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Abstract
A systematic description of actions of the divided differences operators on power and expo-
nential functions is given. The results of actions of these operators on entire functions are
presented by the matrices whose elements are functions of coefficients of a characteristic
(pivot) polynomial. Effective algorithms of calculation of the matrices are constructed using
the properties of the companion matrix of the pivoting polynomial. Degeneration of the roots
of the pivot polynomial reduces the n-order divided differences operator to n− 1 order oper-
ator of differentiation. The exponential type invariant functions with respect to higher order
derivatives are constructed.

Keywords Vandermonde matrix · Divided differences · Trigonometry · Pascal matrix ·
Polynomial · Invariant functions

Introduction

The divided differences method is used as a numerical procedure for interpolating polyno-
mials given a set of points [1]. In the textbooks the divided differences are used as an origin
of the differential and integral calculus [2].

An important feature of the divided differences operators is that the result of action of these
operators on analytical functions is expressed by the complete homogeneous symmetric forms
of nodes. In turn, the complete homogeneous symmetric forms are unambiguously expressed
via coefficients of the characteristic polynomial. If the nodes of the divided differences
operators are cumulated near the one of them, e.g., the roots of the characteristic polynomial
are degenerated, then the divided differences of the power functions are presented by the
Pascal triangle-formmatrix. In that case onemay define exponential-type invariant functions.

The most prominent examples correspond to divided differences of the power and
exponential functions. Divided differences of the power functions are just the generalized
Chebyshev functions [3]. An action of the divided differences operators on exponential func-
tion straightforward leads one to the system of generalized trigonometric functions [4].

In this paper we develop a matrix approach to the divided difference calculus. In contrast
to other approaches, the present method mostly requires the characteristic polynomial, the
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Vandermonde [5] and the Pascal matrices [6]. The paper is organized as follows. In “Divided
Differences and Their Pivot Polynomials” section, the definitions and main properties of the
divided differences operators are done and a notion of the pivot polynomial is introduced.
The results of actions of the divided differences on the polynomials are formulated in a
matrix representation. In “Complete System of Divided Differences Operators” section, the
complete system of divided differences operators is introduced. In “Degenerated Divided
Difference Operators and Their Invariant Functions” section, a set of the functions invariant
with respect to the degenerated divided differences operators is constructed. The paper ends
with concluding remarks in the section “Conclusion”.

Divided Differences and Their Pivot Polynomials

Terminology and Notations

Through the text we shall use the upper index as the degree of a variable. Another types of
the upper indices are included inside brackets.

Operation of divided differences ( thereafter, DD ) has different equivalent definitions.
Usually, it is started with the zeroth DD of the function f (x) with respect to xi , which is
value of f (x) at the point. We shall use an alternative start definition of DD operation:

D2(1) f (x) = f (x1) − f (x2)

x1 − x2
. (1)

This formula corresponds to the second order DD- operation on the function f (x).
In order to extend this definition to the case of n > 2 order we shall use remarkable proper-

ties of theVandermondematrix [7]. Consider the following set of x points [x1, x2, x3, . . . , xn]
and corresponding values of a function f (x) at these points. On the given n data points
(xk, yk), k = 1, . . . , n, where yk = f (xk), define n-dimensional column- vectors

vk = [xk1 , xk2 , . . . , xkn ]T , k = 0, 1, . . . , n − 1, (2)

and

f = [y1, y2, y3, . . . , yn−1, yn]T , (3)

and define the Vandermonde matrix

V M(x; n) =

⎛
⎜⎜⎜⎜⎝

xn−1
1 xn−2

1 · · · x21 x1 1
xn−1
2 xn−2

2 · · · x22 x2 1
xn−1
3 xn−2

3 · · · x23 x3 1
. . . . . . . . . . . . . . . . . .

xn−1
n xn−2

n . . . x2n xn 1

⎞
⎟⎟⎟⎟⎠

. (4)

In terms of the vectors vk the Vandermonde matrix (4) is defined in the following compact
form

V M(x; n) = |vn−1, vn−2, . . . , v1, v0|, (5)

with determinant

V (x; n) = Det(V M(x; n)) =
∏
i>k

(xi − xk). (6)
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In a consistent manner define the matrix WM1( f ; x; n) by replacing the first column of the
Vandermonde matrix v(n−1) by the vector f ,

