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Abstract

In this work, improvised quintic B-spline collocation method is used to solve a class of
fourth order singularly perturbed boundary value problems. The proposed method is an
extension of classical collocation technique. Posteriori corrections are made to quintic B-
spline interpolant and its derivatives, which leads to formation of improvised quintic B-spline
interpolant. The improvisation is done by forcing the spline interpolant to satisfy interpolatory
and some special end conditions. These corrections are made to achieve optimal order of
convergence, which is not possible by standard formation of splines. Convergence analysis
is performed using Green’s function approach. Four test problems are solved to show the
effectiveness of the proposed method and its improvement over classical quintic and septic
B-spline collocation techniques. The technique is found to be stable even for extremely small
values of perturbation parameter.

Keywords Singularly perturbed BVP’s - Improvised collocation - Quintic B-splines -
Posteriori corrections - Higher order convergence - Green’s function

Introduction

Singularly perturbed boundary value problems (SPBVPs) occur frequently in applied sciences
and engineering, for instance convention-diffusion process [ 1], electromagnetic field [2], fluid
mechanics [3], electrohydrodynamic [4], nanofluid [5] and many more. Such problems are
characterized by the presence of a very small parameter ‘e’ known as perturbation parameter,
with the highest order derivative in the equation. The solution of SPBVPs exhibits a multi-
scale character as there is a thin transition layer where the solution varies rapidly, while
away from the transition layer, solution has normal behaviour. Many researchers have dealt
with both analytic and numeric solution of such problems. Due to the presence of boundary
layers, significant efforts are required in developing the efficient algorithm for solving such
problems.

Wasow [6] introduced the concept of boundary layers arising in ordinary differential equa-
tions. Then, Friedrichs and Wasow [7] gave the name ‘singular perturbation’ to such problems.
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O’Malley [8] and Nayfeh [9] explored singular perturbation problems and provided more
information about such problems. Afterwards, Smith [10] and O’Malley [11] presented the
theory and methods to solve such problems. Doolan et al. [12] applied uniform numerical
methods for problems having initial and boundary layers. Niederdrenk and Yserentant [13]
discussed about the uniform stability of continuous and discrete SPBVPs. Chin and Krasnay
[14] applied hybrid asymptotic method whereas Stynes and O’Riordan [15] used finite ele-
ment method for such problems. Graded-mesh difference scheme was applied by Gartland
[16] and Shishkin [17] worked on grid approximation for partial singularly perturbed equa-
tions. An adaptively generated grid was used by Qiu and Sloan [18] to analyse the difference
approximations of SPBVPs whereas Farrell et al. [19] discussed robust method for boundary
layer problems.

Shanthi and Ramanujam [20] discussed asymptotic numerical methods for reaction-
diffusion type fourth order SPBVPs. Liu and Xu [21] used Hermite splines in Galerkin
method for SPBVPs. Convection—diffusion and flow problems of singular perturbation type
were solved numerically by Roos et al. [22] whereas Andargie and Reddy [23] used fit-
ted tridiagonal scheme for such problems. Kadalbajoo and Kumar [24] applied initial-value
technique using exponentially fitted finite difference method (FDM) for two point SPBVPs.
Prasad and Reddy [25] applied initial-value technique using differential quadrature method.
Miller et al. [26] applied fitted numerical methods and discussed about its error estimates.
Akram and Rehman [27] used reproducing kernel method for fourth order SPBVPs whereas
Mishra [28] applied initial value techniques to solve such problems.

Consider a class of fourth order singularly perturbed boundary value problem as follows:

—e2P) +qz(t) =r(1), t € [a,b], (1.1)
with the boundary conditions:

Case 1: 2(@) = a1, z(b) = B1, z20(@) = a2, 2V (B) = Bo, (1.2)
Case?2: z(a) = ai, z(b) = B1, zP(@) = a2, 2P (b) = B2, (1.3)

where ¢ () and r(¢) are sufficiently smooth functions in [a, b] with &1, a2, B1, B2 € Rand
0 < & << 1 is the small perturbation parameter.

A number of spline based algorithms have been developed to solve such problems. Aziz
and Khan [29], Bawa [30], Rashidinia et al. [31] have used spline approach to solve SPBVPs.
Sextic B-spline collocation method was used by Khan et al. [32]. Akram and Amin [33]
applied quintic B-spline approach to solve fourth order SPBVPs and later on extended the
work to septic B-spline collocation method (SSCM) for these problems [34]. Khan [35]
also solved these problems using non-polynomial quadratic spline approach. Jafari et al.
[36] solved fractional Riccati differential equations using linear B-spline basis functions.
Ramezani et al. [37] solved weakly singular Volterra integral equation using complex B-
spline collocation method. Jafari and Tajadodi [38] suggested linear B-spline operational
matrix method to solve fractional partial differential equations. Khan et al. [39] obtained
analytical solution of time-fractional wave equation using double Laplace transform. The
numerical solution of fractional order HIV/AIDS model was studied using Laplace and
Sumudu transform [40].

