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Abstract

Species use their defense mechanisms to fight, kill or escape from predators. Each species
shows its unique defense mechanism to avoid the predation. In this paper, we propose and
analyze a three species predator—prey system with group defense mechanism. Conditions for
boundedness and positivity of equilibrium points have been discussed. We establish condi-
tions for stability of positive equilibrium points and periodic solutions via Hopf-bifurcation.
The predator—prey system is numerically studied with the help of phase portrait, time evolu-
tion and bifurcation diagrams. Lyapunov exponent and sensitivity analysis ensure the chaotic
behaviour of the model system. Period doubling and period halving bifurcations show dynam-
ical complexities of the food chain system. This study suggests that the repercussion of better
group defense by the intermediate predator is able to produce chaos in food chain models.

Keywords Group defense - Monod—Haldane functional response - Stability analysis - Hopf
bifurcation - Chaos

Mathematics Subject Classification 34D20 - 34D23 - 37D45 - 92B05

Introduction

During the development of millions of years, animals have developed many ways to protect
themselves against predators. Obviously, being able to escape from a predator is the choice
of every prey. Some field studies of ecology demonstrate that predation rate is decreased due
to the increased defense ability of the prey to better defend. There are some defense strategies
adopted by prey to better defend themselves from predators. These include reproduction of
toxic chemicals, group defense, camouflage, and mimicry. Group defense is common defense
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mechanism in social prey. Tener [1] observed that pairs of musk-oxen can be successfully
attacked by wolves but groups are rarely attacked. Another example of defense by reproducing
toxic chemical is studied by Holmes and Bethel [2]. There are many other examples of defense
mechanism adopted by prey to deter predators [3—6].

The ecological models have a long history of deepening our understanding of the ecolog-
ical world. Their simplicity makes some of the consequences of basic biological processes
transparent, but at the same time they exhibit complex behaviors that surprise us. Population
biology is perhaps the most mathematically developed areas of ecology with a long history
of interest by mathematicians in the problems associated with the dynamics of populations.
First Gause type predator—prey model was studied by Freedman [7] of the form

ey

xr = xg(x, K) — yp(x),
v/ = y(=d + cp(x)),

where g (x, K) is the growth function of prey in the absence of predation, and p(x) is known
as a functional response of predators to prey. In population ecology, a functional response is
the intake rate of a consumer as a function of food density. Holling [8] introduced three basic
functional responses to model the interaction between predator and prey. Functional responses
introduced by Holling in I-III do not have any component about defense mechanism and are
thus useful for modeling the predator capturing of innocent prey. Andrews [9] suggested a
non-monotonic functional response of the form

mx

. 2
ax?2+bx +c @

px) =
to model the impact of nutrients inhibitory effect on microorganisms. In general, this func-
tional response resembles inhibitory effect of toxic phytoplankton acting on zooplankton
population and known as Holling type IV functional response. In this functional response
predator’s capture efficiency decrease at high prey density, which biologically shows the
defense mechanism in prey [9—12]. Liznarova and Pekar [13] studied that Holling type IV
functional response has a component related to prey defense. Sokol and Howell [14] proposed
a modified Holling type IV functional response of the form

3

This simplified Monod—Haldane functional response represents a negative predation impact
on the predator’s density when prey are abundant that resembles anti-predator behavior of
prey against predators.

After pioneer work of Lotka [15] and Volterra [16], huge number of articles have been
published introducing different types of interaction like competition, mutual interference and
defensive ability etc. [8,17-21]. Among various predator—prey interaction studies, very less
number of articles have been published focusing on defense in prey. Freedman [22] studied
conditions for the survival and extinction in a predator—prey system with group defense.
He observed that predator population extinct due to group defense of prey. Wolkowicz [23]
studied a generalized Gauss type predator—prey system and observed that system undergoes
for a sequence of bifurcations that includes a Hopf bifurcation as well as homoclinic bifur-
cation. Xiao and Zhu [24] studied stability and periodic oscillations via Hopf bifurcation in
a non-monotonic predator—prey model exhibiting group defense. Predator—prey models of
non-monotonic functional response are abundant in literature and are extensively studied by
several scientists [11,18,23,25,26].
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Freedman [22] proposed a three species food chain model with prey group defense and
studied Hopf bifurcation in temporal as well as delay model. The phenomenon of the paradox
of enrichment and persistence criteria of species are studied in a many predator—prey systems
exhibiting group defense [22,27,28]. Li [29] studied generalized group defense ability and
impulsive control strategy in a predator—prey system. Pei and De’ Aguiar [20] found complex
dynamics in a three species food chain system with anti-predator behaviour of prey against
predator. Raw et al. [30] proposed a three species predator—prey model in which two species
with group defense participate in the food chain. Recently, Mishra et al. [31] proposed a
diffusive food chain model with anti-predator behavior and studied temporal as well as
spatio-temporal complexity of the model.

