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Abstract

In this manuscript, we study combination projective synchronization (CPS). In CPS, matrix
projective combination synchronization (MPCS) and inverse matrix projective combination
synchronization (IMPCS) between non-identical fractional-order complex chaotic systems
subjected to uncertainty and external disturbance is investigated. Matrix projective synchro-
nization (MPS) and inverse matrix projective synchronization is obtained when the scaling
factor is a constant matrix, which gives the assurance of high security in secure communi-
cation and image encryption. Based on the Lyapunov stability theory and appropriate active
control technique, the MPCS and IMPCS between two master systems and one slave system
has been achieved. Based on the MPCS synchronization, a scheme of secure communica-
tion is presented, and the message signals are transmitted using the chaotic signal masking
method. Finally, numerical simulations have been provided, which shows that our theoretical
results are in complete agreement will the graphical one.

Keywords Combination synchronization - Matrix projective synchronization - Inverse
matrix projective synchronization - Active control - Fractional-order chaotic systems

Introduction

For the last two decades, Fractional calculus is portraying a significant role in the study of
nonlinear dynamical systems. Fractional calculus is a generalization of integer order inte-
gration and differentiation. Fractional-order calculus has many advantages in the field of
engineering and sciences such as secure communication [1], data encryption [2], Financial
systems [3], ecological systems [4], biomedical engineering [5], electromagnetic wave [6],
etc.

Chaos theory is a branch of mathematics focus on the behavior of the nonlinear dynam-
ical system that is highly sensitive to the initial values. In recent times, the control and
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synchronization of chaotic systems become an attractive field for researchers. Despite the
observation made by Poincare, Lorenz [7] in 1963 gives the first introduction of chaos in a
deterministic system. Further, Pecora and Carroll [8] firstly introduced the synchronization
of chaotic systems between two identical chaotic systems. After that, researchers performing
synchronization in a non-identical system having different properties.

A large variation technique have been utilized to analysis the synchronization of the FO
chaotic systems such as active control [9], adaptive control [10], sliding mode control (SMC)
[11], optimal control [12], adaptive SMC [13,14], feedback control method [15], time-delayed
feed-back control [16] and robust adaptive SMC [14] etc. In which many types of synchro-
nization for the FO chaotic systems have been performed such as projective synchronization
(PS) [17], complete synchronization [18], anti synchronization [19], hybrid synchronization
[20], hybrid projective synchronization [21], function projective synchronization (FPS) [22],
compound synchronization [23], dual combination synchronization [24], double compound
synchronization [25] etc.

Nowadays, among all types of chaotic synchronization, PS has been primarily considered.
Firstly introduced the concept of PS by Mainieri and Rehaceh in [26]. In PS, the master and
slave system could be synchronized up to a scaling factor . When a scaling function replaces
the scaling factor in PS, then FPS is obtained. The unpredictability of the scaling function in
FPS can additionally enhance the security of communication. The generalization of PS is FPS.
FPS signifies that the master and slave systems could be synchronized up to a scaling function
is discussed in [22,27]. To provide high protection in connection, scaling factor « of PS can
be extended to a constant arbitrary matrix, and a different synchronization kind develops and
is called MPS. It synchronizes of chaotic systems with a different dimension, and it gives
the application in secure communication [28]. When the scaling function is generalized to a
constant matrix, then MPS is obtained. Another method is the IMPS technique, that is when
each slave system state synchronizes with a linear combination of master system states.
In [29], the author investigates the MPS and IMPS between chaotic systems of identical
dimensional and non-identical dimensional in discrete-time chaotic systems. In [30], the
IMPS among non-identical dimensional of FO chaotic systems has been proposed. Also,
in [31], the author discussed the synchronization of FO hyperchaotic systems disturbed
by uncertainty and external disturbance using the MPS and IMPS scheme. Moreover, [32]
presented the dynamical analysis and MPS in identical new FO Rabinovich systems. For the
synchronization of two different delayed FO neural networks with disturbance, the author
discussed the quasi MPS and quasi IMPS in [33].

In the real-world, system uncertainty and external disturbances are exist everywhere in
reality. Besides, owing to unmodeled dynamics, structure differences of the system, and esti-
mation and surrounding noises, the chaotic systems should be deal with uncertainties and
external disturbances. Uncertainty and disturbances increase the instability of the systems,
energy fluctuations, and also destroy the synchronization performance, which can not be
avoided in the real application, which was discussed in [34]. Thus, it is essential to explore
the synchronization of FO chaotic systems having unknown external disturbances and uncer-
tainty. For chaos synchronization, unknown model uncertainties have a lousy effect on the
chaotic dynamics system and synchronization behavior and diminish the performance of the
real system. In [35], Synchronization of chaotic systems with disturbance is illustrated. For
the decrease of the chattering problem, an adaptive SMC was proposed for two uncertain
chaotic systems [36]. Moreover, in [37], the author discussed the application of synchroniza-
tion of chaotic systems with uncertainties and external disturbances.

The important contribution of this research are summarized as follows.
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— This paper proposed combination projective synchronization in fractional-order chaotic
system with disturbance and uncertainty.

