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Abstract
A mathematical model for a three dimensional isotropic half-space has been formulated to
inspect lagging behaviours due to the presence of phase lags in context of memory dependent
derivative, as an extension of several existing thermoelastic models like- Green-Naghdi-III,
Lord Shulman, and Fourier’s Law etc. The analytical and procedural work has been done
in integral transform domain preceded by eigenvalue approach to find the solution from the
governing equations. Numerical computations and graphical representation of distribution
of non-dimensional stress components, temperature with the effect of three phase lag, kernel
function and time-delay has been performed with the help of the efficient mathematical
software.

Keywords Half space · Three phase lag · Memory dependent derivative · Generalized
thermoelasticity · Vector–matrix differential equation · Integral transform
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T0 Reference temperature chosen such that
∣
∣
∣
T−T0
T0

∣
∣
∣ �1

ε � γ 2T0
ρCE (λ+2μ)

Thermal coupling parameter
σ ij Stress Components
ω Time delay
K (t, ξ ) Kernel function

Introduction

The concept of finite propagation of wave was replaced by the infinite speed phenomena of
thermal disturbance as proposed byBiot [1] to transform the Fourier’s Law of heat conduction
into diffusion equation. The revolution of generalized thermoelasticity can be classified in
five generalizations as described by Hetnarski and Ignaczak [2].

First Generalization

As an extended thermoelasticity theory (ETE), Lord and Shulman [3] introduced one relax-
ation time parameter in generalized thermoelasticity by replacing the Fourier’s Law of heat
conduction

q � κ �T (1)

with Maxwell–Cattaneo law. Generally problems on generalized thermoelasticity (coupled
or uncoupled) was solved with the help of potential functions mechanism. But according
to Dhaliwal and Sherief [4] and Sherief and Anwar [5], convergent solution is not always
possible using potential functions to solve problems having physical or field variables like
–displacement, stress, strain, temperature. As an alternative process to solve problems with
classical heat conduction equation

q + τq
∂q
∂t � −k∇θ (2)

(κ � thermal conductivity of material, τq � build-up time and q � heat flux), Single Phase
Lag (SPL) model was proposed by Ozisik and Tzou [6].

Second Generalization

Green-Lindsay [7] proposed temperature-rate dependent theory (TRDTE)with two relaxation
times as parameters in coupled thermoelasticity theory.

Third Generalization

In this generalization,Hetnarski and Ignaczak [8] introduced the concept ofLow-Temperature
coupled thermoelasticity for non-linear model of heat conduction. Chimmelli and Kosinski
[9] studied that this model can predict the behaviour of wave-like thermal signals.

123



Int. J. Appl. Comput. Math (2019) 5 :154 Page 3 of 20 154

Fourth Generalization

Green-Naghdi [10] proposed G-N theory with the concept of thermoelasticity theory without
energy dissipation known as Green-Naghdi-II model. In this model the classical Fourier’s
law is modified by the temperature rate gradient. In G-N-III model, damped thermoelastic
waves [11] and general concept of energy dissipation [12] have been discussed.

Fifth Generalization

Dual Phase Lag (DPL) model is introduced as the fifth generalization thermoelasticity theory
proposed by Chandrasekhariah [13] and Tzou [14]. Tzou considered the generalized heat
conduction equation describing the lagging behaviour imposed on the thermoelastic solid
introducing DPL to both of the temperature gradient and the heat flux vector. To avoid
finiteness of τq in SPLmodel due to heat-flux, Tzou [15] introduced the concept of DPL with
the following heat conduction equation:

q + τq
∂q
∂t � −k(1 + τθ

∂
∂t )∇θ (3)

with two time parameters τq , τθ where τq � heat flux time lag and τθ � temperature gradient
time lag. Depending upon the relation between τq and τθ , different model has been specified
as follows:

(i) Classical Fourier’s Law when τq � τθ , not necessary equals to zero.
(ii) Biot theory or Dipole Coupled Theory (DCT) when τq � τθ � 0.
(iii) Cattaneo-Vernotte (CV) model when τq > 0, τθ � 0 and
(iv) Lord-Shulman (LS) model when τq � τ , τθ � 0.

As a new generalization thermoelasticity, Roy Choudhury [16] discussed the concept of
Three Phase Lag Model [3PHL] introducing three time parameters τq , τT , τν where τq �
heat flux time lag,τT � temperature gradient time lag and τv � thermal displacement gradient
time lag satisfying the inequality 0 ≤ τν ≤ τT ≺ τq .To discuss the lagging behaviour, using
�∇v, �q and �∇T as thermal displacement gradient, heat flux vector and temperature gradient
respectively, the constitutive equation of generalised heat conduction can be written as

�q(P , t + τq ) � −[κ∗ �∇v(P , t + τv) + κ �∇T (P , t + τT )] (4)

where P(�r) is the point where material volume located at time (t + τv) and (t + τT ) together
with heat flux flow at different instant of τq for a finite time t>0.