Recent researches in predator—prey systems demonstrated that chaotic dynamics can arise
in more than two species food chain models [17]. Klebanoff and Hastings [32] found chaotic
dynamics in three species model. Upadhyay et al. [33] observed chaos in a damaged eco-
epidemiological systems and suggested that to avoid chaos in such systems, mortality of
infected prey should be brought down. Li et al. [34] proposed and analyzed a bioeconomic
predator—prey model with nonlinear harvesting of prey. Several researchers observed complex
dynamics in various ecological interaction models [21,25,35-39].

This article explores the complex dynamics of a predator—prey system where intermediate
predator is equipped with defense ability. This model based study is organized in following
manner: In “Formulation of Model System” section, we present the description of proposed
model system (4). Boundedness and equilibrium analysis are presented in third section. In
“Stability Analysis” section, we have discussed local as well as global stability of the system.
Hopf bifurcation analysis is performed in fifth section. Numerical simulation is presented in
sixth section. A brief discussion and conclusion are given in seventh section.

Formulation of Model System

This mathematical study is widely applicable is many real world situations. For example,
plants, monkeys and jaguars are linked together in a food chain. Large African monkeys called
baboons live in groups. Monkeys are primary consumers and they sometimes work together
to drive off predators. Similarly, if the wolf invades the herd, musk makes a cycle with the
calves in between the oxen and their horns get out. Keeping above real world situations in our
mind, we consider that prey, intermediate and top predator participate in a food chain with
the population densities P, O and W, respectively at any instant time ¢, where intermediate
predator exhibits group defense. We consider following points to formulate the differential
equations, which describes the predator—prey model:

(A1) We assume logistic growth in prey with intrinsic growth rate r; and environmental
carrying capacity K in absence of intermediate predator O(t).

(A;) Intermediate predator grows logistically with growth rate r; and environmental carrying
capacity K». Itis assumed that intermediate predator is herbivores and graze on grasses,
reeds, sedges and other ground plants. Thus, intermediate predator O (f) consumes prey
P(t) following Holling type II functional response.

(A3) We assume that intermediate predator makes a group to deter their predator. Thus we
incorporate simplified non-monotonic Monod—Haldane functional response for feeding
of top predator upon intermediate predator. We also assume that intermediate predator
is being harvested due to any reason with harvesting rate g E.
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Table 1 Description of parameters

Parameters Description

r Growth rate of prey

) Growth rate of intermediate predator

d Death rate of top predator

K1 Environment carrying capacity of prey

Ko Environment carrying capacity intermediate predator
a Half saturation constant of prey

Saturation constant of intermediate predator

b Defense efficiency of intermediate predator

wq Consumption or predation rate of intermediate predator on prey

wy Maximum value which per capita growth rate of intermediate predator can attain
& Consumption or predation rate of top predator on intermediate predator

& Maximum value which per capita growth rate of top predator can attain

qE Harvesting rate of intermediate predator

(A4) We assume that top predator is a specialist predator and can not survive without the
intermediate predator. Top predator dies out naturally with the constant death rate of d
in the absence of food. Top predator increases in manner of Monod—Haldane functional
response due to predation.

From above assumptions, we impose following nonlinear differential equations

dp P PO
—:r1P<1——)—wl ,

dt K a+ P

do o w2P0 %'10W

&~ 0(1——) - —4Eo, 4
a2 )T axpr porte 1 @
dw 50W

P _aw+ 22

dt +b02+c

with positive initial condition P(0) > 0, O(0) > 0 and W(0) > 0. In model (4), b is
defense efficiency of intermediate predator against top predator. g is the catchability coeffi-
cient of intermediate predator and E as harvesting effort. A brief description of variable and
parameters of model system (4) is presented in Table 1.

In the next sections, we perform boundedness, existence of all possible positive equilibrium
points, stability of equilibrium point and Hopf bifurcation. Numerical simulation is performed
to discuss the theoretical results and applicability of our predator—prey model.

Boundedness and Equilibrium Analysis

In this section, we analyze the conditions under which system (4) is well behaved and also
derived the existence conditions of biologically relevant equilibrium points. First, we begin
with below theorem which states that system (4) is bounded for all time r > 0.