In the present work, a higher order improvised quintic B-spline collocation method
(IQSCM) is used to solve fourth order SPBVPs. In the classical quintic B-spline collo-
cation method (QSCM) the unknown function and its derivatives are just replaced by spline
approximations for the function and its derivatives respectively. But in IQSCM posteriori
corrections are carried out in the quintic B-spline interpolant and its higher order derivatives.
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These corrections improves the order of convergence and consequentially the results become
more accurate. Results are compared to show the improvement of IQSCM over classical
QSCM.

Rest of the paper is organized as: in Sect. 2, posteriori improvement to quintic B-spline
interpolant and its higher order derivatives is given. In Sect. 3, the proposed method is
implemented to the class of fourth order SPBVPs. Section 4 contains the proof of order
of convergence using Green’s function approach. In Sect. 5 four examples are discussed
and results are compared with the existing methods in the form of tables, which shows the
improvement and efficiency of the proposed method. Conclusions are given in Sect. 6.

Posteriori Corrections to Quintic B-Splines

Consider the equally spaced partition IT = {a = tg < t; < --- < t, = b} over the interval
la, I;] with the node points #,, = a +mh, m =0, 1, ..., n having step size h = (l; —a)/n
or h = tyy4+1 — ty. As each quintic B-spline B, cover 6 elements and each finite element
[, tm+1] is covered by 6 splines. Therefore ten more node points are required outside the
interval [, b] to provide support to the B-spline basis functions, which are positioned as
ts<tg<ty<tg<t_p<toandt, <tyy)] < thsr < ty43 < tyya < tyys. The set of
quintic B-spline functions B{IT} = {B_,(¢), B_1(¢), Bo(?), ..., Bu+1(), B,42(¢)} forms
the basis for the subspace X of C*[a, b] with dimension (n + 5) over the solution region
[a@, b], which were defined by [41] and given as follows:

(1 — tm73)5s t € [ty—3,tm—2)
(r— tm73)5 —6(r — [,7172)5, 1€ ty—2.tm—1)

(t— tm—3)5 —6(t — tm—2)5 +15( — ’m—l)sa € ty—1,1m)

1

S _ _nS _ 1S
B, (7) = ﬁ (tmt3 —1)° = 6(tyg2 — 1> + 15(t41 — 1>, 1 € [tm, tyyt1) .1
(tm+3 — 1> = 6ty — 0, 1€ [tyy1s tmy2)
(43 — t)S, t € [tm42, tn43]
0, Otherwise.

Let v(z) be an element of span B{/T} = Ss(JT) = {w | w € C*[a, b] and w(¢) is a polyno-
mial of degree atmost 5 on each element of the partition I7}. The numerical approximation
v(t) can be described in the combination of quintic B-spline functions as follows:

n+2

v() = Y SuBu(), (2.2)

m=-2

where §,,’s are the unknown parameters to be calculated from the boundary conditions and
collocation forms. By using Egs. (2.1) and (2.2) values of v(¢) and its derivatives can be
evaluated at node points as:
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Um = 8m—2 + 2681 + 668, + 268,41 + Sm+2,
Tl = =582 4 108,—1 — 108,41 — Smt2),

102 =202 + 28m—1 — 68 + 28m41 + Sm2). 2.3)

B30 = —60(8-2 — 28m—1 + 28m+1 — Smt2),

P = 12082 — 481 + 68 — 4841 + Smy2).
Let the quintic B-spline interpolant (QSI) v(¢) of z(¢), where z(¢) € C191a, b] satisfies

the following conditions:
() the interpolation condition:
U = Zm, for0<m <n, 24

(II) at end node points (m =0, 1,n — 1, n):

2 2 h 6

v =20+ oo, 2.5)

0@ — 0 _ m g

Ny (2.6)
K2 T

Theorem 1 For the QSI v(t) of z(t) which satisfy Eqs. (2.4-2.7), where z(t) € C'%a, b],
the below mentioned relations hold for its higher order derivatives with the equally spaced
partition, for0 <m < n,

ol =zD 4 0r), (2.8)
n*
2 2 6 6
oD = 2 + e+ 00), 2.9)
nt
v =2 — gggen + OO, (2.10)
b@ o _ e M e, @.11)
T T

Also the following interpolating error bounds hold:
Iz =0 o= 0™, 1=0(D4.
Proof 1t is reported by [42]. O

Throughout the paper A is a difference operator with Av,, = v;;—1 — 2v, + V41 and
szm = Vp—2 —4Vy_1 + 6V, — 4Upg1 + Vg