Taking Taylor’s series expansion from the above mentioned equation, we have

�q + τq
∂ �q
∂t

� −[κ∗ �∇v + κ τT
∂

∂t
�∇θ + τ ∗

v
�∇θ ] (5)

where τ ∗
v � κ + κ∗τv and v̇ � θ .

Nowdependingupondifferent values of τq , τT , τv andκ∗, different theory canbe classified
as below-

(i) Classical Fourier’s Law :κ∗ � 0, τq � τT
(ii) Lord-Shulman (L-S) Theory: κ∗ � 0,τq � τ and τT � 0, where τ is the relaxation

time.
(iii) Green-Naghdi-III (G-N-III) theory: τq � 0, τT � 0 and τv � 0
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Neglecting the terms above the 2nd order of τq in Taylor’s expansion and then eliminating
−div �q , the generalized heat conduction Eq. (4) reduced to

κ∗∇2 θ̇ + k τT∇2 θ̈ + τ ∗
v ∇2 θ̇

�
(

1 + τq
∂

∂t
+

∂2

∂t2
1

2
τ 2q

)

F(x1, x2, x3, t) (6)

where,F(x1, x2, x3, t) � (

ρ CE θ̇ + γ T0 ė
)

and ρ, CE , γ , T0 and e denote density, specific
heat conduction, material constant, reference temperature and dilation respectively.

To provide easier procedure to avoid analytical and simulation complexity in both DPL
and 3PHL model, the Memory Dependent Derivative (MDD) concept has been introduced
using K (t − ξ ) as the kernel function with ω (>0) as time delay where ξ is any real number
arbitrarily chosen.

In context of MDD, we have introduced the generalized heat conduction equation as-

κ∗(1 + τθ

1! Dω

)

θ, i j + k τT
(

1 + τθ

1! Dω

)

θ̈, i j + τ ∗
v

(

1 + τθ

1! Dω

)

θ̇, i j

�
(

1 + τq
1! Dω +

τ 2q
2! D

2
ω

)
(

ρ CE θ̇ + γ T0 ė
)

where the integral form of a common derivative of a first order function is defined by Wang
and Li [17] as Dω f (t) � 1

ω

∫ t
t−ω

K (t − ξ ) f ′(ξ) dξ .
In context of MDD, the kernel function,K (t − ξ ) is defined as follows-

K (t − ξ ) � 1 − 2p2
ω

(t − ξ ) +
p21
ω2 (t − ξ )2

�

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when p1 � 0, p2 � 0;

1 − (t − ξ )

ω
when p1 � 0, p2 � 1

2
;

1 − (t − ξ ) when p1 � 0, p2 � ω

2
;

(

1 − t − ξ

ω

)2

when p1 � p2 � 1

Using convolution theorem of the Laplace transform, kernel function,K (t − ξ ) is defined
by L{ω Dω f (t)} � ∫ t

t−ω
K (t − ξ ) f ′(ξ) dξ � F(s).G(s) where F(s) � L{ f (t)} andG(s) �

[

1 − 2p2
ωs +

2p21
ω2s2

]

− e−ωs
[

(1 − 2p2 + p21) +
2(p21−p22)

ωs +
2p21
ω2s2

]

.

Further, Ezzat et al. [23], Abbas [29] discussed fractional order thermoelasticity in context
of three phase lags. Again Sarkar [24] and Abbas [25] [28] [30] studied the thermoelastic
infinite medium for spherical and cylindrical cavity respectively withMDD.Atwa and Sarkar
[26] also studied a problem related to magneto-thermoelasticity for a perfectly conducting
medium in context of MDD. In a semiconducting medium photothermal effect has been
analysed by Lofty and Sarkar [27].Prior to this Abbas et al. [31] studies the non-leaner
thermoelasticity where as finite element method has been used by Abbas et al. [32] to discuss
generalised thermoelasticity under ramp-type heating.

In our current work, the method of Laplace inversion and double Fourier inversion are
applied to obtain the specific and accurate numerical solution for stress distribution, tem-
perature distribution and to enquire the lagging behaviour imposed on the physical variable
against space variables for a three dimensional isotropic half space.

