
Int. J. Appl. Comput. Math (2020) 6:124
https://doi.org/10.1007/s40819-020-00876-5

ORIG INAL PAPER

Analytical Investigation on CNT Based Maxwell Nano-fluid
with Cattaneo–Christov Heat Flux Due to Thermal Radiation

K. Gangadhar1 · K. Keziya1 · T. Kannan2 · Shankar Rao Munjam3

Published online: 4 August 2020
© Springer Nature India Private Limited 2020

Abstract
At first, we derive a series form solution of the coupled highly nonlinear equations, which
includes various conditions. Then, via the method of directly defined inverse mapping with
the series form solution firstly reported in this paper, we can obtain theoretical and approx-
imate analytical analysis about the transfer of heat as well as the magnetohydrodynamic
flow of Maxwell nanofluid by the influence of convective heating with effects of thermal
radiation. In the energy equation, heat flux model is adopted to develop the equations for
viscoelastic relaxation over boundary layer flow. For this investigation, we considered base
liquid as engine oil and other forms of carbon nanotubes such as single walled nanotubes and
multi-walled nanotubes. Suitable similarity transformations are applied for transformation
of given boundary layer flow equations. Results are compared numerically by Keller–Box
method. It is found that for both singled and multi-walled carbon nanotube based nanofluids
the thermal relaxation time and temperature function are inversely proportional. More inter-
estingly it is noted that for the two types of nanofluids, fluid relaxation parameter exactly
coordinates with heat transfer rate as well as skin friction investigated. Also shown that the
base functions of solutions are highly convergence.
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List of symbols

u′, v′ Velocity components (m s−1)
x, y Coordinates
q̂ Heat flux
Tw Wall temperature (K)
T∞ Ambient temperature (K)
g Gravitational force (m s−2)
Cp Specific heat (J kg−1 K−1)
V̄ Velocity vector
qr Radiative heat flux
ke Mean absorption coefficient
T Fluid temperature
f Nondimensional stream function
Grx Grashof number
M Magnetic parameter
Nr Radiation parameter
Pr Prandtl number
Cfx Skin friction coefficient
Nux Nusselt number
Rex Reynolds number

Greek symbols

λ1 Fluid relaxation time
ρ̂ Density (kg m−3)
μ′ Dynamic viscosity (N m s−1)
β Thermal expansion coefficient (K−1)
σ Electrical conductivity
λ2 Thermal relaxation time
ᾱ Thermal diffusivity (m2 s−1)
σ s Stefan–Bolzmann constant
φ Volume fraction of nanoparticles
ψ̄ Stream function
η Similarity variable
θ Nondimensional temperature
ξ Velocity slip factor
ζ Thermal slip factor

Subscripts

nf Nanofluid
f Base fluid
w Condition at wall
∞ Condition at infinity
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Introduction

The attention on electrically conducting fluid with magnetic field is of greater importance
in many applications of engineering industries such as power generation, metals purification
process, hardening, MHD pumps etc. The process of cooling of stretched sheets or filaments
are through a quiescent fluid and the quality and characters of the final product depends
upon the rate of cooling in various processes. The cooling rate can be governed by drawing
such strips or filaments into the fluid, which leads to get the final product with desired
characteristics. The magnetic field can produce a significant amount of Lorentz force in the
presence of a magnetization force and electric current. It is prominent that the impact of hall
current is very essential in the presence of a strong magnetic field. Besides, in a low-density
ionized gas the conductivity normal to the magnetic field is decreased by free growth of
electrons and ions with or without magnetic field. Gupta [1] examined the impact of Hall
effects of the hydromagnetic flow over flat plate. Hayat et al. [2] reported the effects of Hall
current and heat transfer on the rotating flow through a porous medium. Saleem and Aziz [3]
investigated the hydromagnetic flow over a stretching surface in the presence of Hall current.
Aziz and Nabil [4] studied the effects of Hall current on hydromagnetic mixed convection
flow past an exponentially stretching surface. Pal [5] considered thermal radiation effects
on the unsteady flow of viscous fluid past a permeable stretching surface with Hall current.
Gangadhar et al. [6] studied the effects of Newtonian heating about MHD flow concerning
micro polar nanofluid over permeable stretching/shrinking sheet.

Nanotechnology has impacted the world of science, technology, medical sciences,
engineering significantly and remarkably influencing future technologies and solutions. Sus-
pending nano particles in the base fluid not only enhances the thermal properties of the fluids
but also affects the velocity of the fluids. Researchers have been used various of models
to study the different thermal and physical properties of nanofluids. One of the pioneering
models are presented by Choi [7, 8] and Hamilton and Crosser model [9]. Buongiorno [10]
incorporated both Brownian motion and thermophoresis in his model. The above-mentioned
models focus only the spherical or rotational elliptical nature of the nanoparticles [11]. In
regard to Maxwell’s theory [12], Xue recommended a model that includes the rotational
elliptical nanotubes and it considers large axial ratio and the space distribution on CNTs.
CNTs is opening doors to many technological and industrial area that involve heat transfer,
such as fast cooling of chips, ultra-capacitors, electrochemical supercapacitor, etc. [13–15].

Types of carbon nanotubes are categorized as, single-walled carbon nanotubes and multi-
walled carbon nanotubes. Murshed et al. [16] found that the carbon nanotubes increase the
thermal conductivity six times that of the base fluid. Ganesh Kumar et al. [17] deliberated
the impact of non-linear radiation of viscoelastic nanofluid flow over elongating sheet. Khan
et al. [18] analyzed about transfer of heat resolution of CNT founded nanofluids by the
consequences of slip of velocity through non-parallel walls. Recently, various aspects of
magnetic force, heat generation, shape effects, radiation, etc. on nanoparticles were studied
by [19–59].