Theorem 1 All the solution of the predator—prey system (4) initiating in R?,_ is bounded for
allt > 0.
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Proof From Eq. (4), we have

lim sup P(#) < K;.
—00

We define a function S(¢) = 2p + 0 + ?W. It is easy to verify that
wy 2

dS-i— S<L
ar =R

where L = %(rl + DKy + (1 +rn)Ky, n = min(r;,0,d) and & = rp — gE. From
w

comparison lemma [40], we obtain
L L =
S0 =~ = [Z = s@]eD. 5)
n n

Forall0 < T <. If T = 0, then

L L -
S0 == —[Z—s@]e,
n n
L
= S(t) < —, ast — oo.
n
Thus, we have
L
lim supS() = 2P 40+ 50 <k
=00 wi & T
Thus the whole population is uniformly bounded for all # > 0 in ]Ri. O

Now in order to examine existence of biologically feasible equilibrium points, we have

P w0
Hi=n(l-—)- :
K a+ P
0 wo P W
Hy=r(1—— — o 4E, 6
2 rz( Kz) atP boryc 1 ©
&0
Hy = —d + —2—,
3 +b02+c

From above equation, we obtain following biologically feasible equilibrium points:

(i) The extinction equilibria Eg = (0, 0, 0) always exists.
(ii) The predator-eradication equilibrium point E1 = (K1, 0, 0) always exists.
(iii)) The intermediate predator survives in the absence of prey and top predator. Hence

K —qE
equilibria £y = (0, O3, 0) always exist where Oy = M In absence of prey
)
and intermediate predator, top predator can not survive. Thus equilibrium (0, 0, d) does

not exist.
iv) Intermediate predator survives on its prey in the absence of top predator. Hence to
p prey P P p
predator free equilibrium point E3 = (P, O, 0) exists where (P, O) are given as:

- r/Ki—P
0:—(
wi K

)(a+ﬁ).
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Substituting O in second equation of system (4) and performing some straight forward
calculations, we get a polynomial AP 4+ BP2 + CP 4+ D = 0, where

2
rirn rira /2a rira 2r1r2
T S W 1 S
w1 K1 K> w; Ko \ K u)lK]Kz w1 Ky
2
D:rzairlrza .
w1 K1 K>

Here we have A > 0, D > 0, and if we ch_oose B < 0, C > 0, then from Descartes’
rule of sign ensures least a positive root P for the above polynomial. Thus positive
equilibrium E3 = (P, O, 0) exists if the following conditions are satisfied.:

2a < K,
a2>2K2.

(v) Intermediate predator free equilibrium does not exist because in the absence of interme-
diate predator, prey survives but specialist top predator can not survive the food chain.

(vi) Due to availability of favorite food (i.e. middle predator), top predator also survives in
the absence of prey. Hence the equilibria £4 = (0, O , W) exists, where O and W are

given as follows
Lo\ /13 -4l

2 ’ @)

5 [qE — r2<1 Ig)](béz + ¢),

O
I

14

where [ = l%’ I = % Thus positive equilibrium E4 = (0, 0, W) exist if ll2 > 4l
holds.
(vii) Let the positive equilibrium point E* = (P*, O*, W*) exists, then it must satisfy fol-
lowing:
P* w1 o*
H]:rl(l——)— =0, ®)
K a—+ P*
o~ wy P* W™
Hy=r(1- =) - E=0, 9
h=n ) T ar P pols (&)
£ 0"
Hi3=—-d+ —— =0. 10
’ bO*2 +c (10

From Egs. (9) and (10), we have

L+ /-4 5 & c

0*: 3 ,Vll 2412 Wherell _w 12_5 (11)
1 ry P* K, — O* )

W*= —|qgE — — bO* . 12
sl[ s o e )]( +o) (12)

Substituting value of O* and W* in Eq. (8), we get a quadratic polynomial B; P4

BZP* + B3 = 0, where 31 =r, Bz = rl(a — Kl), B3 = Kl(wl o* — rla). Therefore
ria

from Descartes’ rule of sign, a positive root P* exists if K| > a and O* > 12 satisfy.
wi
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Therefore positive equilibrium E* = (P*, O*, W*) exists if conditions

2 >4, Ky > a,
0" <k, 0*> 1% (13)
w1

hold.

Stability Analysis

In order to derive local stability conditions around the positive equilibrium points of predator—
prey system (4), we need to compute variational matrices at all the positive equilibrium points.
The variational matrix around any equilibrium E = (P, O, W) is calculated as

JH, oH, 0H,
P——+H P——
aPaH 8H80 3}51/
viP,o,W)y=| o0Z2 022 4 H, 02 |, (14)
8aP 90 AW
H3 0H3 JH3
| p— w— W—=+ H;
P 90 oW
where
3H1 _ r + w10 3H1 _ wi 3H1 _
P K (@+P)?2 90 a+P ow
0H> _ wna 0H> _n 2bEOW 0H> _ —&
AP (a+P)? 30 Ky (bO2+¢)?2 W bO2+c’
OHy  0Hy &(c—b0?) 0H;
aP 90 (hO2+¢)2 aw

Therefore, we have calculated variational matrices at various positive equilibrium points.