123



Int. J. Appl. Comput. Math (2019) 5 :154 Page 5 of 20 154

Fig. 1 Schematic diagram of the problem

Formulation of theModel

We consider a three dimensional homogeneous isotropic thermoelastic half space lying in
the region R � {(x1, x2, x3) : x1 ≥ 0, −∞ ≤ x2 ≤ ∞, −∞ ≤ x3 ≤ ∞} as in Fig. 1.

Equation of motion:

ρ üi � (λ + 2μ)u j ,i j + μ ui , j j − γ (1 + νDω)θ,i (7)

Heat conduction equation:

κ∗(1 + τθ

1! Dω

)

θ,i j + k τT
(

1 + τθ

1! Dω

)

θ̈,i j + τ ∗
v

(

1 + τθ

1! Dω

)

θ̇,i j

�
(

1 + τq
1! Dω +

τ 2q
2! D

2
ω

)
(

ρ CE θ̇ + γ T0 ė
)

(8)

Constitutive Stress–strain equation:

σi j � λ ekk δi j + 2μ ei j − γ δi j (1 + ν Dω) θ δi j (9)

Considering F(x1, x2, x3, t) � ρCE θ̇ + γ T0ė the heat conduction Eq. (8) reduces to

κ∗(1 + τθ

ω
ωDω

)

θ,i j + k τT
(

1 + τθ

ω
ωDω

)

θ̈,i j

+τ ∗
v

(

1 + τθ

ω
ωDω

)

θ̇,i j �
(

1 + τq
ω

ωDω +
τ 2q
2ω wD2

ω

)

F (10)

Introducing thenon-dimensionvariables

(

x ′
1, x

′
2, x

′
3, u

′
1, u

′
2, u

′
3
) � c0η(x1, x2, x3, u1, u2, u3),

θ ′ � γ
λ+2μθ , (ν′, t ′) � c20η(ν, t), σ ′

i j � 1
λ+2μσi j

and dropping primes for convenient, the Eqs. (7), (8) and (10) reduces to

u1,t t � u1,x1x1 + ε1
(

u2,x1x2 + u3,x1x3
)

+ ε2
(

u1,x2x2 + u1,x3x3
) − θ,x1 − ε3

ν
ω

t∫

t−ω

K (t , ξ ) θ,ξ x1 dξ ,

u2,t t � u2,x2x2 + ε1
(

u1,x1x2 + u3,x2x3
)
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+ ε2
(

u2,x1x1 + u2,x3x3
) − θ,x2 − ε3

ν
ω

t∫

t−ω

K (t , ξ ) θ,ξ x2 dξ ,

u3,t t � u3,x3x3 + ε1
(

u1,x1x3 + u2,x2x3
)

+ ε2
(

u3,x1x1 + u3,x2x2
) − θ,x3 − ε3

ν
ω

t∫

t−ω

K (t , ξ ) θ,ξ x3 dξ (11)

θ, x1 x1 + θ, x2 x2 + θ, x3 x3 +
τθ

ω

⎛

⎜
⎝

t∫

t−ω

K (t , ξ ) θ, ξ x1 x1 dξ+

t∫

t−ω

K (t , ξ ) θ, ξ x2 x2dξ+
t∫

t−ω

K (t , ξ ) θ, ξ 3 x3 dξ

⎞

⎟
⎠

+ ε6

⎛

⎜
⎝

(

θ, x1 x1 + θ, x2 x2 + θ, x3 x3
)

, t t +
τθ

ω

⎛

⎜
⎝

t∫

t−ω

K (t , ξ ) θ, ξ ξ ξ x1 x1 dξ

+
t∫

t−ω

K (t , ξ ) θ, ξ ξ ξ x2 x2dξ+
t∫

t−ω

K (t , ξ ) θ, ξ ξ ξ x3 x3 dξ

⎞

⎟
⎠

⎞

⎟
⎠

+ ε7

⎛

⎜
⎝

(

θ, x1 x1 + θ, x2 x2 + θ, x3 x3
)

, t +
τθ

ω

⎛

⎜
⎝

t∫

t−ω

K (t , ξ ) θ, ξ ξ x1 x1 dξ

+
t∫

t−ω

K (t , ξ ) θ, ξ ξ x2 x2dξ+
t∫

t−ω

K (t , ξ ) θ, ξ ξ x3 x3 dξ

⎞

⎟
⎠

⎞

⎟
⎠

� ε8

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ,t+
(

u1,x1 t+u2,x2 t+u3,x3 t
)

