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Abstract
In this manuscript, we have proposed the scheme of dual combination combination multi-
switching synchronization for fractional order hyperchaotic nonlinear dynamical systems.
The proposed scheme has been applied to fractional order hyperchaotic systems. To verify
the results, numerical simulations are carried out using Matlab by taking the hyperchaotic
Lü system, Lorenz system, Chen system and the Rössler system as examples.
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Introduction

The concept of chaos synchronization has become an important area of research since it was
first proposed by Pecora and Carroll in their seminal paper [1]. It has potential applications
in interdisciplinary fields such as physics [2], electrical engineering [3], economics [4],
communication theory [5], biological systems [6], chemistry [7], information processing
[8] etc. Several methods have been proposed by the researchers over the years such as
complete synchronization [9], anti synchronization [10], hybrid synchronization [11], hybrid
function projective synchronization [12], phase and anti-phase synchronization [13], lag
synchronization [14], projective synchronization [15], hybrid projective synchronization [16]
to synchronize either identical or non-identical chaotic systems. Various techniques have also
been developed to synchronize the chaotic systems such as active control method [17], linear
and nonlinear feedback control method [18,19], backstepping control method [20], sliding
mode control method [21], adaptive control method [22] etc.
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The majority of the work to synchronize the chaotic systems has been restricted to only
a single drive—response system, wherein a single response system is synchronized with
a single drive system. Recently this work has been extended to multiple drive—response
systems where two or more chaotic systems are synchronized, such as dual synchronization,
combination synchronizaion, combination–combination synchronization, dual combination
combination synchronization, compound synchronization [23–27] and so on. These schemes
are eloquent in strengthening the security of the information that is transmitted through the
chaotic signals.

In dual synchronization scheme, two drive systems are synchronized with two response
systems. Liu and Davids [28] first introduced the concept of dual synchronization in the
year 2000. Since then a lot of work has been done on dual synchronization of the chaotic
systems [29,30]. The method of combination synchronization involves one response system
while the combination–combination syncronization is an addition to combination synchro-
nization wherein two response systems are used to synchronize the two drive systems. Dual
combination–combination synchronization is a further extension, where two pair of drive
systems each having two chaotic systems and two pair of response systems each containing
two chaotic systems are synchronized.

Ucar et al. [31] proposed the concept ofmultiswitching synchronization as a significant and
attractive continuation of the existing synchronization schemes. In this scheme, the different
states of the drive system are synchronized with the different states of the response system.
Due to the potential applications of this scheme in information security, it has become an
interesting area of research among the researchers. A few work done in this direction can be
seen in [32–34].

Fractional calculus is a classicalmathematical concept that has a history as long as calculus
itself. The benefit of fractional calculus, over the integer calculus, lies in the fact that fractional
order systems describe real systems in interdisciplinary fields more elegantly in comparison
to integer order structures. The birth of fractional calculus goes back to 1695 when for
the first time Leibniz suggested the possibility of existance of fractional derivatives. Many
great mathematicians like Abel, Riemann, L’Hôpital, Fourier, Euler, Laplace, Liouville have
contributed directly or indirectly towards the development of fractional calculus theory and
its mathematical consequences. A considerable use of fractional calculus has been made in
engineering. It has beenused as a tomodel complex systems.Linear viscoelasticity is certainly
the field of the most extensive applications of fractional calculus since its appearance, in
view of its ability to model hereditary phenomena with long memory. Fractional calculus has
become an exciting mathematical tool for solving diverse problems in physics, engineering
and mathematics. In the field of dynamical system theory, a lot of work has been done in
synchronizing fractional order chaotic systems [2–6,15,16,21,22].

In this paper, we present the idea of dual combination–combination multiswitching syn-
chronization for the fractional order hyperchaotic systems. The main significant addition of
this work is that the concept of dual combination combination multiswitching synchroniza-
tion (DCCMS) has been applied to fractional order systems. Previously, this method has
been applied to synchronize only the integer order chaotic systems [33]. We have extended
this work to synchronize 4D fractional order systems by the proposed scheme using active
control technique. No work has been done previously for synchronizing the eight fractional
order hyperchaotic systems by this method. The eight hyperchaotic systems synchronized
by this scheme have four drive systems and four response systems involved. Using the frac-
tional order hyperchaoic Lü system, Lorenz system, Chen system and the Rössler system
as examples, we have shown the effectiveness of the proposed scheme. Suitable controllers
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have been designed to achieve the desired synchronization by using the Lyapunov stability
criteria for fractional order systems.

