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Abstract
This paper deals with an economic order quantity model with deterioration for two differ-
ent demand functions under two-level of trade-credit policy. The demand functions of the
proposed model are two types: (i) exponential function of the price (ii) price with the nega-
tive power of constant. Shortages are allowed and fully backlogged as deterioration arises.
A nonlinear constraint optimization problem is then formulated considering cost and profit
parameters. The main objective of this paper is to find out the optimal selling price, optimal
deteriorating length and optimal cycle length for the optimal total profit of the chain. Some
theoretical as well as numerical outcomes are studied to show the validity of the proposed
model. A sensitivity analysis is carried out to study the effect of changes of key parameters
of the inventory system.

Keywords Deterioration · Inventory model · Price-dependent demand · Shortages ·
Trade-credit

Introduction

The trade-credit policy plays a vital role in supply chain management. The existence of
trade-credit financing in inventory control problems should not be overlooked in economic
order quantity models. In practice, deterioration is also an important factor for cost/profit
analysis of the inventory analysis. Ghare and Schrader [6], was the first who introduced
a constant deterioration rate on inventory control problem. This model was extended by
Covert and Philip [4] considering two-parameter Weibull distribution deterioration rate. In
this continuation, we may refer some related articles on deterioration done by Chang and
Dye [2], Min et al. [15], Wang and Jiang [34] and Tiwari et al. [33], among others.
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Thereafter,Dave andPatel [5] introduced an inventorymodelwith timedependent demand,
deterioration and shortages. After a few years’ later, Sachan [18] extended the model of Dave
and Patel [5] incorporating shortage. Giri et al. [7] discussed an inventory model for ramp-
type demand rate including time-dependent deterioration rate. Skouri et al. [26] improved this
model by considering general ramp type demand rate and Weibull distributed deterioration
together with partial backlogging. An EOQ inventory model having time-varying deteriora-
tion and partial backlogging was developed by Sana [20]. Taleizadeh [27] developed an EOQ
model for evaporating items with partial back ordering and advance payments scheme. In this
line of research works, an inventory model with time dependent demand and deterioration
rate through finite replenishment rate was discussed by Sarkar [21]. Moreover, Sarkar [22]
discussed a production-inventory model with three types of continuously disseminated dete-
rioration functions. In this continuation, few related research works done by by Taleizadeh
and Pentico [28], Wee [35], Hariga [9], Wee and Law [36], Moon et al. [16], Chung andWee
[3], Sana [19], Shaikh et al. [25], Mashud et al. [13] and Tiwari et al. [32] are referred to the
readers.

In trade-credit financing, the pioneeringwork in inventory literaturewas donebyGoyal [8].
Goyal [8] assumed that the supplier only could offer the trade-credit period but the retailer
did not has opportunity to offer any credit-period to his/her customer. This circumstance
is identified as single-level trade-credit or one-level-trade-credit policy where each stage
contains a member and shares only two stages of the chain. Perceptibly, it would be more
interesting to study if the retailer had the power to offer the trade-credit to his/her customer.
This singularity is known as two-levels of trade-credit policy where the chain integrates with
three stages and one member belongs to each stage. [10] explored the EOQ inventory model
under two-levels of trade-credit policy in this extension when the supplier provided to the
retailer a permissible delay and then consequently the retailer also offered to its customer a
permissible delay. Later, a new factor deterioration is introduced and extended Goyal’s [8]
model by Aggarwal and Jaggi [1]. Thereafter, Teng and Goyal [30] proposed an optimal
ordering policies for a retailer in a supply chain with consideration of upstream and down-
stream trade-credits. Considering deterioration as an important factor, Liao [12] presented an
inventory model with two-level trade-credit for non-instantaneous deteriorating items. Teng
and Chang [29] investigated two-level trade credit facilities in production inventory model.
Min et al. [14] proposed an inventory model for deteriorating items with stock-dependent
demand rate considering two-levels of trade-credit policy. Wu et al. [37] added deterioration
with expiration dates and developed an inventory model under two-level of trade-credit
policy. Mukherjee and Mahata [17] also developed an inventory model considering trade-
credit policy and deterioration. Some supplementary related researches on trade-credit policy
are Sarkar et al. [23], Sarkar et al. [24], Ting [31] etc. A comparative study is given in Table 1.