Corollary 1 Let v(t) be the QSI of z(t) satisfying the Eqs. (2.4-2.7), then for the equally
spaced partition below mentioned relations hold:
forl <m<n-—1,

@
Av,
o) = =g+ 0, 2.12)
for2 <m <n-—2,
A?
2 = h”'" + 0@, (2.13)
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A2 (3)
gy = g + O, (2.14)
A2 (4)
o4 = =+ o). 2.15)
Proof Taking A on both sides of Eq. (2.11) and dividing by A2 we get,
) (4)
Avy, Az, 1 6 .,
= — — A9+ —n2A® + omt). 2.16
73 3 5 + 5 Az + (") (2.16)
S Azm — (’JFZ) h? (l+4) s th ..
ubstltutlng = + I52Zm , where ‘i’ denotes the i'"* derivative. Therefore,
Avy (6)+ 1 2® - | p2® 4 nt noan | nt 210 4 ot
R 12 " 127" 240"

=70+ 0(54).

Similarly, remaining equations can be proved.

Corollary 2 Below mentioned relations hold at the node points, for z(t) € Ca, ),

forQ <m <n,

for2 <m <n-—2,

@ _—

22 =@

2D = 4 omd),

1
—A2P + o1d),

720
1
3 3 12 3 6
1 1
4 4 4 2 (4 6
zfn) = v,;) + —12Av,(n) ~ 210 A v,(n) + O(h).

Proof Substitute the values of zm
required relations.

(7

> Zm

and sz) from Corollary (1) in Theorem (1) to get the

Lemma1 Forz € C'9a, b), the below mentioned relations hold at the end node points (for

i =6,7,8).
. [3A2U(j74) _ 2A2v(j*4)]
2§’ = P 00, 2.17)
. [2A2U(j_4) _ sz(j_4)]
Z5./) _ 2 h4 + o), (2.18)
[2A2U(l AZ (- 4)]
fl/)l _ n h4 n 3 + 0(h2), (219)
. 3A2U(j 2A2 =4
V= 3470, = b3 ] + O(R?). (2.20)
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Implementation of Proposed Method

Using Theorem (1) and Lemma (1), substituting the value of z(¢) in Eqgs. (1.1), (1.2) and
(1.3),

|
o

r 1
v® (o) + %(mm}(‘” (1) — 2040 (1) + 37420 (1) — 1842 @ (l3))] +q v(1p)

= r(tg) + O(A%), (3.1
—e| v® (1)) + ﬁ(ZOAvW(n) —2420W (1) + AZp™ (t3)):| +q () (3.2)
= (i) + 0(19), 3-3)

|
o

i 1
v () + %@om(‘“ (tn—1) — 24209 (1, _2) + A2v<4><rn73>>} +qvty—1)

=r(ty—1) + O, (3.4

r 1
| v (1) + 755 @040 (1,_1) = 2040P) (1y9) + 37470 D (13 2) — 18470 (tn73))i| +q v(tn)
= r(tn) + O(HF), 3.3)

for2 <m <n -2,
1
- e[v“”(m) + %(20Av<4>(rm> - A2v<4>(rm>)] +q v(ty) = r(tm) + O(h%), (3.6)

and

v(tg) = a1 + 0%, vV (1g) = az + 0(10); v(tn) = 1 + 0(1%); vV (1) = B2 + 0(1).
3.7

v(tg) = a1 + 0(®), vP(19) — 7—;0(3/“2)1)(2) (1)) — 24P (13)) = ay + O (1),
v(tn) = 1+ 0, v () - %mezx@v@)(z,,_z) —2APv@ @, _3) =g+ 01%). (3.8)

Above equations can be written as a system of (n + 1) equations in (n + 5) unknowns,
where the value of four extra unknowns are obtained by using boundary conditions.
The above system reduces to the form:

AT =B (3.9)

where A is (n + 1) x (n + 1) matrix, T and B are (n 4+ 1) x 1 column vectors.

Algorithm of the Method

1. Divide the domain [a, b] into ‘n’ number of collocation pointsasa =ty <t} < --- <
t, = b.

2. Calculate the value of approximate quintic B-spline solution and its higher order deriva-
tives at each node point.

3. Calculate the improvised quintic B-spline approximate solution of O (h°) using Theorem
(1) and Lemma (1).

4. Substitute the value of improvised approximate solution in place of z(¢) in Egs. (1.1) to
(1.3).
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5. Make the residue zero at each collocation point. Using boundary conditions a system of
(n 4+ 1) equations in (n + 1) unknowns is obtained AT = B.

6. Calculate T = A~!'B (as with the process of formation A is diagonally dominant and
hence non-singular).

7. Value of T = [80, 81, .-, Sn, Snt1 17 is calculated using MATLAB software. Using this
the approximate value of z(#) can be obtained at any point in the domain.