WM( f ; x; n) = |f, vn−2, vn−3, . . . , v(1), v0|. (7)

Denote determinants of this matrix by W ( f ; x; n). Let us notice that

W (xk; x; n) = V (x; n) for k = n − 1, (8)

and,

W (xk; x; n) = 0, for k < n − 1. (9)

Definition 1 The n-th order DD- operator acting on the function f (x) is defined by the
following ratio

Dn f (x) = W ( f ; x; n)

V (x; n)
. (10)

From (7)–(8) immediately it follows that

Dn xk = 1, for k = n − 1, (11)

Dn xk = 0, for k < n − 1. (12)

Pivot Polynomial and Its CompanionMatrix

Let x1, x2, . . . , xn ∈ R be a set of nodes on which the DD-operation of n-order is defined.
Define a polynomial of the form

P(X) = Xn − a1X
n−1 + a2X

n−2 + · · · + (−1)nan, (13)

the roots of which constitutes the set of nodes of theDD-operator. This is the pivot polynomial
associated with the DD-operators.

In the theory of polynomials an important part takes the notion of the companion matrix
E which explicitly is presented as follows

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · 0 0 (−1)n−1an
1 0 · 0 0 (−1)n−2an−1

0 1 · 0 0 (−1)n−3an−2

· · · · · ·
0 0 · 1 0 −a2
0 0 · 0 1 a1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (14)

It is convenient to present this matrix via the following n-dimensional column- vectors

(wi )i j = δi, j=i+1, i, j = 1, ..., n;
and

b(1) = [(−1)n−1an, . . . ,−a2, a1]T . (15)

Then,

E = |w1,w2, ...,wn−1, b
(1)|. (16)
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In addition, with the companion matrix E one may generate (n − 2) vectors by

b(k+1) = Eb(k), k = 1, 2, 3, ..., n − 2. (17)

On the basis of the vectorswk and b(k) the powers of the companionmatrix E can be presented
simply by

E p = |wp, ...,wn−1, b
(1), ..., b(p)|, p = 2, 3, ..., n − 1. (18)

Divided Differences of Power Functions

The result of action of the DD-operator on a power function is expressed via complete homo-
geneous symmetric forms of the roots of the pivot polynomial P(X) . According to Vieta’s
theorem the complete homogeneous symmetric form can be presented by the coefficients
of the polynomial. This means, the results of actions of DD-operators are unambiguously
expressed via the coefficients of the pivot polynomial P(X).

Example 1

D2(1) x
2 = x21 − x22

x1 − x2
= a1, D3(1) = x31 − x32

x1 − x2
= a21 − a2, (19)

where a1, a2 are coefficients of the pivot polynomial

P(X) = X2 − a1X + a2. (20)

D3(1)x
3 = x31 (x2 − x3) + x32(x3 − x1) + x33 (x1 − x2)

(x2 − x3)(x3 − x1)(x1 − x2)
= a1, (21)

D3(1)x
4 = x41 (x2 − x3) + x42 (x3 − x1) + x43 (x1 − x2)

(x2 − x3)(x3 − x1)(x1 − x2)
= a21 − a2,

D3(1)x
5 = a3 − 2a1a2 + a31,

D3(1)x
6 = 2a1a3 − 3a21a2 + a22 + a41, (22)

where a1, a2, a3 are coefficients of the cubic polynomial

P(X) = X3 − a1X
2 + a2X + a3. (23)

It is now almost natural to elaborate general algorithm of calculations of DD-operations
on power functions which is associated with the upper-triangular matrices.

Consider the following n- degree polynomial

F(a;Z) = I +
n−1∑
k=1

(−1)kakZk, Zn = 0, (24)

where Z is the nilpotent matrix

Z ≡

⎛
⎜⎜⎜⎜⎝

0 1 0 0 . 0 0
0 0 1 0 . 0 0
. . . . . . .

0 0 0 0 . 0 1
0 0 0 0 . 0 0

⎞
⎟⎟⎟⎟⎠

. (25)
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Proposition 2.1 The results of action of the DD-operators on the power function are given
by the last column of the matrix inverse to the matrix F(a;Z).