(i) The variational matrix at trivial equilibrium Eg = (0, 0, 0) is

r 0 0
V(E)) =0 (2—qgE) O
0 0 —d

The eigenvalues of V(Ep) are r;, r» — qE and —d. Thus equilibrium is unstable
manifold in P O-direction and stable manifold in W direction.
(ii) Variational matrix at positive equilibrium E; = (K1, 0, 0) is given by

_, _ wiKy 0
! a+ K %
V(ED) = 0 (rz—qE)—l—awj_I; 0
1
0 0 —d

K
The eigenvalues of V(Ey) are —ry, (r —qE) + % and —d. Equilibrium point
a

1
E| is stable manifold in P W- direction and unstable manifold in O direction provided
that (r; — g E) is positive. Hence equilibrium E| is always unstable.
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(iii) The variation matrix at equilibria E» = (0, O3, 0) is calculated as

(0]
- 22 0 0
wzaélz §102
V(Ey) = 22 —(r2—qkE) —m
0 0 a0
b0 +c¢
0> &0

72. Thus for the

, —(rp—¢qgkFE)and —d +
(r2—qE) Y

Eigenvalues of V (E3) are r| — w

stability around E», all eigenvalues must be negative. o
(iv) Variational matrix around top predator free equilibria E3 = (P, O, 0) is

— w10_ ry wlf_’
P[i_ - 7] _ 0
(a+ P2 K (a+ P) B
woa O o0
V(E3) = L‘z —(r, —qE) —_5127
(a+ P) bO* +¢
(0]
0 0 a0
bO? + ¢
Vil V12 V13
= | V21 V22 V23

U3 V32 U33.
The characteristic equation of V (E3) is 13+ p1A2 + pri + p3 = 0, where

p1 = —(vi1 + v22 + v33),

02 = V11022 + V11033 + V22022 — V12021,

p3 = v33(Vi2v21 — V11V22).
Positive equilibrium E3 is locally asymptotically stable if p;, p2, p3 and p1p2 — p3
are positive. Thus one can easily verify that E3 is locally asymptotically stable under

the conditions Kjw;0 < ri(a + f_’)2 and 520_ < al(bO_2 +c) ho~ld.~
(v) The variation matrix around the prey free equilibrium E4 = (0, O, W) is

(r — wllo) 0 0
wr 0 r " 2bE0W £0
V(E4) = a 0[ K, | (bO2 +c)2] (hO? + )
'y 12
0 £W(e—b0?) 0
(bO? + ¢)?

If A1, X2 and A3 are eigenvalues of variational matrix V (E4), then we have

PPy —6[ no 280w ]
2= K,  (bO2+ )2l
_ E&(c—bOHOW

(b02? +¢)3
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w0 ~ c 2bE0W r
If we choose r; < 1—, 0% < ~ and &7 < 2 , then it can easily verify
a b bO2+0)? Ky’
that V (E4) has negative eigenvalues. Thus prey-free equilibrium point E4 is locally
asymptotically stable.
(vi) The variational matrix of system (4) around coexistence equilibrium point E* is given

by V(P*, O*, W*) = (Vij);i, j =1,2,3:

*[ w 0™ r ] wy P* 0
(a+p)? K (a+ P*)
- wora O* 0*[ . 2bE1O* W™ ] £ 0*
VIED = (a+ P*)? Ky (bO*2 +¢)? bO*? + ¢
0 EW*(c—bO*) 0

(bO*? + ¢)?
ajr ap  anp
=|axn ax ax3|. (15)
az|  azx a3

The characteristic polynomial of variational matrix (15) can be written as
37+ BiA% + Boh + B3 =0, (16)
where

By = —(ai1 +a2),
By = ajjax — appaz — axaz,
B3 = ajjaxaz;.

If we choose a1; < 0, az» < 0and a3; > 0, then one can easily verify By > 0, B, >
0, B3 > 0and A = B; B, — B3 > 0. Thus from Routh stability criterion, E* is locally
asymptotically stable. Above analysis is summarized by following theorem:

Theorem 2 (i) Extinction equilibrium Eq is always unstable.
(ii) Predator-free equilibrium E| is saddle point.
(iii) Ifria < wi Oyand&, 0y < d(b 02 + ¢) hold, then E; is locally asymptotically stable.
(iv) If Kywy 0 < ri(a+ P)2 and 520 < d(bO2 + ¢) hold, then top predator-free equilib-
rium E3 is locally asymptotically stable.
v) If ria < wy 0, 0% < % and % < K—zz hold, then prey-free equilibria E4 is
locally asymptotically stable.
(vi) If following conditions

Kyw1 0% < ri(a+ p*)>,
2K2bE O*W* < rown (bO*? + ¢)?,
*2
o ;
S b
hold, then E* is locally asymptotically stable.

Next theorem explores global stability of system (4) around positive equilibrium E*. Global
asymptotic stability of any dynamical system states that any perturbation in the initial con-
dition does not affect stability of the system. Global stability of ecological system shows
ability to face big disturbances without affecting the efficiency of a ecological unit.
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Theorem 3 [f the following conditions

Kiwi0* <ri(a+ P+ P,), (17)
K>&1(O. + oONHW* < rz(bO*2 + c)(bOC2 +0), (18)
£ < d(bO* +)(bO +¢) (19)

hold, then the coexisting biological feasible equilibrium E* of system (4) is globally asymp-
totically stable.