This paper investigates an inventory model for a deteriorating item considering two-level
of trade-credit policy, different price-dependent demand and fully backlogged shortage. Here,
the demand functions of the customers are (i) exponential function of selling price and (ii)
negative power of selling price. The deterioration is considered on-hand inventory of the
product in the retailer’swarehouse. The shortages are permitted and are fully backlogged. The
average profit function is then formulated andmaximized analytically as well as numerically.
We consider two numerical examples and prove the concavity of each objective function
graphically to describe and validate the inventory model. Sensitivity analysis is carried out
to study the effect of key parameters on optimal solution of the objective function which are
realistic in practice.
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Table 1 Related research works with price-dependent demand, shortage and trade-credit

Authors Demand type Shortages Deterioration Trade-credit type

Goyal [8] Constant No shortage No deterioration Single-level

Min et al. [14] Stock dependent No shortage Constant Two-level

Sana [20] Price-dependent Partial backorder Time varying No

Wu et al. [37] Trade-credit
dependent

No shortage Time varying Two-level

Tiwari et al. [32] Price-dependent Partial backorder Time varying Two-level partial
trade-credit

Mukherjee and
Mahata [17]

Time and credit
dependent

No shortage No deterioration Two-level

Mashud et al. [13] Constant Partial backorder Constant No

This paper Price-dependent Partial backorder Constant Two-level

Assumption and Notations

The proposed model in this paper is based on the subsequent assumptions.

1. The rate of replenishment is instantaneous and the lead-time is negligible.
2. In this paper, two different price-sensitive demand is considered as follows

(i) D(p) � ae

(−p
α

)
, a > 0, α > 1

(ii) D(p) � ap−α, a > 0, α > 1

3. The infinite planning horizon is considered.
4. The shortage is permitted and fully backlogged.

Notations

The following notations are used throughout the paper.

Notations Description

co Replenishment cost per order

cp Purchasing cost per unit

ch Holding cost per unit per unit time

cb Shortage cost per unit per unit time
θ Deterioration rate

S Maximum stock per cycle

R Maximum shortage level

Ie Interest which can be earned per $ per year
by retailer

Ip Interest charges per $ in stocks per year by the
supplier

M The retailer’s trade-credit period offered by
supplier in years
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Notations Description

N The supplier’s trade-credit period offered by
retailer in years

I(t) Inventory level at any time t where 0 ≤ t ≤ T
X1 Total inventory cost for the first case
X2 Total inventory cost for the second case

TPi (p, t1, T ) The total profit per unit time for i � 1,2

* Optimal values of the parameters

Decision variables

t1 Time at which the stock is zero

p Selling price

T Total cycle length

TheModel

The proposed inventory model is developed on the basis of above-mentioned assumptions.
Initially, an enterprise purchases goods (S + R) units. This stock is depleted owing to meet
up the customers’ demands with products’ deterioration. At time t� t1, stock reaches at
zero. Then, shortage appears which is fully backlogged. Therefore, the inventory systems are
defined by the following differential equations (Fig. 1).

Inventory Model with Respect to the Demand Function D � ae
−

(p/˛
)

d I1(t)

dt
+ θ I (t) � −ae

−
(p/α

)
0 < t ≤ t1 (1)

d I2(t)

dt
� − ae

−
(p/α

)
t1 < t ≤ T (2)

Solving the above (1) and (2) differential equations with the boundary conditions I1(t) �
S at t � 0 and I2(t) � −R at t � T and I (t) is continuous at t � t1, we have

I1(t) � a

θ
e
−
(p/α

)[
eθ (t1−t) − 1

]
t1 < t ≤ T (3)

Inventory

Time

t1

T

Fig. 1 Inventory versus time
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Using I1(t) � S at t � 0 in the above, we have

S � a

θ
e
−
(p/α

)[
eθ t1 − 1

]
(4)

From Eq. (2) we have

I2(t) � ae
−
(p/α

)
[t1 − t] (5)

Using I2(t) � −R at t � T , we have

R � ae
−
(p/α

)
[T − t1 ] (6)

Now, t1 � T − R
a e

(p/α
)

Total sales revenue is

SR � p

[
ae

−
(p/α

)
t1 + ae

−
(p/α

)
[T − t1 ]

]

� pae
−
(p/α

)
T (7)

The cost components per cycle are as follows:

(a) Ordering cost � C

(b) Holding cost � Ch

⎡
⎣

t1∫

0

I1(t)dt

⎤
⎦

i .e., � Cha

θ2
e−(p/α)[eθ t1 − θ t1 − 1

]
(8)

(c) The purchase cost � cp(S + R)

(d)
The shortage cost � Cb

⎡
⎣

T∫

t1

−I2(t)dt

⎤
⎦

i.e., � 1

2
Cbae

(−p
α

)
(T − t1)

2 (9)

Annual Interest Payable to Supplier

Here, there are three cases may arise where the retailer charges interest for keeping the items
in stock per year. These three cases are studied separately as follows

Case I T ≥ M
In this case, two sub-cases may arise, (I-1). M ≤ t1 ≤ T and (I-2). t1 ≤ M ≤ T .
These are discussed separately below.