,t t

+
τq
ω

⎛

⎜
⎜
⎜
⎝

t∫

t−ω

K (t ,ξ ) θ,ξ ξ dξ+ε5

⎛

⎜
⎜
⎜
⎝

t∫

t−ω

K (t ,ξ ) u1,ξ ξ x1dξ

+
t∫

t−ω

K (t ,ξ ) u2,ξ ξ x2dξ+
t∫

t−ω

K (t ,ξ ) u3,ξ ξ x3 dξ

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

+
τ2q
2ω

⎛

⎜
⎜
⎜
⎝

t∫

t−ω

K (t ,ξ ) θ,ξ ξ ξ dξ+ε5

⎛

⎜
⎜
⎜
⎝

t∫

t−ω

K (t ,ξ ) u1,ξ ξ ξ x1dξ

+
t∫

t−ω

K (t ,ξ ) u2,ξ ξ ξ x2dξ+
t∫

t−ω

K (t ,ξ ) u3,ξ ξ ξ x3 dξ

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(12)

σ11 � u1,x1 + ε4
(

u2,x2 + u3,x3
) − θ − ε3

ν

ω

t∫

t−ω

K (t , ξ ) θ,ξ dξ ,

σ22 � u2,x2 + ε4
(

u1,x1 + u3,x3
) − θ − ε3

ν

ω

t∫

t−ω

K (t , ξ ) θ,ξ dξ ,

σ33 � u3,x3 + ε4
(

u1,x1 + u2,x2
) − θ − ε3

ν

ω

t∫

t−ω

K (t , ξ ) θ,ξ dξ ,

σ12 � ε2
(

u1,x2 + u2,x1
)

,

σ13 � ε2
(

u1,x3 + u3,x1
)

,

σ12 � ε2
(

u2,x3 + u3,x2
)

(13)

Method of Solution: Vector–Matrix Method

Applying Laplace and Fourier transform defined by L{ f (x , y, t)} � ḡ(x , y,
s) � ∫ ∞

0 e−st f (x , y, t) dt , Re(s) > 0 and F{ f (x , y, t)} � f̄ ∗(x , q , s) �
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1√
2π

∞∫
−∞

e−iqy f̄ (x , y, s) dy respectively and eliminating “-”, “*” Eqs. (11) (12), (13)

reduces to

U ′′
1 � A11U1 + A12U

′
2 + A13U

′
3 + A14Θ

′,
U ′′
2 � B11U2 + B12U3 + B13Θ + B14U

′
1,

U ′′
3 � C11U2 + C12U3 + C13Θ + C14U

′
1 (14)

Θ ′′ � D11U2 + D12U3 + D13Θ + D14U
′
1 (15)

σ11 � U ′
1 + β1U2 + β2U3 + β3Θ ,

σ22 � ε4U
′
1 + β4U2 + β2U3 + β3Θ ,

σ33 � ε4U
′
1 + β1U2 + β5U3 + β3Θ ,

σ12 � β6U1 + ε2U
′
2,

σ13 � β7U1 + ε2U
′
3,

σ23 � β7U2 + β6U3 (16)

where, εi , i � 1, 2, .., 13 and βi , i � 1, 2, ..7 are mentioned in appendix and “′”, “′′”
represent the 1st and 2nd derivatives with respect to x1.

The Eqs. (14) and (15) reduces to the following vector matrix differential equation as
Ghosh et al. [18], [33] -

d v−→
dx1

� A v−→ (17)

where, v−→ � [

U1U2U3 Θ U ′
1U

′
2U

′
3 Θ ′]T and A is given in the appendix.

The roots of the characteristic equation |A − λ I | � 0 are λ � ±λi (i � 1, 2, 3, 4) which
are known as eigenvalue of the matrix A.

Let X−→ (λ) � [

d1 d2 d3 d4 λd1 λd2 λd3 λd4
]T

be the eigenvector corresponding to the
eigenvalue λ of the matrix A.

The solution of the Eq. (17) is given by

�v �
6

∑

i�1

Xi yi (18)

where yi � Aieλi x and Ai are arbitrarily constants to be determined by using boundary
conditions.

Thus we obtain the displacement components and temperature as follows:

U1 �
4

∑

j�1

A j x1 j e
λ j x1 ,U2 �

4
∑

j�1

A j x2 j e
λ j x1 ,

U3 �
4

∑

j�1

A j x3 j e
λ j x1 and Θ �

4
∑

j�1

A j x4 j e
λ j x1 (19)
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Using Eq. (19) in Eq. (16), we obtain the stress components as below-

σ11 �
4

∑

i�1

Ai R1i (x1) , σ22 �
4

∑

i�1

Ai R2i (x1) , σ33 �
4

∑

i�1

Ai R3i (x1) ,

σ12 �
4

∑

i�1

Ai R4i (x1) , σ13 �
4

∑

i�1

Ai R5i (x1) , σ23 �
4

∑

i�1

Ai R6i (x1) ,

and θ �
4

∑

i�1

Ai R7i (x1) , R ji ( j � 1, 2, .., 7 and i � 1, 2, ..4) are given in the appendix .