— It is based on Lyapunov stability theory, and an active control technique with fast con-
vergence is designed for the matrix projective combination synchronization and inverse
matrix projective combination synchronization.

— This paper proposed an application of a secure communication scheme based on matrix
projective combination synchronization.

— The design of the controller is easy and simple.

— Simulation result with a comparison example shows the effectiveness of the introduced
method.

Therefore, in this paper, we will be presenting the scheme of combination projective
synchronizing for the FO complex chaotic systems disturbed by model uncertainties and
external disturbances. The organization of the paper is as follows: In the second section,
it contains preliminaries. Third section provides the problem formulation of MPCS and
IMPCS in FO complex chaotic system with disturbance and uncertainty. In fourth section,
includes an example of matrix and inverse matrix projective combination synchronization in
FO complex chaotic system with disturbance and uncertainty. Fifth section consists of the
numerical simulation. Sixth section contains the comparison of given synchronization with
previously published work. In the seventh section, the application of the obtained control
scheme on MPCS is investigated. Finally, concluding remarks are pointed out in the last
section.

Preliminaries

Definition 1 [38] The Caputo’s derivative for function 4 (¢) with fractional order « is define
by:

w1 e
CDyh(y)_F(n—a)/c G- M

where n — 1 < o < n and I"() is the Euler’s Gamma function.

Due to wide range of applications of Caputo’s fractional derivative definition, we have also
used the Caputo’s fractional derivative in our proposed research work.
Considering the FO non-linear dynamical system

DYyi =hi(y1,y2, ..., y), O <a <1,i=12,....n), 2)

Its equilibrium point E* = (y{, y3, 3, ..., ;) are calculating by solving /; (y1, y2, . .., Yu)
=0
Stability Criterion 1: [39] System (2) is asymptotically stable iff all the eigen value X;
of the jacobi matrix / = —, where h = [hy, ha, ..., h,,]T, calculated at the equilibrium
an

point E* fulfill the condition |argA;| > >
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Problem Formulation

Introduce the Scheme of Fractional Matrix Projective Combination Synchronization
(MPCS) Method

[31] Consider two non-identical n-dimensional FO complex chaotic master systems, which
are disturbed by uncertainty and disturbance are taken as

D*X1 = A1 X1+ Hi(X1)+861(X1) + D1 (t) (3)
DXy = Ay X + Ha(X2) + 862(X2) + Da(t) 4)

where A; € R™", Ay € R'™ are the coefficient constant matrix of the linear parts
of the systems (3), and (4), respectively. X| = [X11, X12, ... x1x]7 € R" and X, =
[X21, X22, ... x2,]7 € R™ are the state vector of master systems (3), and (4), respectively;
Hi(X1), H2(X2) € R" are the non-linear terms of system (3), and (4), respectively; 501 (X1),
862(X2) € R™, (1601(X1)| < my, |662(X2)| < my, my, my > 0) are the model uncertainties.
Di(t), Da(t) € R", (ID1(t)| < ny, |Da(t)| < ny, n1, np > 0) are the external disturbance
of system (3), and (4), respectively.
Corresponding slave system is taken as:

DYy = BY1 + H3(Y1) +80:3(Y1) + D3(t) + U %)

where By € R"™*" is the coefficient constant matrix of the linear parts of the system (5);
Y1 = i, yies - ..yl,,]T € R" is state vector of slave system (5); H3(Y1) € R" is the
non-linear terms of system (5); §63(Y1) € R", (|663(Y1)| < m3,m3 > 0) is the model
uncertainty; D3(¢t) € R", (|[D3(t)| < n3, n3 > 0) is the external disturbance of system (5),
and U = (u11, uq2, ..., Uin) is a vector controller to be designed.

The MPCS for the FO chaotic complex system disturbed by disturbance and uncertainty
is defined as follows.

Definition 2 [30] The n-dimensional disturb master systems (3) and (4) and n-dimensional
disturb slave system (5) are said to be MPCS, if there exist a controller U = (ujy, u1z,
oo u1,)T and given constant matrix M = (M;;),xn, such that the synchronization error
will be

e=Y —M(X+ X2) (6)

satisfies lim; . solle|| = lim;— o ||Y1 — M (X1 + X2)|| = 0, where M presents the projective
matrix, |.|| represents the Euclidean norm, and e = (eq1, €12, - - ., €in)-

Our aim is to outline the suitable controller U to achieve MPCS between two master
systems (3) and (4) and slave system (5) as follows:

Theorem 1 [31,40] The n-dimensional disturb systems (3), (4) and (5) fulfil the overall MPCS
under the suitable controller.
U=KYi— (B +K)M(X1 + Xo) + M[A1 X1 + Hi (X))

+801(X1) + D1(1) + Ar Xz + Ha(X2) + 862(X2) + Da(0)]

— H3 (Y1) — 865(Y1) = D3(1) @
where K| € R"™" is the gain matrices. Then, the matrix projective combination synchro-
nization will be achieved between the considered systems (3), (4), and (5). If and only if all
the eigenvalue \; of B1 + K1 satisfy |larg(i;)| > %,wherei =1,2,...,n.
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Proof Apply Caputo derivative in error system, using Egs. (3), (4), and (5), the dynamical
system can be obtain.