The analysis of heat transfer plays a very crucial role in nature and almost in all indus-
trial sectors. The phenomena of heat transfer are clearly explained in Fourier’s law of heat
conduction [60]. Though, the main flaw of the Fourier’s laws is the principle of causality. By
employing the thermal relaxation time in the Fourier’s model leads to a finite heat distribution
rate [61]. Besides, Maxwell–Cattaneo model is improved significantly when time derivative
is considered by Christov [62]. Tibullo and Zampoli [63] obtained uniqueness result for Cat-
taneo–Christov heat conduction model. Fluid flow and heat transfer with Cattaneo–Christov
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heat flux model is examined by Han et al. [64]. Flow of Maxwell fluid over a linear stretch-
ing sheet with the Cattaneo–Christov heat flux is reported by Mustafa [65]. The detailed
discussions of the flow over a stretching sheet with variable thickness with Cattaneo–Chris-
tov heat flux model are available in the literature [66–68]. Oyelakin et al. [69] explored the
Catteneo–Christov heat flux phenomenon by past nanofluid flow as well as transfer of heat
resolution on vertical cone inside porous medium. Farooq et al. [70] examined the dissec-
tion of heat as well as mass flux phenomenon by Cattaneo–Christov over compressed flow
contain inside porous medium along with changeable mass distribute. Prabir Kumar et al.
[71] studied the influence of Cattaneo–Christov heat flux on the boundary layer flow past a
stretching sheet.

In the highest degree of perception, no one at any time endeavor to investigate about
MHD flow concerning CNT engine oil through non-linear enlarging surface by means of
heat flux model by Cattaneo–Christov with MDDIM [72]. Outcome of convective heating as
well as thermal radiations are made of use in equation of energy. The governing PDEs are
transformed as extremely non-linear ODEs. Owing to non-linearly as well as outline essence
of the question, an accurate resolution is different. A catalogue of counterpart co-efficient
among the activity factors as well as the physical measures of observation of this model
estimated to appraise the link between the flow as well as temperature are pictured through
charts and graphs.

Recently, Liao [72] has been developed the new technique MDDIM and analyzed the
various types of nonlinear problems. The nonlinear system of differential equations with
convective heat transfer on a porous flat plate was studied by Baxter et al. [73]. After that
Dewasurendra et al. [74] has been analyzed the coupled systems of nonlinear differential
equations of nanofluid flow problem with mass and heat transfer effects by MDDIM.

To the best of authors’ knowledge this governing equations has not been examined with
MDDIM before and the reported results are new. All the obtained outcomes from the above
approximate analytic and numerical procedures are displayed through graphs and tables to
discuss various resulting parameters.

Mathematical Formulation

For our study we considered a two-dimensional flow which is steady, viscous and magne-
tohydrodynamic upper convective viscoelastic Maxwell nanofluid having both single and
multi-walled carbon nanotubes on a vertical sheet. The base fluid for this investigation is vis-
cous engine oil. In the coordinate frame y-axis is fixed along the plane and x-axis is upright to
it which is shown in Fig. 1. The nanofluid moves in positive y-direction with velocity uw ′ �
a′xm, where ‘a′’ indicates the constant of stretching rate and ‘m’ denotes the stretching index
may not be an integer. The fluid flow is considered as laminar and applied magnetic field of

intensity B̃(x) � B̃0x
m−1
2 is perpendicular to the sheet. Moreover, it is assumed that outward

applied electric field is very small hence we have negligible magnetic Reynolds numbers.
Correspondingly, it is noted that magnetic flux inside is considerably small with outward
magnetic flux. There is a constant temperature Tw inside the boundary layer whereas T∞
outside it. The equations governing the flow are given below (see Kundu et al. [71]):

∂u′

∂x
+

∂v′

∂y
� 0 (1)

u′ ∂u′

∂x
+ v′ ∂u′

∂y
+ λ1

(
u′2 ∂2u′

∂x2
+ v′2 ∂2u′

∂y2
+ 2u′v′ ∂2u′

∂x∂y

)
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� 1
�
ρn f

(
μ′
n f

∂2u′

∂y2
+ g
(

�
ρβ
)
n f

(T − T∞) − σ B̃2(x)u′
)

(2)

�
ρCp

(
u′ ∂u′

∂x
+ v′ ∂T

∂y

)
� −∇ · q̂ − ∂qr

∂y
(3)

where u′ is the x portion of velocity, v′ is the y portion of velocity. The third term of expression
(2) represents the convective part of the Maxwell fluid and λ1 is the relaxation of the time
for velocity, q̂ is the heat flux. �

ρn f is the effective density of the nanofluid, μnf
′ is the

effective dynamic viscosity of nanofluid, β is the thermal expansion coefficient regarding to
the volume, σ is the electrical conductivity, g is the gravitational force, Cp is the specific heat
at constant pressure. We have,

q̂ + λ2

[
∂ q̂

∂t
+ V̄ · ∇q̂ − q̂ · ∇ V̄ +

(∇ · V̄ )q̂
]

� −K̃ f ∇T − ∂qr
∂y

(4)

Here V̄ is the velocity vector and λ2 is the relaxation of time of heat flux, K̃n f is the thermal
conductivity of the nanofluid. For incompressible fluids Eq. (4) becomes

q̂ + λ2

[
∂ q̂

∂t
+ V̄ · ∇q̂ − q̂ · ∇ V̄

]
� −K̃f∇T − ∂qr

∂y
(5)

Eliminating q̂, we get:

u′ ∂T
∂x

+ v′ ∂T
∂y

+ λ2

(
u′ ∂u′

∂x

∂T

∂x
+ v′ ∂v′

∂y

∂T

∂y
+ u′ ∂u′

∂x

∂T

∂y
+ v′ ∂u′

∂y

∂T

∂x

+2u′v′ ∂2T

∂x∂y
+ u′2 ∂2T

∂x2
+ v′2 ∂2T

∂y2

)
� ᾱn f

∂2T

∂y2
− ∂qr

∂y
(6)

Here ᾱn f is the thermal diffusivity of the nanofluid.
The Rosseland diffusion approximation of radiation heat flux qr is given by

qr � −4σs
3ke

∂T 4

∂y
(7)

where σ s is the Stefan–Bolzmann constant and ke is the mean absorption coefficient. If the
temperature differences are significantly small, then Eq. (7) can be linearized by expanding
T4 into the Taylor series about T∞ which, after neglecting higher order terms, takes the form

T 4 � 4T 3∞T − 3T 4∞ (8)

Using Eqs. (7) and (8), Eq. (6) reduces to

u′ ∂T
∂x

+ v′ ∂T
∂y

+ λ2

(
u′ ∂u′

∂x

∂T

∂x
+ v′ ∂v′

∂y

∂T

∂y
+ u′ ∂u′

∂x

∂T

∂y

+v′ ∂u′

∂y

∂T

∂x
+ 2u′v′ ∂2T

∂x∂y
+ u′2 ∂2T

∂x2
+ v′2 ∂2T

∂y2

)