(20)

Initial And Boundary Conditions

In our problem, we consider following initial conditions u1 � u2 � u3 � θ � u̇1 � u̇2 �
u̇3 � θ̇ � 0.

For the determination of Ai, we consider the following boundary conditions-

Mechanical boundary conditions :

σ11(0, x2, x3, t) � 0, σ12(0, x2, x3, t) � 0, σ13(0, x2, x3, t) � 0,

Thermal boundary condition :

θ(0, x2, x3, t) � r , where r is a cons tan ts. (21)

Applying Laplace and double Fourier transformation, the Eq. (21) becomes

σ11(0,ψ2,ψ3, s) � 0, σ12(0,ψ2,ψ3, s) � 0, σ13(0,ψ2,ψ3, s) � 0

and θ(0,ψ2,ψ3, s) � r∗, where r∗ � − 2
π

θ0
s

sin [ψ2g]
ψ2

sin [ψ3g]
ψ3

(22)

Using above boundary conditions (22) in Eqs. (19) and (20) a set of linear simultaneous
equations are obtained as follows-

4
∑

j�1

A j l1 j � 0,
4

∑

j�1

A j l4 j (x) � 0,
4

∑

j�1

A j l5 j (x) � 0,
4

∑

j�1

A j l7 j � r∗ (23)

where lij (i � 1,2,..,7) and j � 1,2,3,4 are given in the appendix.
Applying Crammer’s rule in the above mentioned equations we obtain the values of

arbitrary constants, Ai(i � 1,2,3,4) as Ai � Di
�

where Di and � are given in the appendix.

Numerical

To avoid complexity of the inversion of Laplace–Fourier transform in space–time domain,
an efficient computer programme has been developed for numerical computation of physical
variables like stress, strain, temperature by using Method of Bellman et al. [19], where we
have taken the roots(ti) of Legendre Polynomial of degree 7 as the seven values of time (t
� ti, i � 1…7, where t1 � 0.025775, t2 � 0.138382, t3 � 0.352509, t4 � 0.693147, t5 �
1.21376, t6 � 2.04612 and t7 � 3.67119). Also Inverse Fourier Transforms are calculated
numerically by infinite integral using seven point Gaussian quadrature formulas for different
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Fig. 2 Distribution of σ11 versus x1 at different time

values of x2 and x3. Numerical computations and distribution of physical variable to inspect
the influence of time parameter (t), phase lag variables, space variable(x), time-delay (ω)
have been analyzed. The numerical values (in SI unit) of constants for silicon are considered

as follows:

κ � 386.0, κ∗ � 200.0, CE � 1.4 × 103, λ � 7.76 × 1010,

μ � 3.86 × 1010, ρ � 8954.0, T0 � 293.0, ν � 0.33, γ � 210 × 104,

τθ � 0.01, τq � 0.2, τT � 0.15, τv � 0.05, c0 � 2200

Graphical Analysis

For fixed time delay (ω � 0.04) with the kernel function, K (t , ξ ) � [1 − (t − ξ )/ω]2,
p1 � 0.5, p2 � 0.7 at t � t5, and t � t7 t � t1, t � t3, at fixed x2 � 1.5 and x3 � 1.7.

Figure 2 depicts the non-dimensional numerical distribution of the normal stress, σ11 for
different values of x1. Initially the numerical value of σ11 is zero. At t � t1 and t � t3,σ11
is positive indicating extensional stress while at t � t5 and t � t7, it is negative stress up to
x1 � 0.3, then a tendency to show a positive or extensive stress before vanishing to zero.

Figure 3 and 4 represent the characteristic curves of non-dimensional stress components
(σ12 and σ13) along x1-axis. The numerical value increase from zero and then become steady
after gaining maximum value at x1 � 0.25.A gradual decrease in the rate of increment of
both σ12 and σ13 are marked from t5 → t3 → t7 with a very low rate observed at t � t1.

Figure 5 shows the characteristics behaviour of σ22 along x1-axis. The non-dimensional
numerical values of this stress component increase gradually and thereafter decrease attaining
maximum value in the region 0.1 ≤ x1 ≤ 0.2 before vanishing at x1 � 0.4.Afterwards, an
alternate small negative and positive stress values appear with increasing x1.