This paper is organized as: In “DCCMS Between the Fractional Order Hyperchaotic
Systems” section, the scheme of DCCMS has been proposed. In “Example” section, the
proposed scheme has been applied to fractional order hyperchaotic systems. The results are
validated by performing numerical simulations in “Numerical Simulations” section. Finally,
the conclusions are given in “Conclusion” section.

DCCMS Between the Fractional Order Hyperchaotic Systems

Consider two pair of four hyperchaotic drive systems given by

Dqu1(t) = φ1(u1(t)) (1)

Dqu2(t) = φ2(u2(t)) (2)

and

Dqv1(t) = ψ1(v1(t)) (3)

Dqv2(t) = ψ2(v2(t)) (4)

where u1 = (u11, u12, . . . , u1n)T , u2 = (u21, u22, . . . , u2n)T are the state vectors of the
drive systems (1) and (2) respectively and φ1, φ2 : R

n → R
n are nonlinear continuous

vector functions. v1 = (v11, v12, . . . , v1n)
T , v2 = (v21, v22, . . . , v2n)

T are the state vectors
of the drive systems (3) and (4) respectively and ψ1, ψ2 : Rn → R

n are known continuous
vector functions.

Consider the corresponding two pair of four hyperchaotic response systems given by

Dqw1(t) = η1(w1(t)) + θ1 (5)

Dqw2(t) = η2(w2(t)) + θ2 (6)

and

Dqz1(t) = ζ1(z1(t)) + θ∗
1 (7)

Dqz2(t) = ζ2(z2(t)) + θ∗
2 (8)

where w1 = (w11, w12, . . . , w1n)
T , w2 = w21, w22, . . . , w2n)

T are the state vectors of the
response systems (5) and (6) respectively and η1, η2 : R

n → R
n are known continuous

vector functions. z1 = (z11, z12, . . . , z1n)T , z2 = (z21, z22, . . . , z2n)T are the state vectors
of the systems (7) and (8) respectively and ζ1, ζ2 : Rn → R

n are nonlinear continuous vector
functions. θ1 = (θ11, θ12, . . . , θ1n)

T , θ2 = (θ21, θ22, . . . , θ2n)
T , θ∗

1 = (θ∗
11, θ

∗
12, . . . , θ

∗
1n)

T

and θ∗
2 = (θ∗

21, θ
∗
22, . . . , θ

∗
2n)

T are the nonlinear controllers to be determined.

Definition 1 The drive systems attain the Dual Combination Combination Synchronization
with the response systems, if there exist matrices P, Q, R and S of order 2n × 2n such that

lim
t→∞ ‖ e(t) ‖= lim

t→∞ ‖ Rw(t) + Sz(t) − Pu(t) − Qv(t) ‖= 0.

where ‖ . ‖ is the Euclidean norm and e(t) = (e1(t), e2(t))T is the error signal, u =
(u1, u2)T , v = (v1, v2)

T , w = (w1, w2)
T and z = (z1, z2)T are the state vectors of the drive

and response systems.
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Remark 1 The matrices P, Q, R and S in the above definition are called scaling matrices and
are taken as diagonal matrices for convenience. Let us take P = diag(P1, P2), where P1 =
diag(α11, α12, . . . , α1n) and P2 = diag(α21, α22, . . . , α2n), Q = diag(Q1, Q2), where
Q1 = diag(β11, β12, . . . , β1n) and Q2 = diag(β21, β22, . . . , β2n), R = diag(R1, R2),
where R1 = diag(γ11, γ12, . . . , γ1n) and R2 = diag(γ21, γ22, . . . , γ2n) and S =
diag(S1, S2), where S1 = diag(δ11, δ12, . . . , δ1n) and S2 = diag(δ21, δ22, . . . , δ2n).

Remark 2 Using the notations of remark (1), the condition for the synchronization of the
eight systems in Definition 1, is equivalent to

lim
t→∞ ‖ e1(t) ‖= lim

t→∞ ‖ R1w1(t) + S1z1(t) − P1u1(t) − Q1v1(t) ‖= 0.

and
lim
t→∞ ‖ e2(t) ‖= lim

t→∞ ‖ R2w2(t) + S2z2(t) − P2u2(t) − Q2v2(t) ‖= 0

The components e1, e2 of the error signal given by e1 = (e11, e12, . . . , e1n)T and e2 =
(e21, e22, . . . , e2n)T are described as:

e1k = γ1kw1k + δ1k z1k − α1ku1k − β1kv1k

and

e2k = γ2kw2k + δ2k z2k − α2ku2k − β2kv2k

where k = 1, 2, 3, . . . , n.