Subcase (I-1) According to Fig. 2, if the trade-credit period M is at the left of t1, then

Eq. (6) implies that T ≥ t1 � T − R
a e

(p/α
)

≥ M .
Thus, the payable annual interest is

IC11 � cp Ip
T

⎡
⎣

t1∫

M

I1(t)dt

⎤
⎦
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Tt1M

Inventory

Time

Fig. 2 Inventory versus time

TM

t1

Inventory

Time

Fig. 3 Inventory veruss time

� cp Ip
T

⎡
⎣D

θ

t1∫

M

[
eθ (t1−t) − 1

]
dt

⎤
⎦

� cp IpD

T θ2

[
eθ (t1−M) − θ(t1 − M) − 1

]

(10)

Subcase (I-2): According to Fig. 3, if trade-credit period M is at the right of t1 then

Eq. (6) implies that T ≥ M ≥ t1 � T − R
a e

(p/α
)

Thus, the annual payable interest is zero

Case II N ≤ T ≤ M
The payable annual interest for this case is zero.
Case III 0 ≤ T ≤ N
The payable annual interest is zero also in this case.

Interest Earn by Retailer Annually

Here, there are three cases arise where supplier charges interest per year. These three cases
are as follows:
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Case I: T ≥ M
When T ≥ M occurs then there are two sub-cases which are sub-case (I-1) M ≤ t1 ≤ T
and

Subcase (I-1): According to the Fig. 2, if M lies at the left of t1 then Eq. (6) indicates

that M ≤ t1 � T − R
a e

(p/α
)

≤ T .
Thus, the annual interest earned is

I E11 � pIe
T

t1∫

N

Dtdt

� pIeD

T

t1∫

N

tdt

� pIeD

2T

[
t21 − N 2] (11)

Subcase (I-2): Accordingly to Fig. 3, if the trade-credit period M lies at the right side of

t1 then Eq. (6) implies that t1 � T − R
a e

(p/α
)

≤ M ≤ T and we have

I E12 � pIe
T

⎡
⎣

t1∫

N

Dtdt +

t1∫

N

Dt1dt

⎤
⎦

� pIeD

T

[(
t21 − N 2

)

2
+ t1(t1 − N )

]
(12)

Case II: N ≤ T ≤ M
The annual interest earn for this case is

I E13 � pIe
T

⎡
⎣

T∫

N

DTdt +

M∫

T

DTdt

⎤
⎦

� pIeD

2T
[T (T − N ) + T (M − T )]

� pIeD

2
[M − N ] (13)

Case III 0 < T ≤ N
The annual interest earn for this case is

I E14 � pIe
T

M∫

N

DTdt

� pIe
T

M∫

N

ae
−p/αTdt

� pIeae
−p/α[M − N ] (14)

Therefore, Total inventory cos t, X1 � <ordering cost>+<purchase cost>+<holding
cost>+<shortage cost>+<interest payable per cycle>-< interest earn per cycle>

Total profit � Total sales revenue, SR − Total inventory cost, X1

Therefore, the constrained optimization problem of this proposed model is as follows:
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Problem 1 Maximize

T P1(p, t1, T ) � 1

T

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T P11(p, t1, T ), when T ≥ t1

T P12(p, t1, T ) when t1 ≤ M ≤ T

T P13(p, t1, T ), when N ≤ T ≤ M

T P14(p, t1, T ), when 0 < T ≤ N

(15)

Subject to o ≤ t1 ≤ T
Where,

T P11(p, t1, T ) � 1

T
[SR − X1] − [IC11 − I E11]

T P12(p, t1, T ) � 1

T
[SR − X1] + [I E12]

T P13(p, t1, T ) � 1

T
[SR − X1] + [I E13]

T P14(p, t1, T ) � 1

T
[SR − X1] + [I E14]

