling wave solutions for Eq. (30) are illustrated in (a, b), respectively.
c depicts 2D travelling wave solutions for Eq. (30) at t = 6. The used parameters are given by the values
α2 = 2.1, α3 = 1.2, p = 1.5, k = 0.1, ε = 2.2. x ∈ [−5, 5] and t = 0 → 6. The values of α1 and μ are
taken by Eq. (6)

Conclusions

In this work, we have developed a new type of solution for the generalised third-order non-
linear Schrödinger equation, utilizing the extended Jacobian elliptic function expansion and
variational principle techniques. These solutions are very vital for explaining some complex
physical phenomena. All gained solutions have been plotted in 2D and 3D surfaces, using
Matlab 18, for appropriate values of the parameters. The proposed techniques in this study
are efficient for establishing vital solutions for other NPDEs, which are involved in physics
and engineering.
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