Proof We consider a function
* * P * * 0 * 2
S:(P—P —PlogF)Jrzl(O—o —Olog5)+Zz(W—W> (20)

Time derivative of Eq. (20) and a little algebraic manipulation gives

s _ 1b (P — P2 +bja(P — PO — 0% 1b (P — P2 lb (0 — 0*)?
dt = B 11 12 ) 11 ) 22
1 1 1
—fMO—WV—fﬁW—Wﬂ+@w—OWW—WW—fﬂW—Wﬂ
where
b _[h w1 O* ] _[ Ziawy wy ]
"2k @+t T larPatr Py @t p)
b [LZ_ bEIW* (O + 0*) ] _[zzszw*(c—boo*)_ Z1& ]
27K w0t owotrol P T Leor 1 owo 1o b0T+o))
b0 0*?
b33=Zz[d— ézz( +0) ]
(bO*2 + ¢)(bO? + ¢))

For the global stability, we need to show ‘2—? < 0. Thus % < 0, if following inequalities

hold:

b1 >0, bpp >0, b33 >0 21
b3y < briba, (22)
b3y < bxnbss, (23)
b%_q, < by1b33. (24)

It can be easily verify that under the conditions (21-24), flj—f < 0 is negative definite. Since

b13 = 0, condition (24) is automatically satisfied. Now it can be observed that under condition

(17),the condition b1; > 0 holds. Under conditions (18) and (19), b»» > 0 and b33 > 0, hold.
(a+ P*w Z1&(BO*? + ¢)

Ifwechoose Z| = ———and Zp = ——— where M = (c—b0O.0*) > 0,
awy EXMW*

then it can be seen that inequalities (22) and (23) automatically hold. This shows that S is a
positive definite function (i.e. Lyapunov function) to E*, which completes the proof. O

In next section, we study Hopf bifurcation for parameter b.

Hopf-Bifurcation Analysis

It is well known that defensive efficiency has large effect on the predation rate of predators.
Thus we consider defense efficiency of intermediate predator as bifurcation parameter. Hopf
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bifurcation is a critical point where a system switches its stability and a periodic solution
arises. In next theorem, we derive conditions for the occurrence of Hopf bifurcation for the
parameter b.

Theorem 4 The necessary and sufficient conditions for the Hopf bifurcation at b = b* are
stated as follows

(i)
Bi(b*) >0,i=1,2,3,

(ii)
B1(b*)By(b*) = B3(b"),

(iii)

94N |, %0
db b=b 5

where A = By By — B3 and is defined in Eq. (16).

Proof For critical value b = b*, the characteristic equation (16) can be written as
(W% + B2)(A + B1) =0,

which has three roots A; = is/B>, Ay = —i+/B> and A3 = —Bj. Let for all b the roots are
in general of the form

(b)) = ¢1(D) +ida(b),
A2 (b) = ¢1(D) —iga(b),
A3(b) = —B1(b).

Now, we must verify the transversality condition

A lpep #0, j=1,2
db b=b , J =1, 2.

Substituting A j (m) = ¢1(b) +i¢1(b) into the characteristic equation. Some straight forward
calculation gives

M) + ¢, (b) — N(b)g(b) + U(b) =0,
N(b) + ¢ (b) + M(b)py(b) + V(b) =0,
where
M(b) = 3¢ (b) + 2B1(b)¢1 (b) + Ba(b) — 293 (b),
N(b) = 6¢1(b)p2(b) + 2B1(b)p2(b).
U(b) = ¢2(b) B, (b) + By (b)$1 (b) + By (b) — By (D)3 (b),
V(b) = 261 (b)po(b) By (b) + By (b)o (b).
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Notice that ¢1(b*) = 0, ¢»(b*) = /B2(b*), we have
M(b*) = =2By(b*), N = 2B1(b*)\/ B2 (b*),
U(b*) = By(b*) — By(b) Ba(b*), V(b*) = B,(b*)y/Ba(b”).
Now transversality condition
(dﬁ ) oy = MOV £ NEOU @)
db M(b*)? + N (b*)?
_ Bi(b")By(b*) — B3 (b) + B, (b) By (b*)
2(By(b*) + BY(b*)
# 0, if By(b")By(b*) — B3(b) + By (b*) Bo(b*) # 0.

)

)

Here, the transversality condition holds. Thus Hopf-bifurcation occurs at b = b*. O

Numerical Simulation

In this section, long term dynamics of the model system (4) is investigated numerically.
Numerical simulation is performed to examine the complex behavior of proposed predator—
prey system (4). To investigate the deterministic behavior, we present phase portraits, time
evolution and The bifurcation diagrams. Lyapunov exponents are calculated with the help
of MATLAB 2010a to justify the dynamics of predator—prey system. We assume biologi-
cally feasible parameter values that satisfy the theoretical results. On the basis of theoretical
analysis, we fix following set of parameter values :

(25)

r1 =0.5, rn=0.9, w =0.8, wy =0.25, £ =0.7,& = 0.2,
qE =0.04, a =8, c=7, b=0.025, K; =40, K, =30, d =0.11.