Convergence Analysis for IQSCM

To establish the convergence analysis, approach followed by [42] is used. Rewriting the
fourth order SPBVP (1.1) in the operator form as follows:

I'z=r, Bz =p;, j=0()3. “4.1)

Let I"' denote the perturbation of I" and B’ corresponding to B, then the following relations
hold:
forO <m <n,

C'o(tn) = r(tn) + 0, Bv=p;+ 010, 4.2)
for2 <m<n-2,
, 1
rvam)=Iwamy+E&ﬁ%nw“R%)—/ﬁv“R%n. 4.3)

Let Z is the QSI which satisfy:

[F'2—r, =0 O0<m=<n, BZ=p,.
Before proceeding for the convergence analysis, let us redefine the Egs. (1.1) to (1.3) as:
r(t ’
rz=z%90 - gz(t) = —% =r (1, Bz=p;, j=0(13. (4.4)
For 0 <m <n,
’ r(t / ’

o) =09 () — gv(zm) =- (8’") =7 (tn) + O(1%), Bv=pj+ 07,
4.5)
I2(tn) =7 (tn), Bi=pj, j=0(1)3. (4.6)

Lemma2 Let D be the coefficient matrix of z® then D~V is non-singular and bounded with
1D~ loo < 1.66.

Proof Using Theorem (1), the coefficient matrix is as follows:

(317 —266 374 —276 109 —18 0 0
18 209 4 14 —6 1 0 0
-1 24194 24 —1 0 O 0
0 -1 24 194 24 -1 O 0
1
T 240

-1 24 194 24 -1 O
0 -1 24194 24 —1
1 -6 14 4 209 18
—18 109 —276 374 —266 317 |

[eNeleNel
[eNeleNel
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The matrix D is non-singular, as it is strictly diagonally dominant except at the boundary
points, which can be made diagonally dominant at those points by taking some suitable
transformations. Using definition of norm, one gets:

107 oo = max s @)
where
A (D) =| Dy |—Z | Dypj |>0 for0 <m <n. (4.8)
Jj#m
Therefore, from Eq. (4.7), we have:
1D e < : - 20 —166. (49

ming<m<n Am (D) 194 —-(1+24424+1)

Let us assume that the equation z®* = 0 with boundary condition Bz = 0 is uniquely
solvable, which implies that there exist a Green’s function G(t, y) for the given problem [43].

Denote w = z® and u = 2™, with the assumption that w and u satisfy the boundary
conditions. Therefore by using Green’s function, values of z and z can be obtained as :

b i
; a'g(t, .
2D () =/ %my)dy, i = 0(1)3 (4.10)
a
b oi
; a'G(t,
2<’>(z)=/ %u(y)dy, i = 0(1)3. @.11)
a t
Further some operators are defined, which are necessary to perform convergence analysis.
: Cla, b] — R""!, such that (A,0) = [w(10), @(11), ..., @()]" or (Ay@)y =

a)(tm) where 0 <m <n,
B, : R"t! — (la, b}, piecewise linear interpolation at t,,,, where 0 < m < n,
I'{ : Cla, b]_ — (Cla, b],_such that I-_Ia)Et) = q/ fab_g(f, y)w(y)dy, where q/ = —%._
M : Cla,b] —> CJa, b], such that Mw(t) = G A, f: g(t, Yo (y)dy, where G =

diag(q).
By using above operators, the Eqs. (4.4) and (4.6) can be written as:

I+ Huw=r 4.12)
(DA, + Myu = A,r (4.13)
Since D is invertible, therefore multiplying both sides of Eq. (4.13) by D!,
(Ay+ D 'Myu=D"A,r 4.14)
(I+ B,D 'Myu=B,D 'Apr' = Qur' (4.15)

where Q, = B,D"'4,.

Lemma3 If w is a continuous function, then | B,D " 'Mw — Hw ||oo tends to zero as the
step size h tends to zero, that is, B,D™'M converges to H.

Proof For continuous function w,

| B.D™'Mo — Ho |loo <[l BsD™'Mw — ByAyHo |loo + || BuAnHo — Ho |l
<l Bulloo 1D o | Mo — DA Hw lloo + || BiAnHo — Ho |l
=1.66 | Mo — DA,Ho |loo + O().
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(as || Bu lloo= 1, being piecewise linear interpolant and || D! || is bounded using Lemma
2.)

Next it is to prove that || Mw — DALHw ||oo— 0.

Define & = fab Gg(t, y)w(y)dy, over a width of 5h.

Then by using definition of A,,, H and &, we get,

| Mo — DAL H® lloo =I| G Ang — DAwg € oo
<l GAy§ — GDAE ||oo
<N G llooll AnE — DALE lloo
<a || At — DA |l
(as || G |loo is bounded with some constant a'.)

