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Abstract
In this work, we start by Kuznetsov’s model which describes the interaction between two cell
populations: tumor cells and effector cells. We insert in this model controls corresponding
to two types of treatment: chemotherapy and immunotherapy, which leads to a controlled
dynamic system. The goal of this paper is to minimize the density of tumor cells as well as
the dose of treatment. We seek for an optimal treatment which will be characterized by using
Pontryagin’s Maximum Principle.

Keywords Chemotherapy · Immunotherapy · Tumor cells · Dynamical system ·
Optimal control

Introduction

Cancer treatment aims to heal or unless to stop the evolution of the tumor as long as possible
in order to allow the patient to have an almost normal life.

The main treatments are: surgery, radiotherapy, chemotherapy, hormonotherapy, and
immunotherapy. These treatments can be used individually or in combination depending
on the type of cancer. The purpose is to define the appropriate treatment for each patient in
ordre to give the best results with least sequelae.

Chemotherapy treatment has been treated in several mathematical models [5,12,15], based
on control theory, where control variable is the administered dose. It’s widely known that
the immune system impacts the success of chemotherapy, see [10,14]. Hence, combining
chemotherapy and immunotherapy protocols attracts great interest in oncology. However,
this combination is hard for patients, then it would be suitable to minimize the total
amount of drugs while preserving their efficiency. In our previous work [13], we insert in
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Kuznetsov’smodel [11], two controls corresponding to two types of treatment: chemotherapy
and immunotherapy. We study the viability of this model under states constraints. This result
allows to evaluate the chances of remission of a patient depending on its state at the first
diagnostic. Nevertheless, this previous study does not take into consideration side effects of
treatments, which are exhibited in the present work in the form of optimal control problem.

The contribution of this work consists on defining an objective function that depends
on the density of tumor cells and the total amount of drugs subject to a coupled system of
ordinary differential equations presented in [13]. The goal is to explore optimal strategies
combining chemotherapy and immunotherapy treatments allowing to minimize tumor cells
density together with minimal toxicity in the patient body. The objective functional involves
quadratic control as used in several works, since it’s generally more theoretically tractable,
the existence of an optimal control is obtained under mild conditions and the square in control
terms models severity of the drugs side effects [1,3,8,16].

This paper is divided into five sections. The next section is devoted to mathematical
formulation of the model, positivity and boundedness of the system. Section 3 deals with
the existence and characterization of an optimal control. Section 4, illustrates the results
theoretically obtained, by numerical simulations, where specific parameters are related to
melanoma cancer. Some conclusions are drawn in Sect. 5.

Mathematical Model

Starting from kuznetsov’s work [11] describing a dynamic system of two cell populations,
that are, tumor cells T and effector cells E , and using interaction laws between them [1,3,4,7]:
The natural growth of tumor cells is assumed to be a logistic function fT :

fT (T ) = aT (1 − bT ),

The dynamic of effector cells obeys to an affine law fE explaining that effector cells have a
constant source rate s, while death is proportional to the population of effector cells.

fE (E) = s − dE .

The competition between cell populations is modeled by −nET and −mT E . This model
takes into account the stimulation of effector cells by the presence of tumor cells, this
phenomenon is modeled by a Michaelis–Menten term ρT E

g+T to characterize the rate of accu-
mulation of cytotoxic effector cells in the tumor cell localization region. The dynamic system
of Kuznetsov is therefore: {

Ṫ = a(1 − bT )T − nET
Ė = s − dE + ρT E

g+T − mT E

In order to support the praticiens in their choice of therapies, we add to this model two kinds
of treatment, chemotheapy and immunotherapy. Combining the both treatments for many
cancer types could potentially leads to enhance efficiency [2,6]. The goal of chemotherapy
is to attack the growth factors of cancer cells and stop their proliferation. However, it also
attacks healthy cells including progenitor cells, which produce effector cells. The immune
system becomes therefore also affected. Hence the interest of introducing immunotherapy
to boost the immune system. Mathematically speaking, we introduce two control variables
(c(t), i(t)) corresponding to treatments (chemotherapy/immunotherapy) and leading to the
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following controlled system:⎧⎨
⎩
Ṫ = a(1 − bT )T − μc(t)T − nET ,

Ė = s − dE + ρT E
g+T − mT E − hc(t)E + i(t),

E(0) = E0, and T (0) = T0.
(1)

where the control i describes the direct effect of immunotherapy on effector cells while the
concentration of chemotherapy is denoted by c.