Remark 3 Using the notations of Remarks 1 and 2, the components of the error signal e(t)
can further be defined as

(e1k(t))lmi j = γ1lw1l(t) + δ1mz1m(t) − α1i u1i (t) − β1 jv1 j (t)

and

(e2k(t))lmi j = γ2lw2l(t) + δ2mz2m(t) − α2i u2l(t) − β2 jv2 j (t)

where i, j, l,m = 1, 2, 3, . . . , n and k = 1, 2, . . . , n

Definition 2 If the indices i, j, l,m are choosen in a way such that i = j = l �= m or
i = j = m �= l or i �= j = l = m or j �= i = l = m or i = j �= l = m or i = j �= l �= m or
i �= l �= j = m or i �= j �= l = m or i �= j = l �= m or i = l �= j = m or i = m �= j = l
or i = l �= j �= m or i = m �= j �= l or i �= j �= l �= m, and

lim
t→∞ ‖ e(t) ‖= lim

t→∞ ‖ Rw(t) + Sz(t) − Pu(t) − Qv(t) ‖= 0.

where ‖.‖ is the Euclidean norm, then the drive systems are said to be in Dual Combination
Combination Multiswitching Synchronization (DCCMS) with the response systems.

Remark 4 If the indices i, j, l,m are choosen such that i = j = l = m, then the Dual combi-
nation combination multiswitching synchronization becomes dual combination combination
synchronization.

Remark 5 If either R = 0 or S = 0 then the dual combination combination multiswitching
synchronization reduces to dual combination multiswitching synchronization.
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Remark 6 If either P1 = Q1 = R1 = S1 = 0 or P2 = Q2 = R2 = S2 = 0 then
the dual combination combination multiswitching synchronization reduces to combination
combination multiswitching synchronization.

Remark 7 If either P1 = Q1 = R1 = S1 = 0 and R2 = 0 or S2 = 0 or P2 = Q2 =
R2 = S2 = 0 and R1 = 0 or S1 = 0 then the dual combination combination multiswitching
synchronization reduces to multiswitching combination synchronization.

Remark 8 If P = −In and Q = −In then the dual combination combination multiswitching
synchronization becomes dual combination combination multiswitching anti synchroniza-
tion, where I2n is the 2n × 2n Identity matrix.

From systems (1–8), the error dynamical system becomes

Dqe(t) =
[
R1Dqw1(t) + S1Dqz1(t) − P1Dqu1(t) − Q1Dqv1(t)
R2Dqw2(t) + S2Dqz2(t) − P2Dqu2(t) − Q2Dqv2(t)

]

=
[
R1(η1(w1) + θ1) + S1(ζ1(z1) + θ∗

1 ) − P1φ1(u1) − Q1ψ1(v1)

R2(η2(w2) + θ2) + S2(ζ2(z2) + θ∗
2 ) − P2φ2(u2) − Q2ψ2(v2)

]

Our goal is to design the contollersΘi = Riθi +Siθ∗
i such that the error dynamics reduces

to Be(t), and all the eigenvalues λi of the matrix B satisfy the condition |arg(λi )| ≥ απ
2 , i =

1, 2, 3, . . . 2n, such that the drive and response systems are synchronized.

Remark 9 If the fractional order q is taken to be 1, then the results can be used for integer
order systems also by choosing the nonlinear controllers as

R1θ1 + S1θ
∗
1 = P1φ1(u1) + Q1ψ1(v1) − R1η1(w1) − S1ζ1(z1) − k1e1

and

R2θ2 + S2θ
∗
2 = P2φ2(u2) + Q2ψ2(v2) − R2η2(w2) − S2ζ2(z2) − k2e2

where k1, k2 are positive real numbers. Defining the Lyapunov function as

V (e) = 1

2
eT e,

and by using Lyapunov stability criteria [35], synchronization can be achieved between the
integer order systems. The results in this article are therefore the generalization of the results
for integer order systems.