Inventory Model with Respect to the Demand Function D � ap−˛

The governing differential equation are as follows:

d I1(t)

dt
+ θ I (t) � −ap−α 0 < t ≤ t1 (16)

d I2(t)

dt
� − ap−α t1 < t ≤ T (17)

From Eq. (16), we have

I1(t) � a

θ
p−α
[
eθ (t1−t) − 1

]
t1 < t ≤ T (18)

Using I1(t) � 0 at t � t1 and I1(t) � S at t � 0 conditions, one can obtain

S � a

θ
p−α(eθ t1 − 1) (19)

From Eq. (17), we have

I2(t) � ap−α(t1 − t) t1 < t ≤ T (20)

Using I2(t) � 0 at t � t1 and I2(t) � −R at t � T , we have

R � −ap−α(t1 − T ) (21)

This implies

t1 � T − R

a
pα (22)
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Total sales revenue is

SR � p
[
ap−αt1 + ap−α[T − t1 ]

]

� ap−α+1T (23)

The cost factors per cycle are as follows:

(a)
Ordering cost � C

(b) Holding cost � Ch

⎡
⎣

t1∫

0

I1(t)dt

⎤
⎦

i.e., � Cha

θ2
p−α
[
eθ t1 − θ t1 − 1

]
(24)

(c)
The purchase cost � cp(S + R)

(d) The shortage cost � Cb

⎡
⎣

T∫

t1

−I2(t)dt

⎤
⎦

i.e. � 1

2
Cbap

−α(T − t1)
2 (25)

Annual Interest Payable to Supplier

Here, there are three cases to occur in interest charged for the items kept in stock per year.
These three cases are examined separately as follows

Case I T ≥ M
There are two sub-cases such as (I-1) M ≤ t1 ≤ T and (I-2) t1 ≤ M ≤ T . We discuss
them accordingly as below.

Subcase (I-1) As per Fig. 2, if M is situated at the left side of t1 then Eq. (22) provides
T ≥ t1 � T − R

a pα ≥ M .
Therefore, the annual interest payable is

IC21 � cp Ip
T

⎡
⎣

t1∫

M

I1(t)dt

⎤
⎦

� cp Ip
T

⎡
⎣ap−α

θ

t1∫

M

(eθ (t1−t) − 1)dt

⎤
⎦

� cp IpD

T θ2

[
eθ (t1−M) − θ(t1 − M) − 1

]

(26)

Subcase (I-2) As per Fig. 3 if M is located at the right side of t1 as shown in the figure,
then Eq. (22) implies that T ≥ M ≥ t1 � T − R

a pα

Subsequently, the annual interest payable is zero

Case II N ≤ T ≤ M
The annual interest payable is zero here.
Case III 0 < T ≤ N
The annual interest payable is zero here also.
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Annual Interest Earn by the Retailer

Here, annual interest is earned by the retailer which is offered by the supplier. In this situation,
there are three cases may arise for interest earned per year. These three cases are calculated
independently below.

Case I T ≥ M
When this condition holds then there are another two sub-cases which are sub-case (I-1)
M ≤ t1 ≤ T and sub-case (I-2) t1 ≤ M ≤ T . All are discussed separately as below

Subcase (I-1) According to the Fig. 2, if M is lies at the left side of t1 then Eq. (22) gives
T ≥ t1 � T − R

a pα ≥ M .
Consequently, the annual interest earn is

I E21 � pIe
T

t1∫

N

Dtdt

� pIe
T

t1∫

N

ap−αtdt

� pIeap−α

2T

[
t21 − N 2] (27)

Subcase (I-2)
Accordingly Fig. 3, if M is located at the right hand side of t1 then Eq. (22) infers that
T ≥ M ≥ t1 � T − R

a pα .

I E22 � pIe
T

⎡
⎣

t1∫

N

Dtdt +

t1∫

N

Dt1dt

⎤
⎦

� pIeap−α

T

[(
t21 − N 2

)

2
+ t1(t1 − N )

]
(28)

Case II: N ≤ T ≤ M
The annual interest earned for this case is

I E23 � pIe
T

⎡
⎣

T∫

N

DTdt +

M∫

T

DTdt

⎤
⎦

� pIeap−α

2T
[T (T − N ) + T (M − T )]

� pIeap−α

2
[M − N ]

(29)

Case III 0 < T ≤ N
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The annual interest earned for this case is