Example 2 Explicit form of the polynomial F(a;Z) is specified by the following upper-
triangular matrix

F(a;Z) =

⎛
⎜⎜⎜⎜⎝

1 −a1 a2 −a3 a4
0 1 −a1 a2 −a3
0 0 1 −a1 a2
0 0 0 1 −a1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

. (26)

The matrix inverse to this matrix is

F−1(a;Z) =

⎛
⎜⎜⎜⎜⎝

1 a1 −a2 + a21 a3 − 2a1a2 + a31 −a4 + 2a1a3 − 3a21a2 + a22 + a41
0 1 a1 −a2 + a21 a3 − 2a1a2 + a31
0 0 1 a1 −a2 + a21
0 0 0 1 a1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

.

(27)

It is seen, entries of this matrix contain the table of actions of the DD-operators on the power
function. A complete information is contained on the last column, or, on the first line of the
matrix. In fact, compare the entries of this matrix with following table.

Example 3
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dnxn−1 = b1 1
Dnxn = b2 = a1
Dnxn+1 = b3 = −a2 + a21
Dnxn+2 = b4 = a3 − 2a1a2 + a31
Dnxn+3 = b5 = −a4 + 2a1a3 − 3a21a2 + a22 + a41· · · · · ·
Dnxn+k = bk+2 = ∑k+1

j=1(−1) j+1a jbi− j .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

The matrix form of the table of results is presented as follows. If the power functions are
arranged as coefficients the following polynomial

F(xn−1;Z) = xn−1 I + x (n−1)+1Z + · · · + x (n−1)+kZk + · · · + x2(n−1)Zn−1, (29)

then, the general table of results of action of DD-operator on power function can be cast into
the following matrix equation

DnF(xn−1;Z) = (F(a;Z))−1. (30)

This representation is quite general, unique remark is that the coefficients used in the right
hand side has to correspond to the pivoting polynomial.

Example 4

D2

(
x x2

1 x

)
=

(
1 −a1
0 1

)−1

,
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Here the coefficients belong the pivot polynomial P(X) = X2 − a1X + a2;

D3

⎛
⎝
x2 x3 x4

0 x2 x3

0 0 x2

⎞
⎠ =

⎛
⎝
1 −a1 a2
0 1 −a1
0 0 1

⎞
⎠

−1

,

with coefficients of the pivot polynomial P(X) = X3 − a1X2 + a2X + a3

D4

⎛
⎜⎜⎝
x3 x4 x5 x6

0 x3 x4 x5

0 0 x3 x4

0 0 0 x3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 −a1 a2 −a3
0 1 −a1 a2
0 0 1 −a1
0 0 0 1

⎞
⎟⎟⎠

−1

, (31)

with coefficients of the third order pivot polynomial

P(X) = X4 − a1X
3 + a2X

2 − a3X + a4.

The elements of the inverse matrix F−1(a;Z) are calculated according to the following
recursive algorithm.

Algorithm 2.1

bi =
i−1∑
j=1

(−1) j+1a jbi− j , b1 = 1, b2 = a1. (32)

This algorithm is a consequence of the following lemma.

Lemma 2.1 Consider the power function f (x; k) = xn+k, k = 1, 2, ..., at the roots x j , j =
1, 2, . . . , n of the pivot polynomial P(X). The power function f (x; k) at these points can be
reduced to the m = n − 1 degree polynomial of the form

(x j )
n+k = R(k)

m (x j ) = bm
(k)(x j )

m + bm−1
(k)(x j )

m−1 · · ·
+b1

(k)(x j ) + b0
(k), j = 1, 2, . . . , n, (33)

where coefficients b(k)
i are calculated according to algorithm

bi
(k) =

i−1∑
j=1

(Ek−1)
j
i a j , k > 1. (34)

where E is the companion matrix of the pivot polynomial P(X).

Remark 1 Eventually, this formula can be written also in the more transparent form
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b0(k)

b1(k)

b2(k)

...

bn−2
(k)

bn−1
(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · 0 0 (−1)n−1an
1 0 · 0 0 (−1)n−2an−1

0 1 · 0 0 (−1)n−3an−2

· · · · · ·
0 0 · 1 0 −a2
0 0 · 0 1 a1

⎞
⎟⎟⎟⎟⎟⎟⎠

k
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(−1)n−1an
(−1)n−2an−1

(−1)n−3an−2
...