� ᾱn f
∂2T

∂y2
+
16σsT 3∞
3keρCp

∂2T

∂y2
(9)

Maxwell’s relation for thermal conductivity is

ᾱn f � K̃n f

K̃ f
� 1 +

3
(
ᾱn f − 1

)
ϕ(

ᾱn f + 2
)(

ᾱn f − 1
)
ϕ

(10)

Here ϕ is the volume fraction of nanoparticles.
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qr

g

B Boundary later 

Tw

y 

Fluid flow

SWCNU MWCNT

Fig. 1 Flow configuration and coordinate system

Jeffery model for thermal conductivity is

K̃n f

K̃ f
� 1 + 3λ̄ϕ +

(
3λ̄2 +

3λ̄2

4
+
9λ̄3

16

ᾱn f + 2

2ᾱn f + 3
+ · · ·

)
ϕ2 (11)

Here λ̄ � ᾱn f −1
ᾱn f +2

. The results of the two models coincide when the concentration is low.
Thermal conductivity is expressed by Hamilton and Crosser model as

K̃n f

K̃ f
� ᾱn f +

(
n′ − 1

)− (
n′ − 1

)(
1 − ᾱn f

)
ϕ

ᾱn f + (n′ − 1) +
(
1 − ᾱn f

)
ϕ

(12)

Here n′ is the shape feature of nanoparticle which is of the form of n′ � 3
ϕω . Where ‘ω’

takes values between 1 and 2. If ϕ � 1 then the shape of the nanoparticle is spherical and for
ϕ � 0.5 it is cylindrical in shape. Xue [11] observed that these models work well when the
shapes of nanoparticle either spherical or elliptical with low eccentricity also be observed
that it can’t explain the effect of CNTs like thermal conductivity distribution. To overcome
this again Xue [11] suggested a model

K̃n f

K̃ f
�

1 − ϕ + 2ϕ K̃CNT

K̃CNT −K̃ f
ln

K̃CNT +K̃ f

2K̃ f

1 − ϕ + 2ϕ
K̃ f

K̃CNT −K̃ f
ln

K̃CNT +K̃ f

2K̃ f

(13)

Here, K̃CNT is thermal conductivity of the CNTs. The thermo-physical characteristics of the
CNT-engine oil of nanofluid are estimated with the help of the following expressions and
Table 1.
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Table 1 Thermo-physical properties (see Kundu et al. [71])

Physical quantity Base fluid (viscous engine
oil)

Nanoparticles (SWCNT) Nanoparticles (MWCNT)

�
ρ
(
kg
/

m3
)

884 2600 1600

Cp (J/kg K) 1910 425 796

k (W/m K) 0.144 6600 3000

β × 10−5 (K−1) 70 2.6 2.8

The expression of dynamic viscosity of the nanofluid is given by

μ′
n f � μ′

f

(1 − ϕ)2.5
(14)

Here μf
′ is the effective viscosity of the base fluid i.e. engine oil. ϕ is the volume fraction of

the CNTs which are both SWCNTs andMWCNTs. If
(

�
ρCp

)
n f

is the effective heat capacity,

then ᾱn f is given by

�
ρn f � (1 − ϕ)

�
ρ f + ϕ

�
ρCNT ,

(
�
ρCp

)
n f

� (1 − ϕ)
(

�
ρCp

)
f
+ ϕ
(

�
ρCp

)
CNT

,

ᾱn f � K̃n f(
�
ρCp

)
n f

,
(

�
ρβ
)
n f

� (1 − ϕ)
(

�
ρβ
)
f
+ ϕ
(

�
ρβ
)
CNT

(15)

In the above equation �
ρCNT and �

ρ f are the density of CNTs and base fluid, respectively, and(
�
ρCp

)
CNT

,
(

�
ρCp

)
f
are the heat capacity of CNTs and base fluid, respectively. βCNT , β f

are the thermal expansion co-efficient of CNTs as well as base fluid.

Boundary Conditions

Boundary conditions of the above system is considered as

u′ � u′
w + u′

s, v′ � 0, T � Ṫw + Ts, at y � 0

u′ → 0, T → T∞, as y → ∞ (16)

us′ is the velocity slip which is proportional locally to the shear stress at the wall, i.e.

u′
s � l̇1

∂u′
∂y , where l̇1 shows momentum slip parameter and expressed as l̇1 � l1x−m−1

2 . Fur-

thermore, the slip temperature near solid boundary indicated as Ts � l̇2
∂T
∂y , and l̇2 � l2x−m−1

2

is called as the thermal slip parameter. If no slippage case then l̇1 � l̇2 � 0.
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Non-dimensionalization

Arrange the stream function ψ̄ such that fulfilling the expression of continuity interpreted as

u′ � ∂ψ̄
∂y as well as v′ � − ∂ψ̄

∂x . Then the expressions (2), (9) and the corresponding boundary
conditions (16) are modified as follows

∂ψ̄

∂y

∂2ψ̄

∂x∂y
− ∂ψ̄

∂x

∂2ψ̄

∂y2
+ λ1

⎛
⎝( ∂ψ̄

∂y

)2
∂3ψ̄

∂x2∂y
+

(
∂ψ̄

∂x

)2
∂3ψ̄

∂y3
− 2

∂
⇀

ψ

∂y

∂ψ̄

∂x

∂3ψ̄

∂x∂y2

⎞
⎠

� 1(
1 − ϕ + ϕ

�
ρCNT

�
ρ f

)
⎛
⎜⎝ ν f

(1 − ϕ)2.5

∂3ψ̄

∂y3
+

⎛
⎜⎝1 − ϕ + ϕ

(
�
ρβ
)
CNT(

�
ρβ
)
f

⎞
⎟⎠
(

�
ρβ
)
f

�
ρ f

g(T − T∞) − σ B̃2(x)
�
ρ f

∂ψ̄

∂y

⎞
⎟⎠

(17)
∂ψ̄

∂y

∂T

∂x
− ∂ψ̄

∂x

∂T

∂y
+ λ2

(
∂ψ̄

∂y

∂2ψ̄

∂x∂y

∂T

∂x
+

∂ψ̄

∂x

∂2ψ̄

∂x∂y

∂T

∂y
− ∂ψ̄

∂y

∂2ψ̄

∂x2
∂T

∂y

−∂ψ̄

∂x

∂2ψ̄

∂y2
∂T

∂x
− 2

∂ψ̄

∂y

∂ψ̄

∂x

∂2T

∂x∂y
+

(
∂ψ̄

∂y

)2
∂2T

∂x2
+

(
∂ψ̄

∂x

)2
∂2T

∂y2

)