D% = DY} — M(D®X; + D*X»)
D% = B(Y| + H3(Y1) +803(Y1) + D3(t) + U — M[A 1 X + H X
+801(X1) + D1(t) + A2 X2 + Ha X2 + 862(X2) + Da(1)]. ®)

using the appropriate control function given in Eq. (7) in equation system (8), the error system
of the MPCS is reduced in the following form.

D% = (B1 + KD(Y1 — M(X;1 + X2)) = (B1 + Kye )

Clearly,e = Y1 — M (X1 + X») is the only equilibrium point of the the system (9) and Jacobi
matrix at this fixed point is (B] + K1).
The gain matrix K is chosen such that the eigenvalues A; of the Jacobi matrix (B + K1)

T
satisfy the condition |arg(i1)| > OCT,Wherei =1,2,...,n.

Therefore, lim;_, o lle|| = lim;—oo||Y1 — M (X1 + X2)|| = 0 indicates system are MPCS
and hence this finish the proof. O

Introduce the Scheme of Inverse Matrix Projective Combination Synchronization
(IMPCS) Method

For systems (3), (4) and (5), the IMPCS can be define in definition (2), which is written in
below.

Definition 3 [30] The n-dimensional disturbed master systems (3), and (4) and n-dimensional
disturbed slave system (5) are said to be IMPCS if there exist a controller U =
(Ui, uin, ..., ul,,)T and the given invertible constant matrix N = (N;;),xn, such that the
synchronization error

e=(X1+X2) —NY, (10)

satisfies lim;_oolle|| = lim;— ool (X1 + X2) — NY1|| = 0, where N presents the projective
matrix.

Our aim is to described the suitable controller U to achieve IMPCS between two master
systems (3), and (4) and slave system (5) as follows:

Theorem 2 [31,40] The n-dimensional disturbed systems (3), (4), and (5) fulfil the overall
IMPCS under the suitable controller.

U=N""[(A1 + A2 + K1 + K2)NY; — (K1 + K2)(X1 + X2)
+ Hi(X1) + Ha(X2) + 801(X1) + 862(X2) + D1 (2) + D2(2)
— A1Xo — A2 X (] = B1Y1 — H3(Y1) — 865(Y1) — D3(1) (1D
where K1 € R"™", Ky € R"™" are the gain matrices. Then, the IMPCS will be achieved

between the considered systems (3), (4), and (5). If and only if all the eigenvalue \; of
A1+ Ay + Ky + Ky satisfy larg(Li)] > %, wherei =1,2,...,n.
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Proof Apply Caputo derivative in error system, using Egs. (3), (4), and (5), the dynamical
system can be obtain.

D% = (D*X| + D“X,) — N(D*Y})
D% = (A1 X1+ H1X1 +801(X1) + Di(t) + Ax X2 + Ha X2 + 862(X2)
+ Do (1)) — M[B1Y1 + H3(Y1) + 863(Y1) + D3(t) + U] (12)

using the appropriate control function (11) in (12), the error system of the IMPCS is reduced
in the following form .

D% = (A1 + Ay + K1 + K2)(X1 + X2 — NYy)
= (A1 + A2+ K+ Kr)e (13)

The gain matrix K1,K» are selected such that the eigenvalues A; of the Jacobi matrix
o
(A1 + Az + K| + K») satisfy the condition |arg(i1)| > - wherei =1,2,...,n.

Therefore, lim;— ol|le|| = lim;—oo||(X1+ X2) — NY1|| = O indicates system are inverse
matrix projective synchronized and hence this finish the proof. O

Remark

(1) Selecting matrix projective M = N = I, systems (3), (4), and (5) can achieve the
complete combination synchronization.

(2) Selecting matrix projective M = N = —I, system (3), (4), and (5) can achieve the anti
combination synchronization.

(3) If M = pl(or N = pl),(p=constant and p # 1, —1), they can achieve projective
combination synchronization (or inverse projective combination synchronization).

4) It M = diag(p1, p2,...,pn) (or N = diag(p1, p2,---, pn))s(pi = constant,i =
1,2, ..., n), then system (3), (4), and (5) achieve the modified combination projective
synchronization ( or modified inverse combination projective synchronization).

(5) If matrix M = 0 (or N = 0), then the MPCS or IMPCS turn into stable problem of FO
complex chaotic system.

(6) If the external disturbance D (¢), D>(t) = 0, and 86 , 86> = 0, then it turns into MPCS
and IMPCS without model external disturbance and model uncertainty.