Example

In this section we will consider four non- identical fractional order hyperchaotic systems to
achieve synchronization between the systems. Consider the fractional order Lü system and
the fractional order Rössler system as the first pair of two fractional order hyperchaotic drive
systems is given by

Dqu1 = a1(u12 − u11) + u14,
Dqu12 = −u11u13 + c1u12,
Dqu13 = u11u12 − b1u13,
Dqu14 = u11u13 + d1u14

(9)
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Dqu21 = −u22 − u23,
Dqu22 = u21 + a2u23 + u24,
Dqu23 = b2 + u21u23,
Dqu24 = −c2u23 + d2u24

(10)

where (u11, u12, u13, u14)T and (u21, u22, u23, u24)T are the state vectors of the Lü and
Rössler systems respectively, a1, b1, c1, d1 and a2, b2, c2, d2 are the real parameters of the
Lü and Rössler systems respectively. The second pair of two drive systems as Chen and
Lorenz system are given by

Dqv11 = a3(v12 − v11) + v14,

Dqv12 = b3v11 − v11v13 + c3v12,
Dqv13 = v11v12 − d3v13,
Dqv14 = v12v13 + f3v14

(11)

Dqv21 = a4(v22 − v21) + v24,

Dqv22 = (b4 − v23)v21 − v22,

Dqv23 = v21v22 − c4v23,
Dqv24 = −v22v23 + d4v24

(12)

where (v11, v12, v13, v14)
T and (v21, v22, v23, v24)

T are the state vectors of the Chen and
Lorenz systems respectively and a3, b3, c3, d3, f3 and a4, b4, c4, d4 are the real parameters
of the systems (11) and (12) respectively.

Corresponding to the drive systems, the two pair of fractional order hyperchaotic response
systems are given by

Dqw11 = a1(w12 − w11) + w14 + θ11,

Dqw12 = −w11w13 + c1w12 + θ12,

Dqw13 = w11w12 − b1w13 + θ13,

Dqw14 = w11w13 + d1w14 + θ14

(13)

Dqw21 = −w22 − w23 + θ21,

Dqw22 = w21 + a2w23 + w24 + θ22,

Dqw23 = b2 + w21w23 + θ23,

Dqw24 = −c2w23 + d2w24 + θ24

(14)

and

Dqz11 = a3(z12 − z11) + z14 + θ∗
11,

Dqz12 = b3z11 − z11z13 + c3z12 + θ∗
12,

Dqz13 = z11z12 − d3z13 + θ∗
13,

Dqz14 = z12z13 + f3z14 + θ∗
14

(15)

Dqz21 = a4(z22 − z21) + z24 + θ∗
21,

Dqz22 = (b4 − z23)z21 − z22 + θ∗
22,

Dqz23 = z21z22 − c4z23 + θ∗
23,

Dqz24 = −z22z23 + d4z24 + θ∗
24

(16)

where (w11, w12, w13, w14)
T , (w21, w22, w23, w24)

T are the state vectors of the first pair
of response systems and (z11, z12, z13, z14)T , (z21, z22, z23, z24)T are the state vectors of
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the second pair of response systems respectively. (θ11, θ12, θ13, θ14)T , (θ21, θ22, θ23, θ24)
T ,

(θ∗
11, θ

∗
12, θ

∗
13, θ

∗
14)

T and (θ∗
21, θ

∗
22, θ

∗
23, θ

∗
24)

T are the non - linear controllers to be determined.

A large number of switches are possible between the state vectors of the drive and response
systems. Consider one such possible switch as:

(e11)3412 = γ13w13 + δ14z14 − α11u11 − β12v12

(e12)3121 = γ13w13 + δ11z11 − α12u12 − β11v11

(e13)4232 = γ14w14 + δ12z12 − α13u13 − β12v12

(e14)2341 = γ12w12 + δ13z13 − α14u14 − β11v11

(e21)3212 = γ23w23 + δ22z22 − α21u21 − β22v22

(e22)4231 = γ24w24 + δ22z22 − α23u23 − β21v21

(e23)3224 = γ23w23 + δ22z22 − α22u22 − β24v24

(e24)3113 = γ23w23 + δ21z21 − α21u21 − β23v23

Using systems (9–16), the error dynamical system becomes

Dq(e11)3412 = γ13(w11w12 − b1w13 + θ13) + δ14(z12z13 + f3z14 + θ∗
14)