� K̃n f

(1 − ϕ)
(

�
ρCp

)
f
+ ϕ
(

�
ρCp

)
CNT

∂2T

∂y2
+
16σsT 3∞
3keρCp

∂2T

∂y2
(18)

With boundary conditions

∂ψ̄

∂y
� a′xm + l

′
2
∂2ψ̄

∂y2
,

∂ψ̄

∂x
� 0, T � Ṫw + l

′
2
∂T

∂y
, at y � 0,

∂ψ̄

∂y
→ 0, T → T∞ as y → ∞ (19)

Furthermore, originating the local similarity transformation like

η � y

√
a′xm−1

ν f
, ψ̄ �

√
a′xm+1ν′

f f (η), θ(η) � T − T∞
Ṫw − T∞

(20)

Hence

u′ � a′xm f ′(η), v′ � −1

2

√
a′νfxm−1

{
(m + 1) f (η) + (m − 1)η f ′(η)

}
(21)

Substitute the expression (17) into the expressions (14)–(16), we can obtain

f ′′′ + (1 − ϕ)2.5

[(
1 − ϕ + ϕ

�
ρCNT

�
ρ f

)(
m + 1

2
f f ′′ − m f ′2

−α

⎧⎪⎪⎨
⎪⎪⎩

m(m − 1) f ′3 − m2 − 1

4
η f ′2 f ′′

+
(m + 1)2

4
f 2 f ′′′ − (m + 1)(3m − 1)

2
f f ′ f ′′′

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

−M2 f ′ +

⎛
⎜⎝1 − ϕ + ϕ

(
�
ρβ
)
CNT(

�
ρβ
)
f

⎞
⎟⎠λ̄θ

⎤
⎥⎦ � 0 (22)
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(1 + Nr)
1

Pr

K̃n f

K̃ f
θ ′′ +

⎧⎪⎨
⎪⎩1 − ϕ + ϕ

(
�
ρCp

)
CNT(

�
ρCp

)
f

⎫⎪⎬
⎪⎭

×
⎡
⎢⎣

m+1
2 f θ ′ − 2m f ′θ − γ{(
6m2 − 2m

)
θ f ′ + (3−9m)(m+1)

4 f f ′θ ′

−m(m + 1)θ f f ′′ + (m+1)2

4 f 2θ ′′

}
⎤
⎥⎦ � 0 (23)

The appropriate boundary conditions are

f (0) � 0, f ′(0) � 1 + ξ f ′′(0), θ(0) � 1 + ζθ ′(0), at η � 0

f ′(η) � 0, θ(η) � 0, as η → ∞ (24)

In the above equations η represents similarity variable; f (η) denotes the non-dimensional
stream function; θ (η) denotes the non-dimensional temperature; λ̄ � Grx

Re2x
denotes thermal

buoyancy factor that is proportion of local Reynolds number as well as local Grashof number

explicated with Rex � u′
w

v′
f
, Grx �

(
�
ρβ
)
f
(Ṫw−T∞)x3

v̄2f
�
ρ f

respectively. M � B̃0

√
σ

a
�
ρ f

is the

external magnetic flux factor. When λ̄ greater than zero it supports the flow and for less than
zero it obstruct the flow.

If λ̄ is equal to zero it express position of forced convection. If λ̄ is very much larger than
1, the force of buoyancy will be prevalent. Therefore, mixed convective flow procreates when
λ̄ � 0(1); ᾱ � λ̄1a′xm−1 and γ � λ̄2a′xm−1 illustrates fluid relaxation duration as well as

thermal relaxation duration respectively. Pr �
μ′

f

(
�
ρCp

)
f

�
ρ f K̃ f

is the Prandtl number. Furthermore,

the slip momentum factor is designated by ξ � l1
√

a′
ν f

and thermal slip factor is denoted as

ζ � l2
√

a′
ν f
, Nr � 16σeT 3∞

3kek
is the radiation parameter.

Physical Quantities of Interest

Physical quantities assign in current research are co-efficient of skin friction Cfx and the
Nusselt number Nux are expressed as

C f x � μ′
n f

�
ρ f ū2w

(
∂u

∂y

)
y�0

� 1

(1 − ϕ)2.5
Re

− 1
2

x f ′′(0) (25)

Nux � − x K̃n f

K̃ f (Tw − T∞)

(
∂T

∂y

)
y�0

+ qry�0 � −Re
− 1

2
x

K̃n f

K̃ f
(1 + Nr )θ ′′(0) (26)

Now, degraded skin friction as well as degraded Nusselt number will be defined as

C f x � C f xRe
1
2
x � 1

(1 − ϕ)2.5
f ′′(0) (27)

Nux � NuxRe
− 1

2
x � − K̃n f

K̃ f
(1 + Nr )θ ′(0) (28)
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Numerical Experiment

Put

B1 � (1 − ϕ)2.5, B2 �
(
1 − ϕ + ϕ

�
ρCNT

�
ρ f

)
, B3 �

(
1 − ϕ + ϕ

(�ρβ)CNT

(�ρβ) f

)
,

B4 � (1 + Nr)
1

Pr

K̃n f

K̃ f
, B5 �

(
1 − χ + χ

(�ρCp)CNT

(�ρCp) f

)
.

n1 � m + 1

2
, n2 � m(m − 1), n3 � m2 − 1

4
, n4 � (m + 1)2

2
,

n5 � (m + 1)(3m − 1)

2
, n6 � 6m2 − 2m, n7 � (3 − 9m)(m + 1)

4
.