We admit that the concentrations of both therapies should not exceed amaximum threshold
and are limited as follow:

(c, i) ∈ U ,

where the set U is defined as:

U = [0, cmax ] × [0, imax ]
Here we list all parameters used in the model (1), their meaning and units:

Positivity and Boundedness of Trajectories

To be biologically meaningful, trajectories of system (1) must be positively invaraint and
bounded.

Proposition 1 All trajectories of the system (1), starting in R
2+, are positively invariant.

Proof To prove the positive invariance of the trajectories, it suffices to study the behavior of
the vector field (Ṫ , Ė) on the boundary of R2+.
If T tends to 0 then Ṫ = 0.
If E tends to 0 then Ė = s + i > 0, since i ≥ 0 and s > 0.
Therefore, the vector field (Ṫ , Ė) is pointed inside R2+ and then trajectories T and E of the
dynamic system (1) are positively invariant. ��
Let us show that the dynamical system (1) provides bounded trajectories even if t f = +∞.

Proposition 2 Assume that

d − ρ > mg −
√

ρg

m
. (2)

Then the positive trajectories of the system (1) are uniformly bounded.

Proof Recall that

Ṫ = a(1 − bT )T − μcT − nET .

Note that the logistic function a(1 − bT )T is concave and we have

a(1 − bT )T ≤ a

4b
,

then,

Ṫ (t) ≤ a

4b
− μcT (t).
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We deduce by standards calculus of the linear differential equations that

T (t) ≤
(
T (0) − a

4bμc

)
exp−μct + a

4bμc
.

So the state T which corresponds to the density of the tumor cells is well bounded.
For the boundedness E , we have

Ė ≤ s + i − dE + ρT E
g+T − mT E,

Ė ≤ s + i − E
(
d + mT − ρT

g+T

)
.

Consdier imax the upper bounds of i .
We obtain then the following inequality

Ė(t) ≤ s + imax − E(t)

(
d + mT − ρT

g + T

)
. (3)

Our hope is to prove that there exists QM > 0 such that

d + mT − ρT

g + T
≥ Qm .

Consider the function

Q(T ) := d + mT − ρT

g + T
,

The analysis of Q shows that it takes a mininum at

√
ρg

m
− g and

Qm := Q

(√
ρg

m
− g

)
= d +

(
1 + 1

m

) √
mρg − mg − ρ

On the other hand, according to condition (2) we have that

mg −
√

ρg

m
< d − ρ,

− 1

m

√
mρg < d − ρ − mg,

which implies that

−
(
1 + 1

m

) √
mρg < d − ρ − mg,

and then

Qm > 0.

Hence, the inequality (3) becomes

Ė(t) ≤ s + imax − E(t)Qm .

We conclude that

E(t) ≤
(
E(0) − B1

Qm

)
e−Qmt + B1

Qm

where B1 = s + imax . ��
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Theory of Control

Let’s rewrite the controlled dynamic system (1) as:

ẋ = f (x(t), u(t)), ∀ t ∈ [0, t f ],
x(0) = x0. (4)

where x = (T , E) and u = (c, i) ∈ U = [0, cmax ] × [0, imax ].
Moreover f : R2+ ×U −→ R

2 is defined as:

f (x, u) := ( f1(x, u), f2(x, u)),

with

f1(x, u) = a(1 − bT )T − μc(t)T − nET , (5)

f2(x, u) = s − dE + ρT E

g + T
− mT E − hc(t)E + i(t). (6)

To dynamic (4), we associate a quadratic control objective functional, minimizing density
of tumor cells and the total amount of drugs, [1,3,8,16], as follows:
For u(·) = (c(·), i(·)) ∈ L∞([0, t f ], U ), we define

J (u) =
∫ t f

0
L(x(t), u(t))dt, (7)

where

L(x, u) := T + w1
ε1

2
c2 + w2

ε2

2
i2.

T is the tumor cells density, c(t) describes the amount of chemotherapy agent doses and
i(t) is the immunotherapy injection. The weights w1 and w2, with values between 0 and 1,
are considered to privilege one treatment over another. On the other hand, since the density
of tumor cells and treatment doses do not have the same order of magnitude, we need to
introduce ε1 and ε2 which are the scaling factors. This allows us to display more clearly
population dynamics with one objective function.

The problem is to minimize the objective function J on U := L∞([0, t f ], U ). These
considerations lead to the following optimal control problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Minimize

u∈U J (u) =
∫ t f

0
L(x(t), u(t))dt

s.t.
ẋ = f (x(t), u(t)), for t ∈ [0, t f ]
x(0) = x0.