Numerical Example of MPCS and IMPCS

In this section, fractional complex Lorenz and T system are taken as the master systems and
Lu system is taken as a slave system in order to achieve MPCS and IMPCS.
Mathematical model of FO complex Lorenz system [41]:

d%x
d[ojl =ay1(x13 — x11) + sindxy; — 0.5sindt
d%x
dt(’jz =ay1(x14 — x12) + 2cos4x1p — 0.5sin4t
d%x
dt"‘13 =ajpx1] — X13 — x11X15 — 0.5cos4x13 — 0.5cos4t (14)
d%x
dto‘14 = appx12 — x14 — X12x15 — 0.25sindx14 — 0.25sin4t
d%xis
R X11X13 + X12X14 — a13x15 — 0.5cos4x15 + 2cos4t
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where xi1, X12, X13, X14, X15 ate the state variale, ajy, aj2, a3 are parameters of sys-
tem and parameters values app 10, ajn 180, a3 1 and initial value
(x11(0), x12(0), x13(0), x14(0), x15(0)) = (2, 3,5,6,9), and « = 0.95.

Now comparing the system (14) with system (3), we get

—aj;r 0 a;p 0 O —10 0 10 0 O
0 —ajip 0 a;; O 0 —-10 0 10 O
Ai=]ap 0 —-10 0 =180 0 -1 0 0 |,
0 ap 0 -1 0 0 180 0 —1 0
. 0 0 0 0 —ars 0O 0 0 0 -1
0 sindxiy —0.5sin4t
0 2cos4x1p —0.5sin4t
Hi{ (X)) = —X11X15 ,801(X1) = | —0.5cosdx13 | ,D(t) = | —0.5cos4t |,
—X12X15 —0.25sin4x4 —0.25sin4t
| X11X13 + X12X14 —0.5cos4x;5 2cos4t

Mathematical model of FO complex T system [42]:

d%x
A a1 (x23 — x21) + sin2xp; — 0.5sin2t

dr®
d“xop .

T = (x24 — x22) + cos2x2p — 0.5sin2t
d%x»3

T = (ax — az1)x21 — az1x21x25 — 0.5c052x23 — 0.5¢c0s2t 15)
d*x

dl‘34 = (a2 — az1)x2y — az1x20x25 — 0.25sin2x04 — 0.5sin2t
d%xos

Tra = X21X23 + X22X24 — a3x25 — 0.5c052x25 — 0.5cos2t

where x21, X22, X23, X24, X25 are the state variable, aa, azy, az3 are parameters of sys-
tem and parameters values ajp 2.1, ax» 30, a3 0.6 and initial value
(x21(0), x22(0), x23(0), x24(0), x25(0)) = (8,7, 6,8, 7), and @ = 0.95

Now comparing the system (15) with system (4), we obtain

0
—daz]
0

—azi
0
ax —aii
0
0

0

0
—a1X21X25
—a1X22X25
| X21X23 + X22X24

A

0

Hy(X2)

azz —dipi

a; 0 0 -2.1 0
0 ayp O 0o -2
0O 0 O = 0 0
0O 0 O 0 0
0 0 —daj3 0 0
sin2xyq
cos2x)
,860,(X2) = | —0.5cos2x23 |,
—0.255in2x04
—0.5c052x25

210 O
1021 0
30 0 0 |,
0 30 0
0 0 —0.6
—0.5sin2t
—0.5sin2t
Dy (t) = | —0.5cos2t |,
—0.5sin2t
—0.5cos2t
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Mathematical model of FO complex Lu system [43]:

dO{
glyau =b11(y13 — y11) + 6sinl0yi; + 1.5cos 10t 4 uyy
d
%hyf = b11(y14 — y12) — 4cos10y12 — 0.5sin 106 + up
d®yi3 . .
qre = —y11y15 + b12yi3 — 3sinl0y;3 — 1.5sin10t + u13 (16)
d
dtyoj4 = —y12y15 + b12y14 — 2c0s10y14 — 0.25¢0s 10t + 114
d“yis
ae Y11Y13 + yY12Y14 — b13y1s5 — Scos10y15 + 0.5cos10t + u 5

where y11, Y12, 13, Y14, Y15 are the state variable, b11,b12,b13 are parameters of system and
parameters values b1y = 40, bjo = 22, b;3 = 5 and initial value (y;1(0), y12(0), y13(0),
v14(0), y15(0)) = (1,2, 3,4,5) and ¢ = 0.95. Where u1, uiz, 113, u14, t15 are control
functions.

Now comparing the system (16) with system (5), we get:

b1y 0 by 0 O [—40 0 400 0
0 —by;p 0 b1 O 0 —40 0 40 O
B = 0 0 bip 0 O = 0 0 220 0 |,

0 0 0 b O 0O 0 0220

. 0 0 0 0 —bp3 L 0 0 00 -5
B 0 B 6sin10y11 1.5¢cos10¢
0 —4cos10y12 —0.55in10¢
H3(Yy) = —Y11Y15 ,803(Y1) = | =3sinl0yy3 |, D3(t) = | —1.5sinl0t
—Y12)15 —2cos10y14 —0.25c0s10t
| Y11Y13 + Y1214 | —5cos10y15 0.5cos10¢

To Achieve Matrix Projective Combination Synchronization

According to Theorem 1, there exist a matrix projective M € R>*, so that the systems (14),
(15), and (16) realize the MPCS.
Projective matrix can be chosen as:

10 -10 0
0-11 0 1
M=]00-20 2],
00 1 -22
00 0 0 =2

The error functione =Y —M (X | +X>) canbe obtained as, where e =[¢y1, €12, €13, €14, e15]T

el i 10 -10 0 (x11 4+ x21)
e Y12 0-11 0 1 (x12 + x22)
e3|=|y3|(—(00 =20 2 (x13 +x23)
el Y14 00 1 =22 (X14 + x24)
els Y15 00 0 0 =2 |(x15+x25)
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Error function will be

e = y11 — (x11 +x21) + (x13 + x23)

ez = yi2 + (x12 +x22) — (x13 + x23) — (x15 + x25)

e13 = y13 + 2(x13 + x23) — 2(x15 + x25) (I7)

e14 = y14 — (x13 + x23) + 2(x14 + x24) — 2(x15 + x25)

e15 = y15 + 2(x15 + x25)
The error dynamics system can be described as:

D%y = b11(y13 — y11) + 6s5in10y(1 4+ 1.5¢0s10t — (a1 (x13 — x11) + sindxq;
— 0.5sindt + a1 (xp3 — x21) + sin2xo1) — 0.5s5in2t) + (ajpx11 — X13
— x11x15 — 0.5cos4x13 — 0.5cosdt + (ax — ar1)x21 — a21X21X25
— 0.5c0s2x73 — 0.5c0s2t) + upq

D%e13 = b11(y14 — y12) — 4cos10y12 — 0.55in10t + (ay1 (x14 — X12) + 2cos4x12
— 0.5sindt + a1 (xp4 — x22) + cos2xy — 0.5sin2t) — (ajpx11 — X13
— x11x15 — 0.5cos4x13 — 0.5cosdt + (ax — ar1)x21 — a21X21X25
— 0.5c052x23 — 0.5cos2t) — (x11x13 + X12X14 — a13x15 — 0.5c0s4x15
+ 2cosdt + xp1x23 + X20Xx24 — ap3x25 — 0.5c052x25 — 0.5¢c0s2t) + uin

D%e13 = —y11y15 +bi2y1z — 3sinl0y13 — 1.5sin10t + 2(ajpx11 — X13 — X11X15
— 0.5cos4x13 — 0.5cos4t + (ary — az1)x21 — az1x21x25 — 0.5c052x73
—0.5cos2t) — 2(x11x13 + xX12X14 — a13x15 — 0.5cosdx15 + 2cos4t
+ X21Xx23 + X22X24 — a23x25 — 0.5c0s52x25 — 0.5c0s2t) + uy3

D%e14 = —y12y15 + b12y14 — 2c0510y14 — 0.25¢0510t — (ajax11 — X13 — X11X15
— 0.5cos4x13 — 0.5cos4t + (ary — az1)x21 — az1x21x25 — 0.5c052x73
— 0.5cos2t) + 2(aipxip — x14 — x12x15 — 0.25sindx14 — 0.25sindt
+ (ary — az1)x2n — apx1x20x25 — 0.25s5in2x04 — 0.5s5in2t) — 2(x11x13
+ xX12x14 — a3x15 — 0.5cosdx15 + 2cosdt + x21x23 + X22X24 — A23X25
— 0.5cos2x75 — 0.5c0s2t) + uy4

D%e15s = y11y13 + y12y14 — b13yis — 5cos10y1s5 + 0.5cos10f + 2(x11x13
+ X12X14 — a13X15 — 0.5c054x15 + 2cos4t + x21x23 + X22X24

— ax3xzs5 — 0.5cos2xp5 — 0.5cos2t) + uys
(18)
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Choosing the satisfactory control gain matrix K

00—-40 0 O
00 0 —400
Ki=100-23 0 Of,
00 0 =230
00 0 0 O

In view of Theorem 1 the control functions will be:

[—40y13 +40(x11 + x21) — 40(x13 + x23) — 10x11 + 10x13 + sindx; ]

—0.5sindt — 2. 1sindt — 2.1x21 + 2.1x23 + sin2xo; — 0.5sin5t¢
—180x11 + x13 + x11x15 + 0.5c0s4x13 + 0.5cos4t — 27.9x71

+2.1x21x25 + 0.5c055x23 + 0.5sin2t — 6sin10yy; — 1.5¢cos10¢t

—40y14 — 40(x12 + x22) + 40(x13 + x23) +40(x15 + x25) + 10x12
—10x14 — 2cosd4x1p + 0.5sindt + 2.1x2p — 2.1x24 — cos2x22
+0.5sin2t + 180x11 — x13 — x11x15 — 0.5c054x13 — 0.5c0s4t

+27.9x21 — 2.1x21x25 — 0.5c0s2x33 — 0.5c0s2t — x15 + x11X13
+x12x14 — 0.5cos4x15 + 2cos4t — 0.6x5 + x21x23
+x22X24 — 0.5c052x25 — 0.5c052t + 4cos10y12 + 0.5s5in10¢t