Now Eqs. (19)–(20) become,

f ′′′ + B1(B2n1 f f
′′ − m f ′2 − ᾱ{n2 f ′3 − n3η f

′2 f ′′

+ n4 f
2 f ′′′ − n5 f f

′ f ′′}) − M f ′ + B3λ̄θ � 0 (29)

B4θ
′′ + B5

{
n1 f θ

′ − 2m f ′θ − γ
(
n6θ f

′ + n7 f f
′θ ′ − n8θ f f

′′ + n4 f
2θ ′′)} � 0 (30)

Again put

f ′ � q, f ′′ � q′ � r , f ′′′ � r ′ � s; θ ′ � p, θ ′′ � p′.
Now the Eqs. (26)–(27) will become

r ′ + B1
(
B2n1 f r − mq2 − ᾱ

{
n2q

3 − n3ηq
2r + n4 f

2s − n5 f qr
}− Mq + B3λ̄θ

) � 0
(31)

B4 p
′ + B4

[
n1 f p − 2mqθ − r

(
n6θq + n7 f q P − n8θ f r + n4 f

2 p′)] � 0 (32)

f ij − f ij−1 � h j

2

(
q j + q j−1

)
(33)

qij − qij−1 � h j

2

(
r j + r j−1

)
(34)

θ ij − θ ij−1 � h j

2

(
p j + p j−1

)
(35)

(
r ij − r ij−1

)
+ B1h j

[
B2n1 f

i
j− 1

2
r i
j− 1

2
− m

(
qi
j− 1

2

)2

− ᾱ

{
n2

(
qi
j− 1

2

)3

−n3η

(
qi
j− 1

2

)2(
r i
j− 1

2

)
+ n4

(
f i
j− 1

2

)2(
si
j− 1

2

)
− n5 f

i
j− 1

2
qi
j− 1

2
r i
j− 1

2

}]

− M

(
qi
j− 1

2

)
+ B3λ̄

(
θ i
j− 1

2

)
� Mj− 1

2
(36)

B4

(
Pi
j − Pi

j− 1
2

)
+ B5h j

[
n1 f

i
j− 1

2
Pi
j− 1

2
− 2m

(
qi
j− 1

2
θ i
j− 1

2

)

−r

{
n6θ

i
j− 1

2
qi
j− 1

2
+ n7 f

i
j− 1

2
qi
j− 1

2
Pi
j− 1

2
− n8θ

i
j− 1

2
f i
j− 1

2
r i
j− 1

2
+ n4

(
f i
j− 1

2

)2
}]

(
pij − pi

j− 1
2

)

h j
� L j− 1

2
(37)
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Here

Mj− 1
2

� −
(
r i−1
j − r i−1

j−1

)
+ B1h j

[
B2n2

(
f i−1
j− 1

2
r i−1
j− 1

2

)
− m

(
qi−1
j− 1

2

)2

− ᾱ

{
n2

(
qi−1
j− 1

2

)3

− n3η

(
qi−1
j− 1

2

)2

r i−1
j− 1

2
+ n4

(
f i−1
j− 1

2

)2

si−1
j− 1

2

−n5 f
i−1
j− 1

2
qi−1
j− 1

2
r i−1
j− 1

2

}]
− Mqi−1

j− 1
2
+ B3λ̄θ i−1

j− 1
2

(38)

L j− 1
2

� −B4

(
pi−1
j − pi−1

j−1

)
− B5h j

[
n1 f

i−1
j− 1

2
pi−1
j− 1

2
− 2m

(
qi−1
j− 1

2
θ i−1
j− 1

2

)

+ r

{
n6

(
qi−1
j− 1

2
θ i−1
j− 1

2

)3

+ n7 f
i−1
j− 1

2
qi−1
j− 1

2
pi−1
j− 1

2

− n5θ
i−1
j− 1

2
f i−1
j− 1

2
r i−1
j− 1

2
+ n4

(
f i−1
j− 1

2

)2
(
pi−1
j − pi−1

j−1

h j

)}]
(39)

e1δr j + e2δr j−1 + e3δq j + e4δq j−1 + e5δ f j + e6δ f j−1 � (b5) j (40)

(e1) j � 1 +
B1B2h jn1

2
f i
j− 1

2
− B1h j

2

(
qi
j− 1

2

)2

ᾱn3η (41)

(e2) j � −1 +
B1B2h jn1

2
f i
j− 1

2
− B1h j

2

(
qi
j− 1

2

)2

ᾱn3η (42)

(e3) j � B1h jm

2
qi
j− 1

2
− B1h j ᾱn2

2

(
qi
j− 1

2

)2

+
B1h jn3ᾱη

2

(
qi
j− 1

2

)(
r i
j− 1

2

)

+
B1h j ᾱn5 f ij− 1

2
r i
j− 1

2

2
− M

(e4) j � (e3) j (43)

(e5) j � 1 +
B1h jn1

2
r i
j− 1

2
− B1h j

2
ᾱn4η f

i
j− 1

2
si
j− 1

2
, (44)

(e6) j � (e5) j ; (45)

(
δ f j − δ f j−1

)− h j

2

(
q j + q j−1

) � (b1) j (46)

(
δq j − δq j−1

)− h j

2

(
r j + r j−1

) � (b2) j (47)

(
δr j − δr j−1

)− h j

2

(
s j + s j−1

) � (b3) j (48)

(
δθ j − δθ j−1

)− h j

2

(
p j + p j−1

) � (b4) j (49)

(g1) j � B4 +
B5h jn1

2
f i
j− 1

2
+
B5h jγ n7

2
f i
j− 1

2
qi
j− 1

2
− B5γ n4

(
f i
j− 1

2

)2

(50)

(g2) j � −B4 +
B5h jn1

2
f i
j− 1

2
+
B5h jγ n7

2
f i
j− 1

2
qi
j− 1

2
− B5γ n4

(
f i
j− 1

2

)2

(51)

(g3) j � −mB5h jθ j− 1
2

− B5h jγ n6
2

θ
j− 1

2
− B5h jγ n7 f

i
j− 1

2
pi
j− 1

2
(52)

(g4) j � (g3) j (53)
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(g5) j � B5h jn1
2

pi
j− 1

2
− B5h jγ n7

2
qi
j− 1

2
pi
j− 1

2

+
B5h jn8γ

2
θ i
j− 1

2
r i
j− 1

2
+
B5h jn4

2
f i
j− 1

2

(
pi
j− 1

2

)
(54)

(g6) j � (g5) j (55)

(b5) j � B1h jn4

(
f i
j− 1

2

)2(
si
j− 1

2

)
+ B1h jn2ᾱ

(
qi
j− 1

2

)3

+ B3λ̄θ i
j− 1

2
+ Mj− 1

2
(56)

(b6) j � B5h jn8θ j− 1
2
f j− 1

2
r j− 1

2
+ L j− 1

2
(57)

Aδ � B (58)

where,

A �

⎡
⎢⎢⎢⎢⎢⎢⎣

E1 C1 · · · · · · · · · · · ·
D1 E2 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · DJ EJ

⎤
⎥⎥⎥⎥⎥⎥⎦

δ �

⎡
⎢⎢⎢⎢⎢⎢⎣

δ1
δ2
...
...