−a2
a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(35)

In particularly, if f )x) = xn, k = 0, then

b(0)
n−l = (−1)l+1al . (36)
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Example 5 As an example let us consider a presentation of the power function f (x) =
xk, k > 3 at roots of the cubic polynomial

X3 = a1X
2 − a2X + a3. (37)

The algorithm of calculation of the coefficients of the polynomial

(x j )
3+k = R(k)

2 (x j ) = b2
(k)(x j )

2 + b1
(k)(x j )

1 + b0
(k), j = 1, 2, 3, (38)

is read as
⎛
⎜⎝
b(k)
0

b(k)
1

b(k)
2

⎞
⎟⎠ =

⎛
⎝

0 0 a3
1 0 −a2
0 1 a1

⎞
⎠

k ⎛
⎝

a3
−a2
a1

⎞
⎠ . (39)

This algorithm provides one with all coefficients of the polynomial R. In addition, this
algorithmcanbe formulated in an alternativewayby taking into account a peculiar structure of
the matrix Ek . From formulas (18) and (35) it follows that the information on the coefficients
bk can be directly extracted from corresponding column- vectors of the companion matrix
E p .

Complete System of Divided Differences Operators

Definitions

Now, let us explore another kinds of the DD-operators. In Section 2 the matrixWM( f ; x; n)

has been obtained from the Vandermonde matrix V M(x; n) by replacing the first column
with the vector f . However, besides of this possibility one may build the set of matrices by
replacing other columns of the Vandermonde matrix with the vector f .

Example 6

WM1

⎛
⎝

f (x1) x1 1
f (x2) x2 1
f (x3) x3 1

⎞
⎠ , WM2 =

⎛
⎝
x21 f (x1) 1
x22 f (x2) 1
x23 f (x3) 1

⎞
⎠ ,WM3 =

⎛
⎝
x21 x1 f (x1)
x22 x2 f (x2)
x23 x3 f (x3)

⎞
⎠ .

(40)

By defining determinants of these matrices

Wk = Det(WMk), k = 1, 2, 3, (41)

one may introduce three kinds of the divided differences operators,

D3(k) f (x) = 1

V (x; 3)Det(WMk( f ; x; 3)), k = 1, 2, 3. (42)

Algorithm 3.1 The general scheme can be specified as follows:

WM 1( f ; x; n) = |f, vn−2, vn−3, . . . , v1, v0|.
WM 2( f ; x; n) = |vn−1, f, vn−3, . . . , v1, v0|.

· · · · · · · · ·
WMk( f ; x; n) = |vn−1, vn−2, . . . , vn−k+1, f, vn−k−1, . . . , v1, v0|. (43)

123



132 Page 8 of 14 Int. J. Appl. Comput. Math (2019) 5 :132

Correspondingly, the complete set of DD- operators are defined as

Dk(p) = DetWMp( f ; : n)

V (x; n)
, k = 1, 2, . . . , n; p = 1, 2, . . . , n. (44)

In accordance with the notations introduced in Section 2, it is taken as WM = WM1 and
Dk = Dk(1).

The power function f (x) = xk is one of basic functions of the divided difference calculus.
For that function the following important relationship holds true.

Theorem 3.1 The link of determinants of the matrices WMj (xk; x; n), j = 1, . . . , n with
the determinant of the Vandermonde matrix V M(x; n) is given by the formula

Det WMm(xn+k; x; n) = V (x; n) bn−m
(k), m = 1, 2, . . . , n k = 1, 2, . . . , (45)

where bp( j), p = 0, 1, . . . , n − 1 are the coefficients of the polynomials R(k)(x j ), j =
1, . . . , n.