For fixed time delay (ω � 0.04) with the kernel function,K (t , ξ ) � [1 − (t − ξ )/ω]2,
p1 � 0.5, p2 � 0.7 at t � t2, t � t4 and t � t6 at fixed x2 � 1.5 and x3 � 1.7.
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Fig. 3 Distribution of σ12 vs. x1 at different time

Fig. 4 Distribution of σ13 versus x1 at different time

Figure 6 represents the numerical distribution of the non-dimensional stress component
(σ23) along x1-axis. The non-dimensional numerical value of σ23 have been observed at x1
� 0.6 showing oscillating characteristics. Maximum shearing stress have been seen near the
middle plane of the plate while from t � t2 to t � t6, a sharp decrease in numerical values
of shearing stress is noted.

Figure 7 exhibits the characteristic representation of the stress component (σ33) for dif-
ferent values of x1 at different time t � t1, t � t3, t � t5, and t � t7 for fixed time delay (ω
� 0.04). At different time, σ33 gradually decreases having least value in 0.1 ≤ x1 ≤ 0.2
and maximum value at x1 � 0.5. Finally σ33 → 0 as x1 → ∞ .
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Fig. 5 Distribution of σ22 versus x1 at different time

Fig. 6 Distribution of σ23 versus x1 at different time

Fig. 7 Distribution of σ33 versus x1 at different time

Figure 8 is about the temperature distribution along x1-axis for different numerical values
of kernel function (k(t , ξ )) for fixed ω � 0.04. The characteristic curves depict that the
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Fig. 8 Temperature distribution versus x1 for diff. values of k(t , ξ ).

Fig. 9 Temperature distribution versus x1 for diff. value of ω

numerical values of temperature gradually increase and after certain time at x1 � 0.6 and
onwards become steady.

Figure 9 represents the numerical characteristics of temperature for different values of
time-delays. The characteristic curves become steady after increasing gradually from zero.
The maximum value of temperature is noted at x1 � 0.6 which becomes steady up to
x1 � 1.0.

Figure 10 represent the phase lag effect on temperature distribution. For both the G-N-III
and L-S model the temperature gradually increases from zero for t � t1, t � t3.
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Fig. 10 Temperature distribution versus x1 for different PHL model

Fig. 11 Temperature distribution versus x1 at diff time

Figure 11 characterises the distribution of temperature along x1 –axis for τθ � 0.01,
τq � 0.2, τT � 0.15,τv � 0.05 as the effect of three phase lags in this model on temperature
at different time t � t2, t � t4, t � t6.The non-dimensional numerical value of temperature
increase gradually with a maximum value at x1 � 0.6 for fixed time delay (ω � 0.04) with
kernel function, K (t , ξ ) � [1 − (t − ξ )/ω]2, p1 � 0.5, p2 � 0.7.
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Application

The concept of half space has a great impact in engineering science. We know the boundary
conditions are preserved on the conducting boundary surface which is also known as image
plane or symmetry plane. But when the same dielectric medium removes and replaces the
conducting medium in upper half space the three dimensional medium becomes homoge-
neous, linear and isotropic in various electrostatic field. It is also notable that field calculation
for lower half space has no significant physical meaning as temperature distribution is calcu-
lated based on upper half field distribution. In thermoelasticity, a finite speed propagation of
thermal signal is considered as thermodynamic theories are generally based on the wave-like
(or hyperbolic-type) heat conduction equation. This phenomenon of generalized thermoelas-
ticity attracts the researchers.

Unambiguous numerical results and inherent procedural complexities using both Integral
order and Fractional order Calculus to solve problems in generalized thermoelasticity leads
the researchers to opt for the new generation technique like 3PHL model using MDD. This
model in association with Kernel function and time delay in context of MDD can produce
convergent and specific solution for the generalized heat conduction equation. This model
provides specific and moderate solution for field variables with respect to space variables in
different field of thermoelasticity in Engineering andMechanical sciences like-construction
engineering, visco-elasticity, nuclear reactor design, etc. together with earthquake sci-
ence, geophysics. Use of Integral transform in MDD and the different phase lag variables
in conventional heat conduction equation this model depicts more accurate and convenient
continuous numerical results to calculate damage tolerance, thermal durability of an elastic
material and help to inspect lagging behaviour on filed variables.

Application of the Infinite Half Space Model to Explain the Coding of Oceanic
Lithosphere/Plate

The dashed line indicates the approximation as a plate of constant thickness (based on Mc
Kenzie et al. [20] and Sclater et al. [21].