δJ

⎤
⎥⎥⎥⎥⎥⎥⎦

B �

⎡
⎢⎢⎢⎢⎢⎢⎣

b1
b2
...
...
b j

⎤
⎥⎥⎥⎥⎥⎥⎦

E1 �

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
−h1
2 0 0 −h1

2 0
0 −h1

2 0 0 −h1
2

e2 0 e5 e1 0
0 g2 g5 0 g1

⎤
⎥⎥⎥⎥⎦ (59)

C �

⎡
⎢⎢⎢⎢⎣

−h1
2 0 0 0 0
1 0 0 0 0
0 1 0 0 0
e3 0 0 0 0
g3 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (60)

D �

⎡
⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 0 −h2

2 0
0 0 0 0 −h2

2
0 0 e6 e2 0
0 0 g6 0 g2

⎤
⎥⎥⎥⎥⎦ (61)

E2 �

⎡
⎢⎢⎢⎢⎣

−h2
2 0 1 0 0

−1 0 0 −h2
2 0

0 −1 0 0 −h2
2

e4 0 e5 e1 0
g4 0 g5 0 g1

⎤
⎥⎥⎥⎥⎦ (62)

The method used to solve (58) is the block elimination tri-diagonal method. The convergence
criterion is set as 0.0001.
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Solution of the Problem byMDDIM

For more details of MDDIM, Liao [72] was introduced this technique for finding an approx-
imate analytical solution to highly nonlinear differential equations. The method of MDDIM
is used for obtaining the approximate analytical solution of (22)–(23) with (24). We assume
the set of an infinite number of base functions that are linearly independent variables areas;

M∞ � {
1, e−ηδ, e−2ηδ, e−3ηδ, . . .

}
. (63)

We have considered the base functions as;

X �
∞∑
j�0

{
σ j e

− jηδ/σ jε�
}
. (64)

Here X is the solution and base space for f (η) and θ (η).
Consider first two terms ofM∞ as

M2 � {
1, e−ηδ

}
. (65)

Next, form the space of functions taking their linear combinations

M∗ � {
σ0 + σ1e

−ηδ/σ0, σ1ε �}. (66)

Take primary solutions as ξ (η) belongs to M* have the following form

ξ (η) �
1∑
j�0

{
σ j e

−ηδ
}
. (67)

Write,

Â � {
e−2ηδ, e−3ηδ, . . .

}
, (68)

and we define X̂ as follows:

X̂ �
∞∑
j�2

{
σ j e

− jηδ/σ jε�
}
. (69)

Therefore, we get the functions as: X � X̂UM∗.
Define base function as

MR � {μ1(η), μ2(η), μ3(η), . . .} (70)

The linear combinations of base function from Eq. (6), we defined as;

S �
∞∑
j�1

{
a jμ j (η)/a jε�}. (71)

Define inversely defined mapping for the solution of f as follows;

Define J : S → X by J
[
e− jηδ

]
� e− jηδ

Aj3 + j
. (72)

where δ and A, are parameters.
Define inversely defined mapping for the solution of θ as follows;

Define J : S → X by J
[
e− jηδ

]
� e− jηδ

Aj + j
. (73)
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Table 2 Comparison of MDDIM and KBM results with that of Li et al. [68] at f ′′(0) and − θ ′ (0) for various
ξ and λ with m � 0.1, ᾱ � 0.4, γ � 0.3, M � 3.0, Pr � 1.0, Nr � 0, Bi → ∞
ξ λ Li et al. [68] KBM results MDDIM results

f ′′ (0) − θ ′ (0) f ′′ (0) − θ ′ (0) f ′′ (0) − θ ′ (0)

0 0.1 − 1.7449 0.3910 − 1.744901 0.391010 − 1.744901 0.391011

0.7 − 1.4727 0.4405 − 1.472675 0.440508 − 1.472675 0.440507

1.5 − 1.1287 0.4901 − 1.128720 0.490069 − 1.128721 0.490069

2.0 − 0.9215 0.5154 − 0.921465 0.515353 − 0.921465 0.515353

0.5 0.1 − 0.9117 0.2942 − 0.911567 0.294150 − 0.911567 0.294150

0.7 − 0.7639 0.3667 − 0.763912 0.366735 − 0.763912 0.366735

1.5 − 0.5809 0.4386 − 0.580890 0.438624 − 0.580890 0.438624

2.0 − 0.4722 0.4753 − 0.472235 0.475267 − 0.472235 0.475267

In the present problem, analysis of MDDIM, from Eq. (24), we choose the initial guesses as
follows;

f0(η) � ξ
(
1−e−η

)
+ η, and θ0(η) � (1 − ξ)e−η. (74)

The objective of the proposed analysis that is MDDIM is that choosing appropriate initial
profiles which sustaining the initial conditions of the current study; choose directly defined
inversemappings for the solutions, which simplifies the evaluation process analytically. From
the governing equations of the present study we can write the nonlinear operator directly.
In MDDIM process, we obtain a set of nonlinear differential equations which are called
deformation equations and these have to solve. We assumed the set of base functions, initial
guesses and directly defined inverse mappings for the solution analysis. Using computational
software’sMAPLE andMATHEMATICA, the governing equations are reformulated, and the
series solutions computed. Since the MDDIM is explained in detail in [72–74], the method
of solution procedure not presented here for the sake of brevity.

Verification of Code

An analogy in sketch among current results with that of Li et al. [68], to demonstrate pre-
ciseness of the method we executed. Table 2 displayed the determine values of co- efficient
of skin friction f ′′ (0), as well as Nusselt number θ ′ (0), for dissimilar values of ξ and λ in
non-existence of single walled as well as multi walled carbon nano tubes concentration (ϕ
� 0) along thermal radiation (Nr � 0), convective heating as well (Bi → ∞). Every one
comfortably authenticates out of Table 2, that the data explained analytically and numeri-
cally acquired by the current techniques and that of Li et al. [68] are in excellent concord
accordingly support the employ of the current code owing to present model.