− α11(a1(u12 − u11) + u14) − β12(b3v11 − v11v13 + c3v12),

Dq(e12)3121 = γ13(w11w12 − b1w13 + θ13) + δ11(a3(z12 − z11) + z14 + θ∗
11)

− α12(−u11u13 + c1u12) − β11(a3(v12 − v11) + v14),

Dq(e13)4232 = γ14(w11w13 + d1w14 + θ14) + δ12(b3z11 − z11z13 + c3z12 + θ∗
12)

− α13(u11u12 − b1u13) − β12(b3v11 − v11v13 + c3v12),

Dq(e14)2341 = γ12(−w11w13 + c1w12 + θ12) + δ13(z11z12 − d3z13 + θ∗
13)

− α14(u11u13 + d1u14) − β11(a3(v12 − v11) + v14),

Dq(e21)3212 = γ23(b2 + w21w23 + θ23) + δ22((b4 − z23)z21 − z22 + θ∗
22)

− α21(−u22 − u23) − β22((b4 − v23)v21 − v22),

Dq(e22)4231 = γ24(−c2w23 + d2w24 + θ24) + δ22((b4 − z23)z21 − z22 + θ∗
22) − α23(b2

+ u21u23) − β21(a4(v22 − v21) + v24),

Dq(e23)3224 = γ23(b2 + w21w23 + θ23) + δ22((b4 − z23)z21 − z22 + θ∗
22) − α22(u21

+ a2u23 + u24) − β24(−v22v23 + d4v24),

Dq(e24)3113 = γ23(b2 + w21w23 + θ23) + δ21(a4(z22 − z21) + z24 + θ∗
21)

− α21(−u22 − u23) − β23(v21v22

− c4v23)

Defining the active controllers as:

γ13θ13 + δ14θ
∗
14 = −γ13(w11w12 − b1w13) − δ14(z12z13 + f3z14) + α11(a1u12 + u14)

+β12(b3v11 − v11v13 + c3v12) − a1(e11)3412 +U11,

γ13θ13 + δ11θ
∗
11 = −γ13(w11w12) − δ11(a3(z12 − z11) + z14) + α12(−u11u13 + c1u12)

+β11(a3(v12 − v11) + v14) − b1(e12)3121 +U12,

γ14θ14 + δ12θ
∗
12 = −γ14(w11w13 + d1w14) − δ12(b3z11 − z11z13 + c3z12) + α13(u11u12

−b1u13) + β12(b3v11 − v11v13 + c3v12) − (e13)4232 +U13,
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γ12θ12 + δ13θ
∗
13 = −γ12(−w11w13 + c1w12) − δ13(z11z12) + α14(u11u13 + d1u14)

+β11(a3(v12 − v11) + v14) − d3(e14)2341 +U14,

γ23θ23 + δ22θ
∗
22 = −γ23(b2 + w21w23) − δ22((b4 − z23)z21) + α21(−u22 − u23)

+β22((b4 − v23)v21 − v22) − (e21)3212 +U21,

γ24θ24 + δ22θ
∗
22 = −γ24(−c2w23 + d2w24) − δ22((b4 − z23)z21) + α23(b2 + u21u23)

+β21(a4(v22 − v21) + v24) − (e22)4231 +U22,

γ23θ23 + δ22θ
∗
22 = −γ23(b2 + w21w23) − δ22((b4 − z23)z21) + α22(u21 + a2u23

+u24) + β24(d4v24 − v22v23) − (e23)3224 +U23,

γ23θ23 + δ21θ
∗
21 = −γ23(b2 + w21w23) − δ21(a4z22 + z24) + α21(−u22 − u23)

+β23(v21v22 − c4v23) − a4(e24)3113 +U24

With this choice of controllers, the error system becomes

Dq(e11)3412 = U11 − a1(e11)3412,

Dq(e12)3121 = U12 − b1(e12)3121,

Dq(e13)4232 = U13 − (e13)4232,

Dq(e14)2341 = U14 − d3(e14)2341,

Dq(e21)3212 = U21 − (e21)3212,

Dq(e22)4231 = U22 − (e22)4231,

Dq(e23)3224 = U23 − (e23)3224,

Dq(e24)3113 = U24 − a4(e24)3113

(17)

where Ui j are active controllers. Choosing the control functions Ui j such that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U11

U12

U13

U14

U21

U22

U23

U24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11
e12
e13
e14
e21
e22
e23
e24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where A is a 8 × 8 matrix choosen in a way such that all the eigenvalues λi of the linear
system (17) satisfies the condition that |arg(λi )| ≥ qπ

2 . Hence by the stability criteria for
fractional order systems DCCMS is achieved between the drive and response systems.