Evaluation of heat flow through the earth especially along the tectonically active plate
margins is a continuous process throughout the history of the earth. The maximum heat
flux is observed along the mid-oceanic-ridge [M.O.R.] areas. Thus the application of three
dimensional mathematical- model, specially related to heat flux, has a significant correlation
with natural heat fluxes through the oceanic lithosphere along the M.O.R.

Considering different boundary-layered models, the plate models better explain the
observed thermal data above the oceanic or continental lithosphere and evaluate the ther-
mal structure of the earth as determined by the seismic wave propagation studies. The huge
amount of heat flux in the M.O.R. is found to be distributed at great distances from the ridge
axis and sufficiently large vertical ocean depths over the oceanic lithosphere [Fig. 12a, b].
A two-layered model of the oceanic lithosphere has been considered. The upper layer is an
elastic rigid rock layer with a mechanically defined lower boundary, above which conduction
of heat is thought to be the main process of heat transfer. Apart from the uniform heat source,
several evidences of heat sources are suggested like the radiogenic heat in the upper litho-
sphere, shearing heat at the lower surface of the lithosphere, reheating of old lithosphere due
to intrusion of hot mantle plumes at hotspots and heat transfer due to small scale convection
currents in the lower lithosphere. Thus the convecting asthenosphere into the lithosphere
is thought to attribute the heat transfer model, consequently giving a thinner lithosphere
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Fig. 12 a predicted thermal structure in the coding plate (as Turcotte and Schubert [22]). b vertical heat flow
is narrow columns that move away from ridge crest showing symmetrical behavior on both sides

[Fig. 13a, b] than in the half-space models. Structural variation between the oceanic and
continental crusts derived from dispersion of seismic waves is highly compatible with the
thermal model of an elastic and rigid mechanical layer underlain by a convecting thermal
boundary layer extending to about 150 km.

Themathematical calculations show that there is a gradual increase in temperatures which
becomes steady as the source of heat moves along x1 for different variables like Kernel
function, time, time delay and phase lag. A similar behaviour of a high heat flux is observed
as the hot mantle material along with the added effects of other heat sources move upward
along the ridge axis and a gradual cooling of successive older rocks away from the ridge crest
[Fig. 13a].

Movement of heat sources along the x1 for different variables resulting a high initial
extensive and compressive normal stresses appears to be due to excessive applied forces
generated by the upward movement of hot mantle material and simultaneous release of
pressure. While the convective currents below the rigid plates appear to cause the shearing
stresses at slightly later times.
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Fig. 13 Schematic Diagram of lithospheric plate structre beneth oceans

Conclusion

In our presentwork, studying various applications onmechanical engineering, appliedmathe-
matics,industrial, geophysical sectors and geothermal structure of the earth we have analysed
the different generalized heat conduction equations and different phase lag models to intro-
duce a new model for a three dimensional isotropic half space in context of MDD with three
different phase lags. According to our work we have reached to the following conclusion that

(i) The 3PHL model is more efficient relative to other existing well-known theories of
thermoelasticity.

(ii) The 3PHL model acts like a general or standard one from which other thermoelastic
models can be specified as different special cases.

(iii) The kernel function with its different values and time delay parameter has signifi-
cant influence in the characteristic representation of distribution of components of
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field variables with respect to space variables. The kernel function together with time
delay parameter shows instantaneous change rate for heat conduction depending upon
previous state.

(iv) The time variable and time delay parameter in MDD is capable to judge and is able to
predict accurately and specifically the behavioural characteristics of the possible field
variables.

(v) Use of Integral transforms used in MDD, provide more accurate, specific and continu-
ous numerical results compared to other thermoelastic models like fractional order or
integral order derivative.

(vi) We are capable to measure significant differences in the distribution of field variables
with respect to different models –Fourier’s law model, L-S model, G-N-III model with
3PHL model.

(vii) We conclude finally that Figs. 1, 2, 3, 10 satisfied the boundary conditions and the
rest of the figures(Figs. 4, 5, 6, 7, 8, 9) satisfied the numerical results according to our
analytical problem.