(8)

Existence of Optimal Control

Now, we have to find a trajectory which minimizes the objective function J (u). According
to [9], we establish the existence of an optimal control, and then we characterized it. This
existence depends on the regularity hypotheses of the studied model.

Theorem 1 For each control u ∈ U there exists a unique solution x = (T , E) of the system
(4) defined on [0, t f ].
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Moreover, the problem (8) admits an optimal control u∗ ∈ U such that

min
u∈U

J (u) = J (u∗).

Proof To prove this theorem we need to prove the following lemma ��
Lemma 1 The function f (., u) is continuous for all u ∈ U and there exists positive constants
C1 and C2 such that for all (x, x ′, u) ∈ (R2+)2 ×U

| f (x, u) | ≤ C1(1+ | x | + | u |), (9)

| f (x ′, u) − f (x, u) | ≤ C2 | x ′ − x | (1+ | u |). (10)

Moreover

1. U is closed and convex.
2. f is linear with respect to control u.
3. The integrand L of J is continuous, convex with respect the second variale, on U and is

bounded below by A1u2 where A1 > 0.

Proof of the Lemma 1:
For the continuity of f and taking account of the expression (5), the right hand side of
system (4) must be continuous. We see that only the right hand side of Ė has a chance to be
discontinuous. Since both g and T are positive this eliminates the possibility of ρT E

g+T to be
undefined. Therefore the entire system is continuous, and hence the function f is continuous.
Furthermore we have

| f (t, x, u) |
≤| a(1 − bT )T − μcT − nET | + | s − dE + ρT E

g + T
− mT E − hcE + i |,

≤ a

4b
+ μc | T | + | nET | +s + d | E | +ρ | E | +m | ET | +hc | E | + | i |,

≤ a

4b
+ s + (d + ρ) | E | +(nEmax + mEmax ) | T | +(μTmax + hTmax ) | c | + | i |,

≤ C1(1+ | x | + | u |)
where C1 = max( a

4b + s, d + ρ, Emax + mEmax , μTmax + hTmax , 1).
For the lipschitziennity of f with respect to the second variable, we have:

| f (t, x ′, u) − f (t, x, u) |
≤| a(1 − bT )T − μcT − nET − a(1 − bT ′)T ′ + μcT ′ − nE ′T ′ |

+ | −dE + ρT E

g + T
− mT E − hcE + dE ′ − ρT ′E ′

g + T ′ + mT ′E ′ + hcE ′ |,
≤ a | T − T ′ | +ab | T − T ′ || T + T ′ | +μc | T − T ′ | +nE ′ | T − T ′ |

+nT | E − E ′ | +d | E − E ′ | +ρ | gT (E − E ′) + T T ′(E − E ′)
(g + T )(g + T ′)

|
+mT | E − E ′ | +mE ′ | T − T ′ | +hc | E − E ′ |,

≤ (a + 2abTmax + (m + n)Emax ) | T − T ′ |
+ | E − E ′ | (d + (m + n)Tmax + 2ρ)+ | c | (| T − T ′ | + | E − E ′ |),

≤ C2 | x ′ − x | (1+ | u |),
whereC2 = max(k1, k2, 1), k1 = a+2abTmax+(m+n)Emax and k2 = d+(m+n)Tmax+2ρ.
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At this stage, we must mention that the continuity of the function f and the conditions (9)
and (10) assures the existence of a solution of the dynamic (4).

Now, for the second condition of the Lemma 1, we note that U is closed and convex by
definition. For the convexity of the integrand L of J (u) with respect to the second variable
u = (c, i), we need to show

L(T , E, (1 − p)c1 + pc2, (1 − p)i1 + pi2) ≤ (1 − p)L(T , E, c1, i1) + pL(T , E, c2, i2).

Then, the following difference should be negative

L(T , E, (1 − p)c1 + pc2, (1 − p)i1 + pi2)

−(1 − p)L(T , E, c1, i1) − pL(T , E, c2, i2) ≤ 0.

We have

L(T , E, (1 − p)c1 + pc2, (1 − p)i1 + pi2) − (1 − p)L(T , E, c1, i1) − pL(T , E, c2, i2)

= w1
ε1

2
p(p − 1)(c1 − c2)

2 + w2
ε2

2
p(p − 1)(i1 − i2)

2,

= p(p − 1)
[
w1

ε1

2
(c1 − c2)

2 + w2
ε2

2
(i1 − i2)

2
]
.

Since 0 ≤ p ≤ 1 then

p(p − 1) ≤ 0,

and

w1
ε1

2
(c1 − c2)

2 + w2
ε2

2
(i1 − i2)

2 ≥ 0.