It is observe that for above given parameter values conditions defined in Eq. (13) satisty
since 112 — 4l = 6864.5 > 0. In Fig. 1, we observe a unique interior equilibrium E* for
b = 0.02. As we increase value of parameter b, the interior equilibrium loses its stability and
stable limit cycle is observed at b = 0.025. 3D view of limit cycle around E* and effect of
time upon population densities is shown in Fig. 2a, b. Lyapunov spectrum at b = 0.025 is
shown in Fig. 2c. Three Lyapunov exponent are —0.00042341, —0.011955 and —0.36929.
It is observed that one Lyapunov exponent approaches to zero as time increase and the rest
two are negative, which ensures periodic behaviour of the system (4) around E*.

A chaotic attractor and effect of time on population are shown in Fig. 3a, b, respectively.
For this » = 0.03, and other parameters are defined in Eq. (25). The Lyapunov spectrum is
shown in Fig. 3c for the chaotic attractor and values of Lyapunov exponents are 0.12681,
—0.044119 and —0.11666. One can easily see that one exponent is positive and two are
negative. Thus the interior equilibrium shows chaotic oscillation for some higher value of b.

In Fig. 4, we observe Hopf bifurcation when defense efficiency b crosses its critical value
b* = 0.023. The coexisting equilibrium E* is locally stable for b < 0.023. At b = 0.023,
interior equilibrium is stable but system loses its stability at b = 0.024 and periodic oscillation
arises. 2D view of Hopf bifurcation is shown for b = 0.024 in Fig. 4. Now the conditions
of the Hopf-bifurcation derived in Theorem 4 at bifurcation threshold »* = 0.024, and
all other parameters are same as given in Eq. (25) are satisfied since By (b*) = 0.4217 >
0, B2(b*) = 0.1055 > 0, Ba(b*) = 0.0445 > 0, A = B1(b*)B2(b*) — B3(b*) = 0
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Fig. 1 a Phase portrait of stable focus around E*, b population time series, ¢ Lyapunov spectrum. For these,
parameter b = 0.02 and others are defined in Eq. (25)

with eigenvalue A; 2 = —0.1251 £ 0.2998i, A3 = —0.04217 and transversality condition

dA
(E) lp=p* = —2.40342 < 0 holds. Hence simple Hopf-bifurcation occurs at b = 0.024.

In Fig. 5, F1 shows the solution of system (4) for initial condition (P (0), O(0), W(0)).
F> shows the solution for initial condition (P (0), O(0), W(0) 4+ 1e—008) for chaotic face
and (log = F) — I?) is difference of both solutions. Figure 5a is plotted for the chaotic
phase when b = 0.030. In Fig. 5b, sensitivity analysis is numerically performed at another
chaotic phase K, = 32. It is observed that a minor change in the initial condition shows
drastic change in the behaviour of system (4), which ensures sensitivity dependence on its
initial condition which verifies chaotic dynamics of model.

Figure 6 shows the chaos crises phenomenon in dynamical predator—prey system. In
Fig. 6a, chaotic attractor is observed at K, = 32, all parameter values are same as given in
Eq. (25). As we increase the value of K3, we see disappearance of chaos and limit cycles with
different periods appear (see Fig. 6c, d). In dynamical system, This phenomenon is known
as chaos crises.

Bifurcation diagrams are generated for different control parameters in Figs. 7, 8,9, 10 and
11. We have generated bifurcation diagrams to study how parameters affect the dynamics
of the system. (4). In Fig. 7, the bifurcation diagram is plotted the parameter K. Prey,
intermediate and top predator population is observed in [0.0, 55.0], [0.0, 25.0] and [2.0,
18.0], respectively, as the function of carrying capacity in the range 20.0 < K| < 50.0 of
prey population. We observe that population density of prey and top predator is increasing
rapidly for K| < 34.0 and density fluctuations are observed for K1 > 34.0. A weak negative
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Fig.2 a Phase portrait of stable limit cycle around, b population time series, ¢ Lyapunov spectrum. For these,
parameter b = 0.025 and others are defined in Eq. (25)

impact of parameter K is observed on the density of middle predator. We also observe that
the interior equilibrium becomes unstable through a period doubling cascade as carrying
capacity passes some threshold value K| = 34.0.