Now, by the definition of L, norm and taking / as the identity matrix,

I Ang = DA lloo =Il (I = D)A oo
= max{(I = D)A,&, : 0 <m <n},

1
= g max (=776 + 26661 — 3746 + 27665 — 1094 + 18,

— 1880 + 31&; — 4&, — 14&3 + 684 — &s,

En—no —24&,_1 +46&, — 248,41 +En2 2 <m<n-2

—&n—s5 + 68,4 — 148, 3 — 48, + 31§, — 18§,

18,5 — 1098, _4 + 276§, 3 — 3748, 2 + 266§, 1 — 77&,}
= 0§, 5h)

Thatis, | Mo — DA,Ho |l < a O(n(&, 5h)) where n(&, ¢) = sup{] £(1) — £(x) ||
t — x |< c}. This is the modulus of continuit_y of &, Vyhic_h is a continuous function. So
0O(n(&,5h)) — 0as h — 0, which implies | Mo — DA, Hw ||oo— 0.

Next the main convergence theorem is stated and proved hereunder.

Theorem 2 If (A1) q/ and r’ are continuous in [a, b].
(A2) The BVP I'z = r,, Bz = p; has unigue solution z, where z € (Clo[&, bl.
(A3) The problem z® = 0, Bz = 0 is uniquely solvable,
Then (S1) The quintic B-spline collocation approximation Z, defined by Eq. (4.6) exists.
(82) The global error estimate are:
Iz =2 lloo= OR™) forl = 0(1)4
The local error estimate are:
|- 1= 0t for1 =0, 1,
| (z=2);) = O forl =2.3,

| =D |= o).

Proof As (I+ H)~! exists and is bounded linear operator by assumption (A3). So by Lemma
(3), B,D™'M — H.Thus (B,D~'M + H)~! exists and is bounded. From this (S1) is
proved.

Now we prove (52), for this first let’s derive the global error estimates.

Consider the problem v@® = n, Bv = O (h%). Then by assumption (A3), there exists a
cubic polynomial v which satisfies the following relation:

Bo=Bv=0@,|? |ew= 0%, [=0(1)3 (4.16)
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As(v—0)® =y, Bw—0)=0is uniquely solvable, therefore by using assumption
(A3),

I+ B, D' W = 59) = 0,1 + 0 (%) 4.17)
Subtracting Eq. (4.15) from (4.17)
(I+ B, D7'M)(w™® — ¥ — %) = 0%
As the operator (I + B,D~'M)~! is bounded. This implies
| o@ — 5@ 3@ = 0@, (4.18)
Since the problem (v — o — 2)® = 7, B'(v — o — %) = 0 is uniquely solvable by

assumption (A3). Therefore there exists a Green’s function such that:

b gl
w-1-9%0 = / ALib ga(f,’y)(v“”—v<4>—2<4>>(y>dy, I=0(1)3

a

Thus,
| (0=10—=27 o= 0R®), 1 =0(1)3 (4.19)
Using Eqgs. (4.16) and (4.19) we get:
=2 o=l @ =5 =2 oo + | 1 o= O, 1=0(1)4  (4.20)
Using Theorem (1), Eq. (4.20) and triangular inequality, following error bound is obtained:
1z=DY o=l G=0) floo + | @ =D Jlo= 0GO), 1 =0(1)4.

Similarly, local error estimates can be obtained from Theorem (1). m}

Numerical Examples

In this section, four problems are solved using IQSCM to demonstrate the applicability of
the method. As the analytical results are available, it helps in measuring the accuracy of the
scheme. The results are presented in tabular form and are compared with those available in
the literature. L, error norm is calculated, which is defined as follows:

1
Lo = r<nnz:)<;n |zgract — ot 5.1
num

where 744! represents the exact solution and 72" represents the numerical solution obtained

m

by IQSCM at the node point #,,.
The order of convergence is computed numerically, by using the following formula:

m

log(error(ny)/error(ny))
Order =
log(ny/ny)

(5.2)

where error(ny) and error(ny) are the maximum absolute errors calculated with n; and n»
number of partitions respectively.
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Table 1 Comparison of L error norm of Example 1

e h=1/16 h=1/32 h=1/64 h=1/128
Results by IQSCM

1/16 1.6422E—06 3.0526E—08 4.9373E—10 7.7690E—12
1/32 4.4259E—-07 8.2051E—09 1.3275E—10 2.1244E—12
1/64 1.3081E—07 2.4216E—09 39161E—-11 6.1579E—13
Results by [33]

1/16 1.7094E—04 4.7425E—-05 1.2094E—05 3.0303E—-06
1/32 4.4022E—-05 1.2203E—-05 3.1120E—06 7.7974E—07
1/64 1.1706E—05 3.2459E—-06 8.2662E—07 2.0714E-07

Example 1 Fort € [—1, 1], consider the following SPBVP [33]:
—e2P (1) + qz(1) = er*[326%1(—6(7 — 55t* + 70¢%) + €2 (12 — 31° + 2:'%))cos(er)
+ (@ = D2 =St — D 48832 (7 - 3314 +3068)  (5.3)
— 2408 (7 — 99r* + 182¢%))sin(er)],
with the boundary conditions:
(=1)=0, z(h=0, P=n=0, D=0 (5.4)

The exact solution is given by: z(#) = et3(t* — 1)%sin(er).