This implies that

L(T , E, (1− p)c1+ pc2, (1− p)i1+ pi2)− (1− p)L(T , E, c1, i1)− pL(T , E, c2, i2) ≤ 0.

Moreover, for the fourth condition, we have

T (t) + w1
ε1

2
c2 + w2

ε2

2
i2 ≥ w1

ε1

2
c2 + w2

ε2

2
i2,

if ε1w1 ≤ ε2w2 then we obtain

w1
ε1

2
c2 + w2

ε2

2
i2 ≥ ε1w1

2
(c2 + i2).

which implies that

T (t) + w1
ε1

2
c2 + w2

ε2

2
i2 ≥ A1 | (c, i) |2,

where A1 = ε1w1

2
. Else if ε2w2 < ε1w1, we obtain A1 = ε2w2

2
by the same reasoning.

Hence

L(x, u) ≥ A1 | u |2,
with x = (T , E) and u = (c, i). ��
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Characterization of Optimal Control

A trajectory can be parameterized as the projection of a solution of a constrainedHamiltonian
system. Consider again the controlled system :

ẋ = f (t, x(t), u(t)), x(t0) = x0.

Let (x∗, u∗) be an optimal process for the problem (8), so there exists an absolutely
continuous application λ such that λ : [0, t f ] → R2, called the adjoint vector. The following
equations are satisfied for almost all t ∈ [0, t f ]:

ẋ(t) = ∂H

∂λ
(t, x(t), λ(t), u(t)), (11)

λ̇(t) = −∂H

∂x
(t, x(t), λ(t), u(t)), (12)

max
u∈U H(x(t), λ(t), u(t)) = H(x∗(t), λ(t), u∗(t)) = Cte,

λ1(t f ) = λ2(t f ) = 0 (13)

where H is the Hamiltonien associated with problem 8 and is defined by:

H = T + w1
ε1

2
c2 + w2

ε2

2
i2

+λ1(a(1 − bT )T − μcT − nET ) + λ2

(
s − dE + ρT E

g + T
− mT E − hcE + i

)
,

and λ = (λ1, λ2) such that :

λ̇1 = λ1(2abT + μc + nE − a) + λ2

(
mE − ρgE

(g + T )2

)
− 1.

λ̇2 = nλ1T + λ2

(
d + mT + hc − ρT

(g + T )

)
.

Since the controls are bounded, we form the Lagrangian as follows:

L = H − W1(t)c(t) − W2(t)(1 − c(t)) − W3(t)i(t) − W4(t)(1 − i(t)),

where Wi (t) ≥ 0 are penalty multipliers such that:
W1(t)c(t) = 0 and W2(t)(1 − c(t)) = 0 at the optimal c∗.
W3(t)i(t) = 0 and W4(t)(1 − i(t)) = 0 at the optimal i∗.

To characterize (c∗, i∗), we analyze the necessary optimality condition

∂L

∂c
= 0 and

∂L

∂i
= 0.

We have,

∂L

∂c
= ∂H

∂c
− W1 + W2 or ε1w1c − λ1μT − λ2hE − W1 + W2 = 0,

and

∂L

∂i
= ∂H

∂i
− W3 + W4 or ε2w2i + λ2 − W3 + W4 = 0.

123
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Using standard optimality arguments, we characterize the optimal control as:

c∗ = min

(
1,

(
λ1μT + λ2hE

ε1w1

)+)
,

i∗ = min

(
1,

( −λ2

ε2w2

)+)
.

Where:

r+ =
{
r if r ≥ 0
0 if not

Since the second derivative of the Lagrangianwith respect to c and i is positive, aminimum
occurs at (c∗, i∗).

At this stage, we were able to express control in term of states (T , E) and adjoint states
(λ1, λ2), by applying Pontryagin’s Maximum Principle. By re-injecting this expression of
control into the dynamic of states and co-states, we obtain Hamiltonian system. In the next
section, we give some numerical simulations illustrating the theoretical results.

Numerical Simulations

General model leads to qualitative properties of cancer evolution. However, it would be
relevant to study particular types of cancer with specific sets of parameters. In this section,
we use the data made available in [2,11]. Among the several numerical methods, we use the
shooting method [17] to compute the optimal solution of (8) by solving the boundary value
problem derived from the Pontryagin Maximum Principle and corresponding to the initial
conditions (T0, E0), as well as final conditions on the adjoint states (λ1(t f ), λ2(t f )) = (0, 0).