Appendix

A �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

M51 M52 M53 M54 M55 M56 M57 M58
M61 M62 M63 M64 M65 M66 M67 M68

M71 M72 M73 M74 M75 M76 M77 M78

M81 M82 M83 M84 M85 M86 M87 M88

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

v−→ � [

U1U2U3 Θ U ′
1U

′
2U

′
3 Θ ′]T

M51 � A11, M52 � 0, M53 � 0, M54 � 0, M55 � 0,

M56 � A12, M57 � A13, M58 � A14,

M61 � 0, M62 � B11, M63 � B12, M64 � B13 , M65 � B14, M66 � 0, M67 � 0 , M68 � 0

M71 � 0, M72 � C11, M73 � C12, M74 � C13, M75 � C14, M76 � 0, M77 � 0 , M78 � 0

M81 � 0, M82 � D11, M83 � D12, M84 � D13, M85 � D14, M86 � 0, M87 � 0 , M88 � 0

A11 � s2 + ε3
(

ψ2
2 + ψ2

3

)

,

A12 � −i ε1 ψ2,

A13 � −i ε1 ψ3,

A14 � 1 +
ε3 ν G

ω
,

B11 � s2 + ψ2
2

ε3
,

B12 � ε1 ψ2 ψ3

ε3

B13 � i ψ2

ε3

(

1 +
ε3 ν G

ω

)

,

B14 � − i ε1 ψ2

ε3
,
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C11 � ε1 ψ2 ψ3

ε3
,

C12 � s2 + ψ2
3 + ε3ψ

2
2

ε3
,

C13 � i ψ3

ε3

(

1 +
ε3 ν G

ω

)

,

C14 � − i ε1 ψ3

ε3
,

D11 � ε12

ε9
,

D12 � ε13

ε9
,

D13 � ε10

ε9
,

D14 � ε14

ε9

β1 � i ε4 ψ2

β2 � i ε4 ψ3

β3 � −
(

1 +
ε3 ν G

ω

)

,

β4 � i ψ2,

β5 � i ψ3,

β6 � i ε2 ψ2,

β7 � i ε2 ψ3,

ε1 � λ + μ

λ + 2μ
; ε2 � μ

λ + 2μ
; ε3 � 1

c0η2
; ε4 � λ

λ + 2μ
;

ε5 � T0 γ 2

k η (λ + 2μ)
; ε6 � k c40 η2 τT

k ∗ ; ε7 � c0 η τ ∗
v

k ∗ ;

ε8 � k

k ∗ ; ε9 �
(

1 +
τθ G

ω

)
(

1 + ε6 s
2 + +ε7 s

)

;

ε10 � ε8

(

s +
τq s G

ω
+

τ 2q s2 G

2ω

)

+ ε9
(

ψ2
2 + ψ2

3

)

;

ε11 � ε5 ε8

(

s +
τq s G

ω
+

τ 2q s2 G

2ω

)

;

ε12 � i ψ2 ε5 ε8

(

s +
τq s G

ω
+

τ 2q s2 G

2ω

)

;

ε13 � i ψ3 ε5 ε8

(

s +
τq s G

ω
+

τ 2q s2 G

2ω

)

;
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d1 � (h24h13 − h14h23)(h22h33 − h32h23) − (h34h23 − h24h33)(h12h23 − h22h13),

d2 � (h34h23 − h24h33)(h11h23 − h21h13) − (h24h13 − h14h23)(h21h33 − h31h23),

d3 � (h12h21 − h11h22)(h21h34 − h31h24) − (h22h31 − h21h32)(h11h24 − h14h21),

d4 � (h11h23 − h21h13)(h22h33 − h32h23) − (h12h23 − h22h13)(h21h33 − h31h23),

,

h11 � M51 − λ2 , h12 � λM56 , h13 � λM57 , h14 � λM58

h21 � M65 , h22 � M62 − λ2 , h23 � M63 , h24 � M64

h31 � λM75 , h32 � M72 , h33 � M73 − λ2 , h34 � λM74

h41 � λM85 , h42 � M82 , h43 � M83 , h44 � M84 − λ2

R1i �
(

−λi d1i +
3

∑

k�1

βk d(k+1)i

)

e−λi x1 , , i � 1(1)4

R2i � (−λi ε4 d1i + β4 d2i + β2 d3i + β3 d4i )e
−λi x1 , i � 1(1)4

R3i � (−λ1 ε4 d1i + β1 d2i + β5 d3i + β3 d4i )e
−λi x1 ; , i � 1(1)4

R4i � (β6 d1i − ε2 λi d2i )e
−λi x1 , i � 1(1)4

R5i � (β7 d1i − ε2 λi d3i )e
−λi x1 , i � 1(1)4

R6i � (β7 d2i + β6 d3i )e
−λi x1 , i � 1(1)4

R7i � d4i e
−λi x1 i � 1(1)4

l1 j � R1 j (0), l4 j � R4 j (0), l5 j � R5 j ,

l 7 j � R7 j (0), where j � 1, 2, 3, 4

and Ai � Di

�
, i � 1, 2, 3, 4
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⎢
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