Results and Discussion

In the present part, the foremost aim is to examine the transformation of temperature, non-
dimensional velocity, coefficient of skin friction, and Nusselt number, by the impact of
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Fig. 2 The MDDIM solutions of dimensionless velocity distribution f ′ (ς ) for different values ofM
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Fig. 3 The MDDIM solutions of dimensionless temperature distribution θ (ς ) for different values ofM

changeable factors through MDDIM and KBM. Approximate analytical results and Numer-
ical computations outcomes are shown in the Tables 2 and 3 and graphically presented in
Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 to discuss various resulting parameters which are
involved the problem. This comparison shows a decent agreement between present approxi-
mate analytical results and previous published work. Furthermore, the outcomes demonstrate
that theMDDIM and KBM are very efficient and adequately powerful for use of solving fluid
flow problems. Physical and thermal characteristics of base fluid are displayed in Table 1.
These characteristics are accustomed to investigate the developments appearing in temper-
ature and velocity profiles exposed to fluctuation in dissimilar factors. To carry out the
computerized imitation, the fundamental measures of the factors are cautiously calculated as
ᾱ � 0.5, ϕ � 0.2,M � 0.5, λ̄ � 0.1, m � 0.1, γ � 0.2, Pr� 0.7, Bi � 0.1, ξ � 0.1, and Nr

� 0.5 except particularize.
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Table 3 Effects of different parameters onCfx and Nux whenPr=0.7,Bi=0.1, λ � 0.1 andm� 0.1 byMDDIM

α M γ ξ χ Nr C f x (SWCNT ) Nux (SWCNT ) C f x (MWCNT ) Nux (MWCNT )

0 0.1 0.1 0.5 0.05 0.5 0.493884 0.040189 0.486581 0.041772

0.1 0.494895 0.040171 0.487670 0.041752

0.2 0.495904 0.040153 0.488757 0.041732

0.3 0.496912 0.040135 0.489842 0.041712

0.4 0.497919 0.040116 0.490925 0.041692

0.5 0.498923 0.040098 0.492005 0.041671

0.1 0.0 0.445435 0.040488 0.436648 0.042096

0.1 0.494895 0.040171 0.487670 0.041752

0.2 0.538205 0.039861 0.532121 0.041416

0.3 0.576589 0.039558 0.571358 0.041088

0.4 0.610990 0.039263 0.606417 0.040769

0.5 0.642129 0.038975 0.638075 0.040459

0.1 0.0 0.494984 0.040265 0.487763 0.041851

0.1 0.494895 0.040171 0.487670 0.041752

0.2 0.494803 0.040074 0.487576 0.041650

0.3 0.494710 0.039975 0.487480 0.041546

0.4 0.494614 0.039873 0.487381 0.041439

0.5 0.494517 0.039768 0.487281 0.041328

0.1 0.0 0.717090 0.040983 0.701879 0.042594

0.2 0.604752 0.040620 0.594000 0.042218

0.4 0.526194 0.040311 0.518044 0.041897

0.6 0.467484 0.040040 0.461020 0.041616

0.8 0.421610 0.039797 0.416317 0.041363

1.0 0.384598 0.039578 0.380157 0.041135

0.5 0.01 0.445469 0.064017 0.443970 0.064786

0.05 0.494895 0.040171 0.487670 0.041752

0.1 0.557709 0.026727 0.542684 0.028202

0.15 0.627301 0.019504 0.603193 0.020747

0.2 0.706962 0.014980 0.672120 0.016015

0.05 0 0.498646 0.041817 0.491525 0.043483

0.4 0.495644 0.040477 0.488440 0.042073

0.8 0.492663 0.039310 0.485383 0.040849

1.2 0.489760 0.038274 0.482416 0.039763

1.6 0.486984 0.037347 0.479585 0.038792

2.0 0.484362 0.036511 0.476917 0.037918

From Table 2, it is noticed that for SWCNT and MWCNT nanofluids deviations in the
co-efficient of skin friction and local Nusselt number for different factors. Table 3 declare
that if ‘M’ rises from 0 to 0.5 significantly improve the values of Cfx for SWCNT nano
fluid is increased by 46% and MWCNT nanofluid decreased by 3.89% additionally almost
equal changes in measures ofM, Nux , is raised by 44% for SWCNT nanofluid and decreased
by 3.73% for MWCNT nanofluid. The relaxation factor α of the fluid changes between 0.0
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Fig. 4 The MDDIM solutions of dimensionless velocity distribution f ′ (ς ) for different values of χ
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Fig. 5 The MDDIM solutions of dimensionless temperature distribution θ (ς ) for different values of χ

and 0.5 the cut down Cfx and Nux for SWCNT is magnified by 1.02% and 1.11%, but the
corresponding order of ᾱ, the enlargement of skin friction as well as the heat transport rate is
decreased by 0.23% and 2.26% for MWCNT nanofluids. Get out of Table 3, it points that γ
acquires from0.0 to 0.5;C f x procure highly less fall of 0.09%and1.25%concerningSWCNT
as well as MWCNT founded nanofluids. That means friction among the layers of solid as
well as fluid hike up as a result the velocity falling off. Furthermore it is acknowledged out of
Table 3 that by the identical enlargement of γ ,Nux against SWCNTnanofluid subsided by and
concerning MWCNT nano fluid is declined by 0.03% and 1.23%. Ascertained that ξ ranks
out of 0.0–1.0, the co-efficient of skin friction against SWCNT as well as MWCNT founded
nano fluid declined through 45% and 3.43% respectively. Merely Nux for the equivalent cut
down through 46% and 1.21%.

A crucial remark established in Table 3 is such as ϕ ranks concerning 0.01–0.2,Cfx against
SWCNT as well as MWCNT nano fluid reduced through 51.4% and 75.3%. Furthermore,
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Fig. 6 The MDDIM solutions of dimensionless velocity distribution f ′ (ς ) for different values of ξ
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Fig. 7 The MDDIM solutions of dimensionless temperature distribution θ (ς ) for different values of ξ

SWCNT as well as MWCNT nanofluid is declined through, 58% and 77% respectively
against the equal class of ϕ,Nux . That means the lessening rate of transfer of heat concerning
SWCNT founded nanofluid is more outstanding than MWCNT nanofluid. Furthermore it is
ascertained that as ϕ truly complement by Cfx for two kinds of nano particles, merely the
opposite result is prevailed against Nux . It is observed from Table 3 that, we perceived when
Nr changes from 0.0 to 2.0 Cfx concerning SWCNT as well as MWCNT founded nanofluid
prevails a decrease of 2.97% and 12.8%. FurtherNux correspondingly declined through 2.8%
and 12.68%.