Uiy

up —23y13 — 2(x13 + x23) + 2(x15 4+ x25) — 360x11 4 2x13 + 2x11X15
U =|uis| = +cos4x13 + cosdt — 55.8x21 + 4.2x21x25 + 1cos2x23 + 1cos2t

U4 —2x15 + 2x11x13 + 2x12X14 — cosdxys + dcosdt — 1.2x25 + 2x21x23

uis +2x22x24 — 1cos2xp5 — cos2t 4+ y11y15 + 3sinl0y13 4+ 1.5sin10¢

—23y14 4+ (x13 + x23) — 2(x14 + x24) + 2(x15 + x25) + 180x7;
—x13 — X11X15 — 0.5cos4x13 — 0.5cosdt + 27.9x71 + 2.1x21x25
—0.5co0s2x73 — 0.5c0s2t — 360x12 + 2x14 + 2x12x15 + 0.5sindx14
+0.5sindt — 55.8xp0 + 4.2x20x25 + 0.5sin2x74 + 1sin2t
—2x15 + 2x11X13 + 2x12X14 — cosdxy5 + 4cosdt — 1.2x05 + 2x21x03
+2x22x24 — c0s2x25 — 1cos2t + y12y15 + 2cos10y14 + 0.25cos 10t

—10(x15 + x25) + 2x15 — 2x11X13 — 2X12X14 + cosdxi5 — cos4t
+1.2x25 — 2x21x23 — 2x20x24 + 1cos2x25 + 1cos2t — y11y13
—y12Y14 + 5c0s10y15 — 0.5c0s10¢

Using the value of controllers in u11, #12, 413, 414, U415 in error dynamics (18), now error
dynamics system can be obtained as

D%e1; = —40e1y
D%e1p = —40e1>

D%y3 = —ey3 (19)
D%e1qy = —ey4
D%e15 = —5e5

Hence, the MPCS between master systems (14), (15), and slave system (16) is achieved.
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To Achieve Inverse Matrix Projective Combination Synchronization

According to Theorem 2, there exist a invertible N € R3%5 50 that the systems (14), (15),
and (16) realize the IMPCS
The invertible matrix can be chosen as:

10 =10 07 10 —05 0 05
0-11 0 1 0-1-05 0 1
M=N=]|00-20 2 |,N'=|lo0 -05 0 05 |,
00 1 —22 0 0 —0.25-0.5—0.75
00 0 0 —2] 00 0 0 —05

The error function ¢ = (X + X2) — NY| can be obtained as

ey x11 +x21 | 10 -100 yit
e X12 +x22 0-11 0 1 Y12
ei3 | =|x3+x3(—-—100 =20 2 V13
el4 X14 + X24 00 1 =22 Y14
els X15 + X25 | 00 0 0 =2 [ws

Error function will be obtained as:

ey = x11 +x21 — (11 — ¥13)

e1n = X12 + x22 — (=y12 + y13 + y15)

e13 = x13 + x23 — 2(y13 — y15) (20)

e14 = x14 + x24 — (y13 — 2y14 + 2y15)

e1s = x5 + x25 — (—2y15)
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The error dynamics system can be given as:

D%y = (a11(x13 — x11) + sindxy; — 0.5sindt + az1(x23 — x21)
+ sin2xp; — 0.5s5in2t) — (b11(y13 — y11) + 65in10yq;
+ 1.5¢cos10t 4+ y11y15 — b12y13 + 3sin10y;3 4+ 1.5sin10¢)
—uit+us

D%e1y = (—ay1(x14 — x12) + 2cosdx1p — 0.5sindt + a1 (x24 — x22)
+ cos2xyy — 0.5sin2t) — (—b11(y14 — y12) + 4cos10y2
4+ 0.5sin10t — y11y15 + b1ay13 — 3sinl0yy3 — 1.5s5in10t
+ y11y13 + y12y14 — bizyis — 5cos10y1s + 0.5¢os10¢)
+ U —uz —uis

D%e13 = (ajpx11 — x13 — X11x15 — 0.5c0s4x13 — 0.5cos4t
+ (a2 — az1)x21 — az1x21x25 — 0.5c0s2x23 — 0.5c0s2t) o)
= 2(=ynyis + biayiz — 3sinl0y13 — 1.55in10t — y11y13
— y12y14 + b13y15 + Scos10y15 — 0.5¢cos10¢)

— 2u13 + 2u15

D%e14 = (ajpx11 — x13 — x11x15 — 0.5c0s4x13 — 0.5cos4t
+ (a2 — az1)xz1 — arix21x25 — 0.255in2x74 — 0.5s5in2t)
— (=y11y15 + b1ay13 — 3sinl0y13 — 1.55in10t — 2(—y12y15
+ b12y1a — 2cos10y14 — 0.25¢0s10t) + 2(y11y13 + Y12)14
— b13y15 — S5cos10y15 + 0.5cos10t) — u13 + 2u14 — 2u15

D%e15 = (x11X13 + x12X14 — a13x15 — 0.5c0s4x15 + 2cos4t + x21X23
+ x22X24 — ax3x25 — 0.5c052x25 — 0.5c052t) + 2(y11y13
+ y12y14 — b13y15 — 5cos10y;s + 0.5c0s10¢t) + 2uys

Choosing the satisfactory control gain matrix K and K».