Treatment doses c and i are normalized to be between zero and one, their order of mag-
nitude is therefore 0. However, the order of magnitude of tumor cells is 6. In this numerical
experiment, the system dynamics were non-dimensionalized using an order-of-magnitude
concentration scale E0 = 106 for effector cells and T0 = 106 for tumor cells. While the
time is scaled relative to the rate of tumor cell desactivation τ = nT0t . Then, the dynamical
system (1) becomes:

⎧⎪⎨
⎪⎩
ż = α(1 − βz)z − θ1c(τ )z − yz

ẏ = σ − δy + pzy

η + z
− r zy − θ2c(τ )y + i(τ )

z(0) = 1 and y(0) = 1

(14)

With z = T

T0
and y = E

E0
. We use parameter values in Table 1 to define the new values of

the non-dimensionalized parameters of (14), as follow:

α = a

nT0
= 1.636 β = bT0 = 2 × 10−3 θ1 = μ

nT0
= 0.8

σ = s

nE0T0
= 0.1181 δ = d

nT0
= 0.3743 p = ρ

nT0
= 1.131

r = m

n
= 0.00311 θ2 = h

nT0
= 0.6 η = g

T0
= 20.19
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Fig. 1 Timeplot of tumor cells (T ), effector cells (E), normalized chemotherapy c andnormalized immunother-
apy i during τ f = 5, which corresponds to a treatment duration equal to 50 days. Initial tumor size is 1× 106

cells and initial effector cell level is 1 × 106 cells. The chemotherapy is privileged by choosing weight
parameters as w1 = 0.2 and w2 = 0.8

We find numerically the optimal control minimizing the following objective functional:

J (c, i) =
∫ τ f

0

(
z(τ ) + w1

ε1

2
c2(τ ) + w2

ε2

2
i2(τ )

)
dτ,

where scaling factors ε1 and ε2 are equal to 1 because the order of magnitude of z is 0.
Therefore, for numerical purposes, we discuss the results obtained according to the values of
w1 andw2. At first, we use anw1 lower thanw2 whichmeans that we privilege chemotherapy
as treatment. The Fig. 1 below shows the behavior of tumor cells and effector cells with high
dose of chemotherapy and low dose of immunotherapy.

In Fig. 1 we privilige chemotherapy treatment, we can see that the maximum dose of
(normalized) chemotherapy is administered throughout the treatment period of the therapeutic
protocol, while the (normalized) immunotherapy is administered for a short time. Once the
tumor is eradicated, the treatment is stopped, which prevents the growth of the immune cells
due to the absence of immunotherapy that stimulates the effector cells. The density of tumor
cells is driven near zero but resume their growth at the end.

Now we privilege immunotherapy and we get the results shown in the Fig. 2. With a
high value of w1, maximum dose of chemotherapy can not be used for a long time but
immunotherapy is administered for the duration longer than that in the Fig. 1. This influences
the dynamic of tumor cells that almost desappear at the end of treatment, while the effector
cells maintain their gowth.

We therefore notice that the results differ according to the values of w1 and w2. In our
case, we obtain a good results by privileging immunotherapy which means choosing w1

higher than w2, in this case, the tumor cells decrease definitively and tend to zero whereas
the density of the effector cells remains high until the end of treatment.

For the values of parameters we used in this paper, we were able to find a therapeutic
protocol that minimizes the density of tumor cells at the end of treatment with the time
horizon τ f = 5. For a longer final time, the tumor cells can resume their growth, in this case
we can change the therapeutic protocol at this moment or repeat it.
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Fig. 2 The graphs of this figure represent the states and controls for weight parameter values w1 = 0.7
and w2 = 0.3. Initial tumor size is 1 × 106 cells and initial effector cell size is 1 × 106 cells. At the start
of the treatment, a maximum dose of chemotherapy is administered and thereafter doses decrease. Whereas
maximum dose of immunotherapy is administered for almost 1 month. The tumor is reduced to a very low
level at the end of treatment while poulation of immune cells is increasing

Conclusion

Control theory provides an adequate conceptual framework for the analysis of evolutionary
systems depending on decision variables. The system approached in our case is of biological
origin: it describes the interaction between two cell populations (tumor cells and effector
cells) in the presence of two types of treatment (chemotherapy and immunotherapy).

The objective is to determine optimal therapies that minimize the density of tumor cells
and the dose of treatment. After modeling this issue, we verify the existence of optimal
solutions, and thenwe applied Pontryagin’sMaximumPrinciple to characterize it. Theweight
parameters w1 and w2, in the objective function (7), reflects an efficiency comprmis in
mixed therapy protocols (Chemotherapy/Immunotherapy). One perspective of this work is
to consider the cost of treatment and patient comfort. So in a next work, we approach these
issues as part of a multi-objective problem.
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