Numerical Simulations

Based on the DCCMS scheme discussed above, the drive systems (9–12) are synchronized
with the response systems (13–16) for fractional order α = 0.95. The initial conditions of the
drive and response systems are (u11, u12, u13, u14) = (5, 8,−1,−3), (u21, u22, u23, u24) =
(−10,−6, 0, 10), (v11, v12, v13, v14) = (3,−4, 2, 2), (v21, v22, v23, v24) = (12, 22, 31, 4),
(w11, w12, w13, w14) = (5.1, 8.1,−1.1,−3.1), (w21, w22, w23, w24) = (−10.1,−6.1,
0.1, 10.1), (z11, z12, z13, z14) = (3.1,−3.9, 2.1, 1.9), (z21, z22, z23, z24) = (12.1, 21.9,
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Fig. 1 State vectors x11 + y12 and z13 + w14 after the controllers are applied
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Fig. 2 State vectors x12 + y11 and z13 + w11 after the controllers are applied

30.9, 4.1) respectively. Therefore the initial conditions for the error system becomes
(e11, e12, e13, e14) = (−8.2,−9,−2, 10.2) and (e21, e22, e23, e24) = (10, 20, 24,−8.8).
The known real parameters of the hyperchaotic systems are a1 = 36, b1 = 3, c1 = 20, d1 =
1.3 and a2 = 0.25, b2 = 3, c2 = 0.5, d2 = 0.05, a3 = 35, b3 = 7, c3 = 12, d3 = 3, f3 =
0.5, a4 = 10, b4 = 28, c4 = 8/3, d4 = −1. The diagonal matrices P, Q, R and S are taken
as identity matrices for convenience. The matrix A is choosen as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 − 1 0 0 0 0 0 0 0
0 b1 − 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 a4 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

123



137 Page 10 of 14 Int. J. Appl. Comput. Math (2019) 5 :137

510150
Time (t)

-10

0

10

20

30

40

50

60

x 13
 +

 y
12

  ,
  z

14
  +

w
12

x13 + y12
z14 + w12

Fig. 3 State vectors x13 + y12 and z14 + w12 after the controllers are applied

510150
Time (t)

-150

-100

-50

0

50

100

150

x 14
 +

 y
11

  ,
  z

12
 +

 w
13

x14 + y11
z12 + w13

Fig. 4 State vectors x14 + y11 and z12 + w13 after the controllers are applied
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Fig. 5 State vectors x21 + y22 and z23 + w22 after the controllers are applied
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Fig. 6 State vectors x23 + y21 and z24 + w22 after the controllers are applied
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Fig. 7 State vectors x22 + y24 and z23 + w22 after the controllers are applied
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Fig. 8 State vectors x21 + y23 and z23 + w21 after the controllers are applied
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Fig. 9 Error dynamics versus time t

such that all the eigenvalues λi of the linear system 17 are negative and thus the condition
|arg(λi )| ≥ qπ

2 is satisfied. The state trajectories of the signals are shown in Figs. 1, 2, 3, 4,
5, 6, 7 and 8 after the controllers have been applied. It can be seen from Fig. 9 that the error
system converges to zero which shows that the drive and response systems are synchronized.

Conclusion

Anovel scheme of dual combination combinationmultiswitching synchronization (DCCMS)
has been introduced for synchronizing eight fractional order hyperchaotic systems. The pro-
posed method is then applied to hyperchaotic Lü system, Rössler system, Chen system and
Lorenz system as examples. Due to multiswitching of signals, this type of synchronization
assures a highly secure communication. Owing to a substantial number of possible switchings
of the signals, it becomes very difficult for the infiltrator to determine the correct combination
for error vector. This method of synchronization is quite complex as compared to multi-
switching combination combination synchronization, where only two drive systems and two
response system are involved. Various cases were discussed where this DCCMS becomes
Dual combination multiswitching synchronization, combination combination mulswitching
synchronization, dual combination combination multiswitching anti synchronization and so
on. Numerical simulation are carried out using Matlab and there is a complete agreement
between the theoretical and analytical results.
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