0 0 —-10 0 O 0 0 -21 0 O
0 0 0 —100 0 0 0 —-210
Ki=|-180 O 0 0 Of,Kr=|-279 0 0 0 0
0 —-180 0 0 O 0 =279 0 0 0
0 0 0 00 0 0 0 0 O
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In view of Theorem 2 the control functions will be:

[(un
ui
U= |up
U4
| 415

—12.1(y11 — y13) + (=y13 + y15) — L.6y15 + 12.1(x13 + X23)
+sindxy; + sin2xy; — 0.5sindt — 0.5sin2t + 10x2; — 10x23
+2.1x11 — 2.1x13 — 103.95(x11 + x21) + 0.5x11x15
+1.05x21x25 + 0.25cos4x13 + 0.25c052x23 + 0.25cos4t + 0.25cos2t
+90x21 — 0.5x23 + 13.95x11 — 0.5x11x13 — 0.5x12x14 — 0.5x21x23
—0.5x20x24 + 0.25cos4x15 + 0.25c052x25 — 1cos4t + 0.25cos2t
—0.5x25 — 0.3x15 + 40y1; — 40y13 — 65in10y1; — 1.5cos10¢t

12.1(=y12 + y13 + y15) + (=y13 + y15) — 3.2y15 — 12.1(x14 + x24)
—2cos4x1y — cos2x + 0.5sindt + 0.5sin2t — 10x27 + 10x04 — 2.1x12
+2.1x14 — 103.95(x11 + x21) + 0.5x11x15 + 1.05x21x25
+0.25cos4x13 + 0.25c052x23 + 0.25cos4t + 0.25c0s2t + 90x7)
—0.5x23 + 13.95x11 — x11X13 — X21X23 — Xx20X24 + 0.5cos4x15
+0.5cos2x25 — 2cos4t + 0.5cos2t — x25 — 0.6x15 + 40y12
—40y14 + 4cos10y12 + 0.5sin10¢

= —y13 + y15 — 1.6y15 — 103.95(x 1 + x21) + 0.5x11x15
+1.05x21x25 + 0.25co0s4x13 + 0.25c052x23 + 0.25c0s4t
+0.25c0s2t + 90x21 — 0.5x23 + 13.95x11 — 0.5x11x13 — 0.5x12x14
—0.5x21x23 — 0.5x20x24 + 0.25c0s4x15 + 0.25c052x25 — lcosdt

0.5(=y13 + y15) + 0.5(y13 — 2y14 + 2y15) — 2.4y15 — 51.975(x11 + x21)
40.25x11x15 + 0.525x21x25 + 0.125c0s4x13 + 0.125c052x23
+0.125cos4t + 0.125co0s2t + 45x21 — 0.25x23 + 6.975x1;
—103.95(x12 + x22) + 0.5x12x15 + 1.05x22x25 + 0.125sin4x14
+0.125sin2x24 + 0.125sin4t + 0.25s5in2t + 90x27 — 0.5x24
4+13.95x12 — 0.75x11x13 — 0.75x12x14 — 0.75x21x23 — 0.75x20%24
+0.375cos4x15 + 0.375c0s2x25 — 1.5cos4t + 0.375cos2t — 0.75x25
—0.45x15 — 22y14 + y12y15 + 2c0s10y14 4 0.25c05 10t

—1.6y15 — 0.5x11x13 — 0.5x12x14 — 0.5x21Xx23 — 0.5x22x24 + 0.25c0s4x15
40.25c052x25 — 1cos4t + 0.25cos2t — 0.5x25 — 0.3x15 + S5y15
—y11Y13 — Y12Y14 + Scos10y15 — 0.5cos 10t
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X, -50 20 =50 -20
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Fig. 1 Phase portrait of FO complex Lorenz chaotic system for « = 0.95: a x1; — x12 — x13 space; b with
disturbance and uncertainty, xo1 — x22 — X23
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Fig.2 Phase portrait of FO complex T chaotic system fora = 0.95:a x| —x12 —x13 space; b with disturbance
and uncertainty, xo1 — x22 — x23 space; Phase portrait of FO complex Lu chaotic system for @ = 0.95: ¢ with

disturbance and uncertainty, y;; — y12 — y13 space ; d with disturbance and uncertainty, y13 — y14 — y15
space
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Using the value of controllers in u11, u12, 113, U14, 15 in error dynamics (21), now error
dynamics can be obtained as

D% = —12.1e1

D%, = —12.1ey3
D%e13 = —er3 (22)
D%e14 = —ei14

D%e15 = —1.6¢;5

Hence, the IMPCS between master systems (14), (15), and slave system (16) is
achieved