Table 1 shows the comparison of L, error norm for different values of 2 and ¢ with [33]
in which QSCM is applied to solve this problem. Comparison indicates that results using
IQSCM are far superior than QSCM. Table 2 gives the L, error norm for different values of
7 and very small values of &. In Table 3 the order of convergence is found to be 4 for different
values of ¢ and node points 7, which is same as theoretical results. Figure 1 represents the
behaviour of exact and numerical solution for ¢ = 27 and n = 64. In Fig. 2 absolute error
for different values of ¢ is given.

Example2 Fort € [—1, 1], consider the following SPBVP [33] [35]:
— ez (t) + qz(1) = e[21* + cos(t) — (48 + cos(1))], (5.5)
with the boundary conditions:

z(—=1) = e(2 4 cos(1l)), z(1) =&(2+ cos(1)),

5.6
2P (=1) = (24 — cos(1)), zP(1) = (24 — cos(1)). ©.6)

The exact solution is given by: z(#) = e(21* + cos(r)).

In Table 4 comparison of L, error norm for different values of / and ¢ shows that results
with IQSCM are better than those reported by [33,35]. Table 5 represents the L, error norm
for different values of & and very small values of ¢. In Table 6 the order of convergence is
computed for different values of ¢ and node points n. Figure 3 illustrates the behaviour of
exact and numerical solution for ¢ = 27> and n = 64. Figure 4 represents the absolute error
for different values of ¢.
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Table 3 Order of convergence of Example 1 for different values of ¢

e=2"K n=10 n=20 n =40 n =80 n =160
K=2 6.6541E—03 2.9133E—-04 6.9791E—06 1.2097E—07 1.9291E—09
- 4.5234 5.3835 5.8503 5.9706
K =3 1.7159E-03 7.5250E—05 1.8054E—06 3.1341E-08 4.9978E—10
- 4.4977 5.3813 5.8481 5.9706
K =4 4.4460E—04 1.9558E—05 4.6850E—07 8.1448E—09 1.2981E—10
- 4.5067 5.3836 5.8460 59714
K=5 1.1905E—04 5.2696E—06 1.2608E—07 2.1906E—09 3.4918E—11
- 4.4977 5.3853 5.8469 5.9712
K=6 3.5666E—05 1.5571E—06 3.7270E—08 6.4617E—10 1.0298E—11
- 4.5176 5.3847 5.8500 5.9715
K=17 1.4588E—05 6.1323E—-07 1.4748E—08 2.5611E—10 4.0818E—12
- 4.5722 5.3778 5.8476 59714
K =28 2.3410E-05 9.5579E—-07 2.2933E—08 3.9806E—10 6.3523E—12
- 4.6143 5.3812 5.8483 5.9696
Fig.1 Exact and approximate %108
solution of Example 1 for 6 T T T
* Approximate solution|
4 - .
2r ]
c
2
5 oy
[e]
(9]
2t §
4F .
8 | I I
-1 -0.5 0 0.5 1

Example 3 Fort € [0, 1], consider the following SPBVP [34,35]:

—82(4)(1) +qz(t) = (t — 1)4t8sin(8t) — et4[—1683(t — 1)313(31 — 2)cos(et)
+ 9661 (14 — 841 4 180> — 1651% + 55%)cos(et) + e*(t — 1)*t*sin(er)
—2482(t — 1)%12(14 — 441 + 331)sin(et) + 24(70 — 504¢ + 1260¢>

— 132017 + 495:%)sin(et)],

(5.7)
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Fig.2 Absolute error of Example
1 for different values of &

Table 4 Comparison of L error
norm of Example 2

with the boundary conditions:
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h=1/16 h=1/32 h=1/64
Results by IQSCM
1/16 2.6336E—12 1.8828E—12 3.3268E—11
1/32 5.4976E—13 1.6923E—13 1.5184E—12
1/64 1.4674E—13 6.3333E—14 2.0093E—13
1/128 4.9635E—14 4.3540E—14 7.4962E—13
Results by [33]
1/16 2.3722E—06 5.9529E—07 1.4896E—07
1/32 4.5647E—07 1.1462E—07 2.8684E—08
1/64 1.0356E—07 2.6027E—08 6.5148E—09
Results by [35]
1/16 2.6309E—09 1.5786E—10 1.8007E—11
1/32 5.0874E—10 3.0216E—11 3.8255E—13
1/64 1.1660E—10 6.9260E—12 7.7907E—13
2000=0, z() =0, zP©O)=0, D1 =0. (5.8)