Figures 2 and 3 displayed diagrammatically about the influence of magnetic factor ‘M’ on
temperature also on velocity as well. Magnetic field which acts tangentially over fluid flow
resistance creates which named as Lorentz force. The same force makes the fluid slow down
like elongating sheet. The velocity profile of fluid reduces but temperature distribution ampli-
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Fig. 8 The MDDIM solutions of dimensionless velocity distribution f ′ (ς ) for different values of ᾱ

Fig. 9 The MDDIM solutions of dimensionless temperature distribution θ (ς ) for different values of γ

fies by enhancing the magnetic factor. Also reveals that the magnetic field acts tangentially,
resists transport phenomenon. Out of Fig. 2 it is meritorious that correlated to multi-walled
carbon nano tube fluid the swiftness of single walled carbon nano tube disintegrates quickly
with M, because of greater density measures for SWCNTs. Even temperature values also
grater for MWCNT’s wherewith SWCNT’s. Principal consideration backside of this is grater
thermal conductivity.

Figures 4 and 5 describe about the development of distribution of temperature as well as
non-dimensional velocity by using solid nano particle volume proportion χ . Figure 4 desig-
nate that besides the progressive measures of ϕ, velocity profile advances, accordingly the
momentum boundary layer increases notably. Also, it’s remarkable that MNCNT nanofluid
velocity pick up quick development besides SWCNT nano fluid. Figure 5 is manifested by
escalating the measures of ϕ, when the liquids temperature is reduced. Additionally, multi-
walled carbon nano tubes have marginally greater values of temperature correlated to carbon
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Fig. 10 The MDDIM solutions of dimensionless temperature distribution θ (ς ) for different values of Nr
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Fig. 11 The MDDIM solutions of dimensionless temperature distribution θ (ς ) for different values of Bi

nano tubes having single walled. As thermal expansion of SWCNTs is lower thanMWCNT’s
which in Table 1 is already examined.

The deviations in temperature and velocity because of proper growth in slip factor are
shown in Figs. 6 and 7. Thickness of momentum boundary layer goes down in existence of
SWCNT as well as MWCNT together. This prodigy taken place approximately by virtue of
actuality such as ξ growth that is true slip increases as a result it accomplishes to a negligible
quantity of diffusion by reason of elongated surface of the liquid. Nevertheless, smaller the
fluid’s momentum, the friction among the layers of fluid and CNTs magnifies, turned out the
temperature rises. The same information earlier said was displayed in Fig. 7 clearly.

Figure 8 manifest the influence of relaxation factor ᾱ of a fluid on velocity profile dur-
ing SWCNT plus MWCNT nano particles presence. The earlier figure conceals surprising
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Fig. 12 The MDDIM solutions of dimensionless temperature distribution θ (ς ) for different values of Pr

reflection that, from outward, it explains velocity profile not notably interrupt by ᾱ, if browse
carefully means when ϕ<1 it appears the velocity falls.

Aforementioned one occurs as a result of the actuality that ᾱ illustrate the relaxation time of
fluid generally familiar as Deborah number, that performance significant work as an account
of viscoelastic materials. When ᾱ < 1 such as the memory duration is lesser then deformation
duration α is proportion among the relaxation time and time of deformation. Consequently,
the fluid designates as absolutely viscous. If ᾱ > 1, fluid resembles as elastically solid. Hence,
base liquid as engine oil that considered as merely viscous in nature. Therefore, we presume
ᾱ < 1 as in our study. Like ᾱ growth, the viscosity amplifies consequently momentum of fluid
declines. Hence, in association of CNTs of both types the thickness of momentum boundary
layer is falling function of ᾱ.

Figure 9 exhibits the influence of thermal relaxation time (γ ) over temperature distribution.
Thermal relaxation factor is determined like slow response of heat flux. When n � 0 the
determined heat flux model, is changed towards Fourier’s law. By progressive measures
of γ , the thickness of thermal boundary layer goes down and also the rate of reduction is
grater for MWCNT nano fluid in both cases. This peculiarity is noticed due to the reality that,
SWCNTs thermal conductivity is greater fromMWCNTs.Henceforth for SWCNTnano fluid
transfer of disintegrate quickly when delay reaction of heat flux amplifies. By multiplying
thermal radiation factor Nr, a flourishing in distribution of temperature is detected from
Fig. 10 about SWCNT and MWCNT nano fluids as well. Because furtherance in radiation
factor inferred reduce in Rosseland radiation absorptive. Therefore, variance of heat flux
radiation qr enhances such that co-efficient of absorption is reduced. Thus, transferred of
heat radiation rate of the fluid rises accordingly temperature of fluid grows.

TheMDDIM solutions of dimensionless temperature distribution θ (ς) for different values
of Biot number Bi displayed in the Fig. 11. The better convention contributes to the peak sur-
face temperatures that significantly magnifies the temperature and the thicknesses of thermal
boundary layer increased.

In Fig. 12 we embellished the fluctuations of temperature beside Prandtl number during
both CNTS. Note that, Pr � 0.7 is representing the air. We also ascertained that rise in the
Prandtl number reduces in the temperature of fluid actually it defines that for greater Prandtl
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number thermal boundary layer gets delicate. Prandtl number indicates,momentumdistribute
as well as thermal distribute ratio. Therefore, Prandtl number utilizes to enhance the cooling
rate in convective flows.

Conclusions

In this present article, we analyzed the effects of thermal radiation over CNT-engine oil-
based Maxwell-nano fluid with heat flux model by Cattaneo–Christov, through a non-linear
elongated surface. SWCNT and MWCNT are considered as nano particles because of their
greater thermal conductivity as well as thermal expansion.

Observed points from the current examination are listed below:

1. In the presence of magnetic field velocities as well as temperatures are changed in the
opposite manner.

2. Velocity as well as temperature of SWCNT lower than that of MWCNT.
3. For both SWCNT as well as MWCNT on enhancing the values of Nr and Bi temperature

raised considerably.
4. The values of skin friction co-efficient, Nusselt number are more concerning MWCNT

than those of SWCNTs.

The outcomes demonstrate that the MDDIM is efficient and adequately powerful for use of
solving many fluid flow problems. This model contributes advanced characteristics which
gives inspiration for further investigations.
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