Numerical Simulation

In this section, during numerical simulation of MPCS and IMPCS of FO complex
chaotic systems. The initial values for master systems (14), (15), and slave system (16)
are (x11(0), x12(0), x13(0), x14(0), x15(0)) = (2, 3,5, 6,9), (x21(0), x22(0), x23(0), x24(0),
x25(0)) = (8,7,6,8,7), (y11(0), y12(0), y13(0), y14(0), y15(0)) = (1,2, 3,4,5) respec-
tively. Hence, according to the definition of MPS error function, the initial value of
error system will be (e11(0), e12(0), €13(0), €14(0), e15(0)) = (2, —15, =7, —11, 37), for
a = 0.95 . Phase portrait of FO complex Lorenz chaotic systems for « = 0.95 without
disturbance and uncertainty and with disturbance and uncertainty illustrated in Fig. la, b
respectively. Phase portrait of FO complex T chaotic systems for « = 0.95 without distur-
bance and uncertainty and with disturbance and uncertainty shown in Fig. 2a, b respectively
and Fig. 2c, d illustrates the phase portrait in 3D of FO complex Lu system. Figure 3a—e shows
the state trajectories of master systems and slave system are synchronized in MPCS technique.
Figure 3f describes thaterror of MPCS (e11(2), e12(t), e13(¢), e14(t), e15(t)) are converging to
zero when times becomes large. According to the definition of IMPS error function system, the
initial value of the error system fora = 0.95 will be (e11(0), e12(0), €13(0), €14(0), e15(0)) =
(2.75, 3.9, 1.8, 15.8, —7.5). Figure 4a—e depicts the state trajectories of master systems and
slave system are synchronized using IMPCS technique. Figure 4f illustrates the error of
IMPCS (e11(2), e12(t), e13(t), e14(¢), e15(t)) are converging to zero.

Comparison of Synchronization Results with Previous Published Work

In [31] author studies the matrix projective synchronization (MPS) and inverse matrix pro-
jective synchronization (IMPS) technique for the FO hyper-chaotic system disturbed by
uncertainty and disturbance using active control. They attain synchronization error approx at
time t = 4 sec and t = 3.75 sec, as shown in Fig. 5a, b, respectively. Whereas in the present
scheme, in which we achieved matrix projective combination synchronization (MPCS) and
inverse matrix projective combination synchronization (IMPCS) disturbed by uncertainty
and disturbance using the same technique. We had considered three non-identical FO com-
plex, chaotic systems. The MPCS error and IMPCS error have been synchronized approx
att = 2.75, and t = 3.25, respectively, as shown in Fig. 5S¢, d. The present technique takes
less time to synchronize error trajectories. This shows that our examined MPCS and IMPCS
scheme using the active control technique is convenient over earlier published work.
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Secure Communication Technique

[28,44—-46] The secure communication is one of the most powerful applications of chaos
synchronization. The concept of a secure communication system involves the construction
of a signal includes some hidden message that is to continue unpredictable by the intercepters
with the transmitter signals. In this section, the secure communication application of matrix
projective combination synchronization is performed, which is based on the chaotic signal
masking technique. In secure communication method, the system consisting of a transmitter
(or master) and receiver (or slave). The secure communication scheme is sketched as Fig. 6.
We will use Egs. (14), (15) as master systems, and Eq. (16) as a slave system. The information
message signal is select to be a periodic function M (1) = M (t) + Ma(t) = 3*sign(sin3t),
which is attached to the master signal. The encrypted information is given by S(t) = M (¢) —
2(x15(t) 4 x25(¢)) is attached to the slave signal. The decrypted message signal is given
by M(z) = S(t) — y15(¢) . We choose the message signals are in the form of M;(¢) =
sign(sin3t), Ma(t) = 2 *x sign(sin3t) . The information signal M (t) = 3 x sign(sin3t)
and the encrypted signal S(¢) are shown in Fig. 7a, b, respectively. Figure 7c illustrates
the decrypted signal M (1) and Fig. 7d displays the error signal M (1) — M (r). Figure 7a—d
portrayed that the M (t) = 3 x sign(sin3t) is recovered favourably at the receiver end.

Conclusion

Combination projective synchronization (CPS) achieved in three non-identical FO complex
chaotic systems witch are disturbed by disturbance and uncertainties. In combination pro-
jective synchronization, MPCS, and IMPCS have been presented. Initially, to obtain MPCS
between non-identical FO complex chaotic systems, the control technique was introduced
by controlling the linear part of the slave system. Further, to get IMPCS, the control method
was introduced by controlling the linear part of the master systems. It is based on the stability
analysis of the fractional derivative of the linear system, since when time becomes large,
then the error system goes to zero by using a suitable controller input parameter. Due to the
complexity of the introduced scheme, the MPCS and IMPCS may improve security in com-
munication. Therefore, with the increasing demand for protection of transmission, we design
an actual application in the field of secure communication. Further, in the future direction, we
can study matrix hybrid complex projective compound combination synchronization inter-
rupted by model uncertainties and mismatched disturbance in FO complex chaotic systems
using the adaptive control. Finally, we have compared our results with the earlier published
results. Our results display the novelty over the compared outcomes.
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