The exact solution is given by: z(t) = (1 — H*t8sin(er).
Table 7 shows the comparison of L, error norm for different values of / and & with septic
B-spline collocation method [34] and non-polynomial quadratic splines method [35]. The
results with IQSCM are better than both the methods. Table 8 represents the L, error norm
for different values of / and very small values of €. Table 9 gives the order of convergence for
different values of € and node points n. Figure 5 depicts the behaviour of exact and numerical
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Table 6 Order of convergence of K - _ _
Example 2 for different values of £=2 n=10 n=20 n=40
€ K=2 6.5040E—08 8.6301E—10 2.1843E—11
- 6.2358 5.3041
K=3 3.6300E—08 4.8229E—10 3.7749E—12
- 6.2339 6.9973
K=4 3.6568E—09 4.8590E—11 7.7240E—13
- 6.2338 5.9752
K =5 7.6259E—10 1.0148E—11 1.7000E—13
- 6.2316 5.8995
K=6 2.0252E—10 2.6994E—12 4.5882E—14
- 6.2293 5.8786
K=7 6.7799E—11 9.0658E—13 1.7635E—14
- 6.2247 5.6839
K =38 3.4827E—11 4.6741E—13 6.7927E—15
- 6.2194 6.1046
Fig.3 Exact and approximate %1073
solution of Example 2 for 26 T T '
* Approximate solution

2.3

Solution
~

N
~

1.1

solution for ¢ = 27> and n = 64. Figure 6 shows that absolute error decreases as the value
of & decreases.

Example 4 Fort € [—1, 1], consider the following SPBVP [34]:
— ez () + qz(r) = et[(t — D** — 24e(5 — 601 + 2102 — 28017 + 126:%)], (5.9)
with the boundary conditions:

2(=1)=—16s, z(1)=0, zP(=1)=—688s, (1) =0. (5.10)
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134

Fig.4 Absolute error of Example %107
2 for different values of & 2 T T T
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Table 7 Comparison of Lo error norm of Example 3 for different values of &
e h=1/16 h=1/32 h=1/64 h=1/128
Results by IQSCM
1/16 1.0255E—-07 1.9333E—09 3.1239E—-11 4.9074E—13
1/32 5.2845E—08 9.9639E—10 1.6101E—11 2.5299E—13
1/64 2.8117E—08 5.3021E—-10 8.5720E—12 1.3461E—13
1/128 1.6174E—08 3.0669E—10 4.9540E—12 7.7829E—14
Results by [34]
1/16 1.666E—06 1.310E—07 2.614E—09 6.716E—11
1/32 8.537E—-07 6.736E—08 1.344E—09 3.452E—-11
1/64 4.520E—-07 3.569E—08 7.128E—10 1.829E—11
1/128 2.600E—07 2.049E—08 4.092E—10 1.050E—11
Results by [35]
1/16 1.0499E—07 9.8529E—09 7.0265E—10 4.6045E—11
1/32 5.3745E—08 5.0610E—09 3.6108E—10 2.3663E—11
1/64 2.8376E—08 2.6766E—09 1.9132E—10 1.2538E—11
1/128 1.6215E—08 1.5345E—09 1.0968E—10 7.1910E—12

The exact solution is given by: z(¢) = etd(1 — ).
In Table 10 comparison of L, error norm for different values of & and ¢ is given with
[34]. Table 11 represents the L, error norm and in Table 12 order of convergence is given.
Figure 7 shows the similarity between exact and numerical solution for ¢ = 27> and n = 64.
Absolute error for different values of ¢ and n = 100 is represented in Fig. 8.
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Table9 Order of convergence of Example 3 for different values of &