Proof The power function f (x) = xn+k, k = 1, 2, 3, . . . , is included into the matrices
WMp(xn+k; x; n), p = 1, 2, . . . , n only at the roots of the polynomial P(X), hence, in
accordance with Lemma 2.1, the functions f (x j ) = (x j )n+k can be replaced by the polyno-

mial R(k)
n−1(x j ). Define a column-vector r(k)

n−1 with n components as follows

r(k)
n−1 = [R(k)

n−1(x1), R
(k)
n−1(x2), R

(k)
n−1(xn) ]T , (46)

and introduce this vector into the matrixWMp(xn+k; x; n) instead of the vector f . In this we
get the matrix of the form

WRk( f ; x; n) = ||v(n−2), . . . , v(k+1), r(m)
n−1, v

(k), . . . , v(1), v(0)||. (47)

Expand the determinant of the matrixWRk( f ; x; n) to the sum of determinants according
to the well-known rule [7]:

DetW R(xn+m; x; n) =
n−1∑
m=0

bn−m Det WMm(xn+k; x; n). (48)

Any term of the sum, apart of the term containing factor bn−1
( j) vanishes (the case of two

equal columns).
The rest non-trivial determinant is equal to the determinant of the n-order Vandermonde

matrix multiplied by the factor bn−1
( j), e.g.,

Det WMk(x
k; x; n) = V (x; n) bn−1

(k). (49)

��
Example 7 Consider action of the operators D3(k), k = 1, 2, 3 on function f (x)

D3(1) = 1

V (x; 3)

⎛
⎝

f (x1) x1 1
f (x2) x2 1
f (x3) x3 1

⎞
⎠ , D3(2) = 1

V (x; 3)

⎛
⎝
x21 f (x1) 1
x22 f (x2) 1
x23 f (x3) 1

⎞
⎠ ,

D3(3) = 1

V (x; 3)

⎛
⎝
x21 x1 f (x1)
x22 x2 f (x2)
x23 x3 f (x3)

⎞
⎠ . (50)
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It is seen, this system of equations are substantially equivalent to those defining according
the Cramer’s rule for the system of algebraic equations

⎛
⎝
x21 x1 1
x22 x2 1
x23 x3 1

⎞
⎠

⎛
⎝

D3(1) f (x)
D3(2) f (x)
D3(3) f (x)

⎞
⎠ =

⎛
⎝

f (x1)
f (x2)
f (x3)

⎞
⎠ . (51)

In the general case, one gets a system of n linear equations for n unknowns Dn(k), k =
1, ..., n. Then, by applying the Cramer’s rule, one will obtain exactly the definition of the
DD-operators acting on the function f (x). Furthermore, for the entire function f (x) and the
companion matrix E of n-degree polynomial P(X) the following expansion holds true

f (E) = I Fn + E Fn−1 + E2 Fn−2 + · · · + En−1F1, (52)

where the components Fk, k = 0, ...n−1 are solutions ofn linear algebraic systemof equation
with Vandermonde matrix. The explicit form of the solution of such a system allows one to
conclude that

Fk = Dn(k) f (x), k = 1, ..., n. (53)

The manipulation ends up with the identity

f (E) = I Dn(n) f (x) + E Dn(n − 1) f (x) + E2 Dn(n − 2) f (x)

+ · · · + En−1Dn(1) f (x). (54)

By taking advantage from this identity the following table of formulas can be constructed
for the divided differences of the power functions

Example 8 (n = 2)
(
D2(2)
D2(1)

) ⊗(
x x2

) =
(
0 −a2
1 a1

)
= E .

(
D2(2)
D2(1)

) ⊗(
x2 x3

) =
(−a2 a2a1

a1 (a21 − a2)

)
= E2.

(
D2(2)
D2(1)

) ⊗(
xk xk+1

) = E2
k .

n = 3
⎛
⎝

D3(3)
D3(2)
D3(1)

⎞
⎠⊗(

x x2 x3
) =

⎛
⎝
0 0 a3
1 0 −a2
0 1 a1

⎞
⎠ = E3

⎛
⎝

D3(3)
D3(2)
D3(1)

⎞
⎠⊗(

x2 x3 x4
) =

⎛
⎝
0 a3 (a1a3 − a4)
0 −a2 (a3 − a1a2)
1 a1 (a21 − a2)

⎞
⎠ = E3

2

⎛
⎝

D3(3)
D3(2)
D3(1)

⎞
⎠(

xk xk+1 xk+2
) = E3

k

Generalization to n-th order is done simply by use the induction method, this yields

[Dn(n), Dn(n − 1), . . . , Dn(1)]T [xk, xk+1, . . . , xk+n−1] = En
k . (55)
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Representation of the Generalized Trigonometric Functions Via DD-Operators

Consider n-order ordinary differential equation with characteristic polynomial P(X) defined
as

P

(
d

dφ

)
�(φ) = 0. (56)

This equation possesses with n fundamental solutions gk(φ), k = 0, 1, 2, . . . , n − 1 which
let us define as the set of functions with initial data g0(0) = 1, gk(0) = 0, k = 1, . . . , n−1.