In Fig. 8a—c, bifurcation diagrams are plotted for control parameter b. The population den-
sities of prey, intermediate predator and top predator are observed in the range [0.0, 40.0],
[0.0, 28.0] and [0.0, 16.0], respectively. Bifurcation diagrams for control parameter defense
efficiency (b) are generated in the range 0.01 < b < 0.05. We have generated Lyapunov
exponent bifurcation diagram to detect chaotic range for the parameter b. In Fig. 8d, effect of
parameter b on the Lyapunov exponent is presented by Lyapunov exponent bifurcation dia-
gram. In this bifurcation diagram, the range of the maximum Lyapunov exponent is observed
in the range [—0.02, 0.2] as the function of 0.02 < b < 0.04. We observe that density of prey
(P) decreases for b < 0.024 and fluctuation is observed in the range b € (0.024, 0.033).
These fluctuations ensure existence of limit cycles in predator—prey models and represent
unstable nature of equilibrium point. Thus defense efficiency has negative impact on the
stability of the system. We observe extinction of prey species for b > 0.033 (see Fig. 8a).
From Fig.8b, c, positive impact of parameter b is observed on the density of predators for
b < 0.024. We observe fluctuation on the density of predators when b > 0.024. In Fig. 8d,
we observe that the maximum Lyapunov exponent is negative when b < 0.023. One can
see a positive Lyapunov exponent for some larger value of b > 0.027. It is well known that
positive Lyapunov exponent shows the chaotic behaviour of predator—prey system around
E*.

We present some more bifurcation diagrams which have a great impact on the stability
of the system. We have generated bifurcation diagrams for parameters including carrying
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Fig.4 2D view of Hopf bifurcation for different values of b at a b = 0.023, b b = 0.024 and other parameters

are defined in Eq. (25)

capacity, growth rate and harvesting rate of middle predator. The dynamics generated by
accumulation of carrying capacity (K») of intermediate predator is shown in Fig. 9. Bifurca-
tion diagrams are generated for intermediate and top predator in the range (0.0, 30.0) and
(0.0, 0.18), respectively, as the function of K> € (25.0, 35.0). It is observe that K, has
positive effect on the density of both the predators when K, < 29.0. Fluctuating population
is observed for K> > 29.0, which ensures limit cycle behavior for the given parameter space.
Thus increased carrying capacity has negative effect on the stability of the system. It is able
to destabilize the stable equilibrium through a period doubling cascade.
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Fig. 6 2D view of disappearance of chaos (chaos crises) and appearance of limit cycle for a K, = 32.0, b
Ky =32.5,¢ Ky =33,d Ky = 33.5. For this, all other parameters are defined in Eq. (25)

In Fig. 10, we present bifurcation diagrams as the function of harvesting rate in the range
0.03 < gE < 0.10. From Fig. 10a, b, we observe that due to harvesting, the populations
of intermediate and top predator population oscillate in the ranges of (0.0, 0.20) and (5.0,
16.0), respectively. We observe that populations of middle and top predator are fluctuating in
the low harvesting range. A strong negative effect can be seen on the density of top predator
for some threshold harvesting of intermediate predator. Here it is also very important to note
that the unstable interior equilibrium becomes stable through a period halving cascade. In
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Fig.7 Bifurcation diagram for parameter K| versus a maximum of P population, b maximum of O population,
¢ maximum of W population. For this, all parameters are defined in Eq. (25)

Fig. 11, bifurcation diagrams for growth rate r; are generated in the range 0.5 < r» < 1.2. For
r» < 1.0, we see that population densities of intermediate and top predator are fluctuating in
the range (0.0, 25.0) and (0.0, 16.0), respectively. Hence the coexisting equilibrium of system
is unstable for r» < 1.0 and becomes stable through a period halving cascade. Thus r, has
positive impact on the dynamics of the proposed model.

A keen observation on the bifurcation diagrams presented in the Figs. 7, 8, 9, 10 and
11 states that model parameters have great impact in the dynamics of the system. There
are some parameters that stabilizes the system but also parameters like growth rates, defense
efficiency and carrying capacity destabilize the stable interior equilibrium of proposed model.
Bifurcation diagrams also give an idea about route to chaos mechanism in predator—prey
models. Period doubling route to chaos is observed in Figs. 7, 8 and 9 and period halving
cascades are observed in Figs. 10 and 11.

Discussion and Conclusion

In recent studies, the paradox of enrichment is observed due to induced group defense of
prey species [22,23]. But the impact of defense behaviour of intermediate predator on the
population dynamics is still absent in the literature. Recently, Mishra et. al. [31] proposed
a mathematical model to study the defense mechanism between prey and predators. They
assumed that group defense is social behavior of prey and usually found in the most of prey
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Fig.9 Bifurcation diagram for parameter K7 versus a maximum of O population, b maximum of W population.
For this, all parameters are defined in Eq. (25)

species. The key novelty of this model is the inclusion of innocent prey in food chain system.
In this food chain model, we assume that middle predator is a generalist type predator and is
also able to defend themselves from predators. It is assumed that middle predator is depre-
dating on innocent prey following Holling type II rate and top predator consumes middle
predator following simplified Monod—Haldane functional response due to group defense of
middle predator. Condition for boundedness and existence of all biological feasible equi-
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Fig. 11 Bifurcation diagram for parameter r, versus a maximum of O population, b maximum of W popu-
lation. For this, all parameters are defined in Eq. (25)