e=27K n=10 n =20 n =40 n =80 n =160

K=2 4.2010E—-06 1.1328E—07 1.9801E—09 3.1515E—11 5.1413E—13
- 5.2128 5.8382 5.9734 5.9378

K=3 2.1377E-06 5.7846E—08 1.0130E—09 1.6129E—11 2.6257E—13
- 5.2077 5.8355 5.9728 5.9408

K=4 1.0876E—06 2.9464E—08 5.1581E—10 8.2134E—12 1.3428E—13
- 5.2061 5.8360 5.9727 5.9347

K =5 5.6101E-07 1.5205E—08 2.6585E—10 4.2332E—12 6.9463E—14
- 5.2054 5.8378 5.9727 5.9294

K=6 2.9923E—-07 8.1144E—09 1.4147E—10 2.2542E—12 3.6766E—14
- 5.2046 5.8419 5.9717 5.9381

K=7 1.7302E—-07 4.6966E—09 8.1826E—11 1.3027E—12 2.1369E—14
- 5.2032 5.8429 5.9730 5.9298

K =38 1.2800E—07 3.5138E—09 6.1224E—11 9.7553E—13 1.5973E—14
- 5.1870 5.8428 5.9718 5.9325

Fig.5 Exact and approximate %107

solution of Example 3 for 3.5 T T T T

e=2Sandn =64

— Exact solution
* Approximate solution|

2.5

1.5

Solution

Conclusion

Fourth order singularly perturbed boundary value problems are successfully solved using
superconvergent improvised quintic B-spline collocation method with equally spaced parti-
tion of the domain. The posteriori corrections made in quintic B-spline interpolant and its
higher order derivatives, resulted in upgradation of order of convergence up to /°. Theoret-
ically, global and local error estimates are established using Green’s function approach. A
number of examples are worked out to conclude that the proposed method is more efficient
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Fig.6 Absolute error of Example %1012
3 for different values of & 2.5 T T T
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Table 10 Comparison of L, error norm of Example 4
€ h=1/10 h=1/20 h=1/40 h=1/80
Results by IQSCM
1/16 1.4251E—-05 2.2952E—-07 3.6400E—09 6.3550E—11
1/32 4.6122E—06 7.7405E—08 1.2540E—09 2.3792E—11
1/64 3.3456E—06 5.7997E—08 9.5120E—10 1.8662E—11
1/128 1.7533E—06 3.0880E—08 5.0735E—-10 8.4948E—12
Results by [34]
1/16 8.60E—03 1.506E—04 2.951E—06 8.053E—08
1/32 2.50E—-03 4.772E—05 9.202E—07 2.246E—08
1/64 1.70E—03 3.397E—-05 6.468E—07 1.425E—08
1/128 8.65E—04 1.792E—05 3.387E—07 7.199E—09
Table 11 Lo error norm of Example 4 for different values of ¢ and 7
e=2"K h=1/8 h=1/16 h=1/32 h=1/64 h=1/128
K =10 1.0980E—07 1.9300E—09 3.2402E—11 5.2538E—13 7.9027E—14
K =15 5.4474E—-10 9.1808E—12 1.5271E—13 2.4417E—15 4.7678E—17
K =20 5.4541E—13 6.7825E—14 1.0528E—15 1.7464E—17 6.1240E—19
K =25 5.1107E—16 3.5791E—-17 4.6028E—18 8.4862E—-20 1.9058E—21
K =30 4.9701E-19 3.4323E-20 2.2731E-21 1.7371E-22 2.2797E-23
K =35 8.1022E—-22 1.9108E—22 1.2976E—23 3.1019E—24 1.5510E—25
K =40 1.1516E—21 1.4231E-22 1.3994E-23 2.3523E-24 7.7548E—-26
K =45 6.5876E—22 5.5421E-22 1.7415E-23 4.9195E-25 1.3768E—25
K =50 5.8366E—21 7.8585E—23 3.2270E—23 2.7335E—24 7.3314E-26
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Table 12 Order of convergence of Example 4 for different values of &

e=2"K n=3 n=16 n=32 n =64 n=128
K=2 5.3295E—-02 8.3840E—04 1.3151E—05 2.0596E—07 3.2483E—09
- 5.9902 5.9944 5.9967 5.9865
K=3 2.9709E—02 4.6567TE—04 7.3161E—06 1.1452E—07 1.8470E—09
- 5.9954 5.9921 5.9974 5.9543
K=4 3.1998E—03 5.3600E—05 8.6848E—07 1.3833E—-08 2.2511E—-10
- 5.8996 5.9476 5.9723 5.9413
K=5 8.6170E—04 1.6903E—05 2.9039E—07 4.7433E—09 7.5000E—11
- 5.6718 5.8631 5.9360 5.9829
K=6 5.4868E—04 1.2064E—05 2.1578E—07 3.5849E—09 5.9289E—11
- 5.5072 5.8050 59115 5.9180
K=7 2.7652E—04 6.2737E—06 1.1468E—07 1.9100E—09 3.1520E—11
- 5.4619 5.7736 5.9079 5.9212
K=38 3.9172E—05 7.8175E—07 1.3538E—08 2.2352E—-10 3.5922E—12
- 5.6470 5.8516 5.9205 5.9594
Fig.7 Exact and approximate %103
solution of Example 4 for 2 T T T

e=2"5andn = 64 — Exact solution
* Approximate solution

Solution

than the classic QSCM and SSCM. The numerical results are found to be in good agreement
with the exact ones as illustrated by different figures. Order of convergence is also calculated
numerically, which matches with the theoretical ones. Comparison with the literature data
indicates the efficacy of the present method. It is observed that the IQSCM is stable for
extremely small values of ¢.
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Fig.8 Absolute error of Example
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