As it has been proved in [8] this set of functions satisfies to the system of first order
differential equations

n∑
j=1

Ekj g j−1 = d

dφ
gk−1, (57)

where E is the companion matrix of the polynomial P(X). The set of functions gk(φ), k =
0, 1, 2, . . . , n−1 constitutes the basis of the generalized trigonometry investigated in various
works (see, for example, [13] and references therein.)

Since P(E) = 0, one may define the matrix functions of the exponentials

exp(Eφ) =
n−1∑
k=0

Ekgk, E0 = I . (58)

By inverting this matrix equation we get explicit formulae for the g-functions. For instance,

g1(φ) = exp(x1φ) − exp(x2φ)

x1 − x2
,

g0(φ) = x2 exp(x1φ) − x1 exp(x2φ)

x1 − x2
, (59)

where x1, x2 are roots of the second degree polynomial

P(X) = X2 − a1X + a2.

It is seen, on making use of the complete set of DD-operators these formulas can be written
in a more compact form

D2(1) exp(xφ) = g1(φ), D2(2) exp(xφ) = g0(φ).

In general, by inverting the system of equations (58) and by taking into account the definitions
of the complete set of DD-operators, we get

D2(k) exp(xφ) = gn−k(φ), k = 1, 2, 3, . . . , n. (60)

Degenerated Divided Difference Operators and Their Invariant
Functions

At the limit, when distances between nodes are tending to zero, the DD-operators transform
to the derivatives of corresponding order [10]. It is evident that the second order DD-operator
will transformed to the first order derivative. Let us denote this operator by Dxk .
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Table 1 Table of actions of
DD-operators on power function
xk

1 x x2 x3 x4 x5 x6 x7 x8

Dx2 C0
1 C1

2 x C2
3 x

2 C3
4 x

3 C4
5 x

4 C5
6 x

5 C6
7 x

6 C7
8 x

7

Dx3 0 C0
2 C1

3 x C2
4 x

2 C3
5 x

3 C4
6 x

4 C5
7 x

5 C6
8 x

6

Dx4 0 0 C0
3 C1

4 x C2
5 x

2 C3
6 x

3 C4
7 x

4 C5
8 x

5

Dx5 0 0 0 C0
4 C1

5 x C2
6 x

2 C3
7 x

3 C4
8 x

4

Dx6 0 0 0 0 C0
5 C1

6 x C2
7 x

2 C3
8 x

3

An action of second order degenerated DD-operator on the power function gives the
expected result

D2x
k |x1=x2=x = kxk−1. (61)

Since the result of action on the power function of n-order DD-operator is equal to the
symmetric polynomial [9], an action of the degenerate DD-operation is obtained simply
by equating the roots of the characteristic polynomial to the argument of the function. For
example,

Dx3x
k = uk(v − w) + vk(w − u) + wk(u − v)

(u − v)(v − w)(w − u)

=
∑

i+l+ j=k−2

(viw j ul)|u=v=w=x = Ck−2
k xk−2. (62)

General formula is expressed as

Dxn xk = Ck−n+1
k xk−n+1. (63)

It is instructive to display this formula in the tabular form.
The upper-triangle matrix inside the Tabl1 1 can be easily recognized as the Pascal matrix

[11,12]. On making use of the exponential representation of the Pascal matrix the Table 1
can be cast in the form

⎛
⎜⎜⎜⎜⎜⎜⎝

I
Dx2
Dx3
Dx4
Dx5
Dx6

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗(
1 x x2 x3 x5 x6

) = MF = exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 5 0
0 0 0 0 0 0 6
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(64)

The exponential function f (x) = exp(x) is an invariant with respect to operation of
differentiation,e.g.,

Dx2 exp(x) = exp(x). (65)

In a similar way, it can be found functions invariant under action of degenerated DD.
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Example 9 For third order we get pair of exponential-like functions invariant under third
order degenerated DD operation. That are

e(3)
1 (x) = 1 + x2

C0
2

+ x4

C0
2C

2
4

+ x6

C0
2C

2
4C

4
6

+ · · · ,

e(3)
2 (x) = x + x3

C1
3

+ x5

C1
3C

3
5

+ x7

C1
3C

3
5C

5
7

+ · · · . (66)