librium points have been established. We have performed local and global stability analysis
around positive interior equilibrium E*. We observe that predator—prey system exhibits rich
dynamics, including stable focus, limit cycles of different periods which are changing in
chaotic nature. From the Hopf bifurcation analysis, we see that stable interior equilibrium
losses its stability and periodic oscillations arise when defense efficiency b crosses its critical
value b* = 0.023 (see Fig. 4a, b). Sensitivity analysis shows that a small change in initial
condition has a drastic change in the dynamics of the system which ensures that predator—
prey system has the chaotic nature for some certain parameter values. We found crisis-limited
chaotic dynamics in a simple three species predator—prey model with group defense.

Bifurcation diagrams are plotted in certain range of model parameters like growth rate,
carrying capacity, defensive efficiency etc. to study dynamical behavior of system. Period
halving and period doubling bifurcation diagram route to chaos are observed, which shows
rich dynamics of predator—prey model (4). We see a period doubling cascade for control
parameter (K1) in Fig. 7. Interior equilibrium E* is locally asymptotically stable for K| <
34.0. A simple Hopf-bifurcation take place when K passes its threshold K; = 34.0, and
E™ equilibrium point becomes unstable, and a stable limit cycle occurs for K1 > 34.0. We
observe that high carrying capacity of prey has negative effect on the stability of system and
also positive effect is observed in the density of prey and top predator population.
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Bifurcation diagrams as a function of defense efficiency (b) are shown in Fig. 8a—d. A
period doubling bifurcation route to chaos is observed for control parameter b in the range
0.01 < b < 0.05. The coexisting equilibrium remains stable for b < 0.024. A simple Hopf
bifurcation occurs at b = 0.024 and E* becomes unstable for » > 0.024. From Fig. 8d,
we observe that system shows chaotic behavior when defense efficiency (b) is high. Interior
equilibrium shows chaotic oscillations for b > 0.027. Thus higher value of defense efficiency
of intermediate predator produces chaos in the system. We also observe that better defense has
astrong negative effect on the density of prey. Prey population extinct when defense efficiency
of intermediate predator is very high (see Fig. 8a). Biologically, this result shows that better
group defense decreases the predation rate of top predator, and as resultant intermediate
predator grows rapidly. Thus, increased population of intermediate predator consumes more
prey, which may be a reason for the extinction of prey species.

In Fig. 10, a period halving cascade is observed as the function of harvesting rate g E
of intermediate predator, in the range 0.03 < gE < 0.1. Predator—prey system around
the positive equilibrium is unstable for g E < 0.065. The stabilizing effect of harvesting
rate is observed on the dynamics of the system. The interior equilibrium becomes stable
for gE > 0.065 and a subcritical Hopf bifurcation is observed at gE = 0.065. These
bifurcation diagrams also show that g £ has a negative effect on the population density of
both intermediate and top predator (see. Fig. 10a, b). The population density of both the
predators rapidly decreases as harvesting rate increases.

We observe that a period doubling cascade route to chaos is generated for the control
parameter (K;). Accumulating values of carrying capacity (K») of intermediate predator
destabilize the interior equilibrium and chaotic oscillation arises. Interior equilibrium exhibits
a variety of attractors including stable, periodic and chaotic attractor for carrying capacity of
intermediate predator. The coexisting equilibrium is locally stable for K, < 29.7. A sudden
destruction of stable equilibrium is observed at K» = 29.7 (see Fig. 9). A period halving
cascade is shown Fig. 11 for control parameter r,. For r, = 1.0, the interior equilibrium is
unstable and as r, crosses its critical value r, = 1.0, a simple bifurcation occurs and interior
equilibrium becomes stable. We observe that the population of top predator increases as the
growth rate of intermediate predator increases.

We conclude that group defense plays a key role in the dynamics of prey—predator system.
Better group defense (i.e. high defense efficiency) can destabilize tri-trophic food chain
models and is also able to produce chaos in predator—prey system. The main outcome of
this study reveals that prey species suffers with abolition due to increased defense ability
of middle predator which is not studied earlier. In recent work by Raw et al. [30], authors
considered group defense in first two population of three species food chain model and they
observed extinction of top predator due to group defense. But in the present study, we assume
only group defense in generalist type middle predator and observed that extinction of prey
species is possible due to group defense of middle predator. This study also reveals that
unlimited growth of middle predator at one or more trophic levels with huge consumption of
resources by its consumers, leads to system irregularity, which in turn, demonstrates chaos
for a wide range of parameter values. Finally, this study concludes that parameters such as
the growth of intermediate predator and harvesting can disrupt the destabilization effect of
the parameters on the stability of the predator—prey systems.
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