Correspondingly, for the four order operators there exist three invariant functions

e(4)
1 (x) = 1 + x3

C0
3

+ x6

C0
3C

3
6

+ x9

C0
3C

3
6C

6
9

+ · · · ,

e(4)
2 (x) = x + x4

C1
4

+ x7

C1
4C

4
7

+ x10

C1
4C

4
7C

7
10

+ · · · .

e(4)
3 (x) = x2 + x5

C2
5

+ x8

C2
5C

5
8

+ x11

C2
5C

5
8C

8
11

+ · · · . (67)

For n-order operators can be constructed (n − 1) this kind of invariant functions. The
general formula of invariant functions is

e(n)
m (x) = xm−1 +

∞∑
k=1

xm−1+k(n−1)
r=k∏
r=1

{Cm−1+(r−1)(n−1)
m−1+r(n−1) }−1, m = 1, 2, . . . , n − 1.

(68)

These functions are closely related with n-order hyperbolic functions. By higher order
hyperbolic functionswe understand a fundamental set of solutions of the differential equation

dn

dxn
e(n)
k = n!e(n)

k , k = 1, . . . , n − 1.

Let us startwith the case n = 3.Under action of the differentiation the functions ek recursively
are transformed one into the other

d

dx
e(3)
2 = e(3)

1 ,
d

dx
e(
13) = e(3)

2 .

Thus, if the first of these functions is defined, then the others can be obtained by successive
differentiation of the first one. Another example supports this important rule. Let n = 5, then

d

dx
e(4)
2 = e(4)

1 . (69)

These relations serve as a clue to describe all possible properties of the set of invariant
functions. In fact, first of all we establish the following formulae of differentiation

d

dx

⎛
⎜⎜⎝
e1
e4
e3
e2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 4 0 0
0 0 3 0
0 0 0 2
1 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
e1
e4
e3
e2

⎞
⎟⎟⎠ . (70)

This system of differential equations totally help us to present the other properties of the
invariant functions. From this seminal equation it follows general solution which clarifies
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the nature of the invariant functions. An operator form of the general solution is given by the
exponential matrix of the form [13]

exp(Ex) = I e1 + Ee1 + 1

2! E
2e3 + 1

3! E
3e4. (71)

where E is the companion matrix of the polynomial

X4 = 4!.
In this polynomial equation the first coefficient is trivial, that means

Det(exp(Ex)) = 1, (72)

e.g.,

Det

(
I e1 + Ee1 + 1

2! E
2e3 + 1

3! E
3e4

)
= 1. (73)

This identity is the analogy of trigonometric identity for cosine-sine functions. For third order
invariant functions we get

(e(2)
1 )2 − 2(e(2)

2 )2 = 1. (74)

Summation formula for the invariant function are obtained from the identity

exp(Ex) exp(Ey) = exp(E(x + y)). (75)

From formulae of differentiation it is seen, that the operator d
dx is worked out a cyclic

permutation.
Thus, in general the invariant functions form a fundamental set of solutions of the differ-

ential equation

1

k!
dk

dxk
e(k+1)
m = e(k+1)

m . (76)

These functions belong to the class of higher order hyperbolic functions. There exist an
extensive literature on the subject, and bibliographies have been given by H.Kaufman [14].
the most recent investigations on the subject one may meet in [8].

Conclusion

The points we have touched in this paper show that the method of expression of the results of
actions of divided differences operators via coefficients of the polynomials allow to elaborate
quite general formulism appropriate for all orders of the calculus. According to this formal-
ism any order of the differential calculus can be considered as a ground level, including,
also, the calculus of the definite integrals. In addition, we have shown that the definitions
of the divided differences operators intimately are related with the concept of the difference
between n ≥ 2 variables [15]. Indeed, the statement that the generalized difference between
n power functions defined at the points xk, k = 1, . . . , n is proportional to the generalized
difference between the very n variables. The factor of proportionality is a multi-dimensional
polynomial of the coefficients of the pivoting polynomial what provides regularity of the
divided differences operators under the process of cumulating the roots of the pivoting poly-
nomial near the one of them.
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