I E24 � pIe
T

M∫

N

DTdt

� pIe
T

M∫

N

ap−αTdt

� pIeap
−α[M − N ] (30)

Therefore, Total inventory cos t, X2 � <ordering cost>+<purchase cost>+<holding
cost>+<shortage cost>+<interest payable per cycle>-< interest earn per cycle>

Therefore, the constrained optimization problem is as follows

Problem 2 Maximize

T P2(p, t1, T ) � 1

T

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

T P21(p, t1, T ), when T ≥ t1

T P22(p, t1, T ), when t1 ≤ M ≤ T

T P23(p, t1, T ), when N ≤ T ≤ M

T P24(p, t1, T ), when 0 < T ≤ N

(31)

Subject to o ≤ t1 ≤ T
Where,

T P21(p, t1, T ) � 1

T
[SR − X2] − [IC21 − I E21]

T P22(p, t1, T ) � 1

T
[SR − X2] + [I E22]

T P23(p, t1, T ) � 1

T
[SR − X2] + [I E23]

T P24(p, t1, T ) � 1

T
[SR − X2] + [I E24]

Solution Procedure

In order to obtain the profit function, we need to calculate sales revenue, the ordering cost, the
holding cost, the purchasing cost, the interest earned and the interest payable for the whole
chain. The retailer’s average profit per unit time can be written as

T P(p, t1, T ) � 1

T

⎡
⎢⎣Sales revenue −

⎧
⎪⎨
⎪⎩

ordering cost + Holding cost + Purchase cost

+ Shortage cost + interest payable

− interest earn

⎫
⎪⎬
⎪⎭

⎤
⎥⎦

The necessary and sufficient conditions to find out the optimal values are

∂T P1(p, t1, T )

∂p
� 0,

∂T P2(p, t1, T )

∂p
� 0,

∂T P1(p, t1, T )

∂t1
� 0,

∂T P2(p, t1, T )

∂t1
� 0, and

∂2T P1(p, t1, T )

∂p2
< 0,

∂2T P2(p, t1, T )

∂p2
< 0,

∂2T P1(p, t1, T )

∂t21
< 0,

∂2T P2(p, t1, T )

∂t21
< 0
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The hessian matrix Hi of TPi at p, t1, and T should have all negative eigenvalues for
concavity of TPi.

For Case 1: The average profit function T P1(p, t1, T ) of the whole system is

T P1(p, t1, T ) � 1

T

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T P11(p, t1, T ), when T ≥ t1

T P12(p, t1, T ), when t1 ≤ M ≤ T

T P13(p, t1, T ), when N ≤ T ≤ M

T P14(p, t1, T ), when 0 < T ≤ N

Total profit function T P1(p, t1, T ) has four branch functions. More accurately the maxi-
mum values of those four branch functions will be the required solution.

From overhead expression some continuity relation will be rise such as:

T P11(p, t1, T ) � T P12(p, t1, T ) is continuous at t1 point .

T P12(p, t1, T ) � T P13(p, t1, T ) is continuous atM point.

T P13(p, t1, T ) � T P14(p, t1, T ) is continuous at N point.

The extreme value of T P1(p, t1, T ) is determined by the local extreme points or the
boundary points of (p, t1, T ) , exactly when one need to search for (p, t1, T ) directly. One
could easily checkedwhether (p, t1, T ) is originatewithin the allowed range, i.e.T ≥ t1, t1 ≤
M ≤ T , N ≤ T ≤ M , 0 ≤ T ≤ N .One can select the optimal point (p∗, t∗1 , T ∗) such that
T P∗

1 (p, t1, T ) � max
{
T P∗

11(p, t1, T ), T P∗
12(p, t1, T ), T P∗

13(p, t1, T ), T P∗
14(p, t1, T )

}
To show the concavity of the profit function T P1(p, t1, T ) some theoretical results are

develop as follows.

Theorem 1 The total profit function T P11(p, t1, T ) attains its maximum value with respect
to p, when other decision variables t1, T are fixed.

See “Appendix B”

Theorem 2 The total profit function T P11(p, t1, T ) attains its maximum value with respect
to t1, when other decision variables p, T are fixed.

See “Appendix B”.

Theorem 3 The total profit function T P11(p, t1, T ) attains its maximum value with respect
to T, when other decision variables p, t1 are fixed.

See “Appendix B”.

For Case 2:

T P2(p, t1, T ) � 1

T

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

T P21(p, t1, T ), when T ≥ t1

T P22(p, t1, T ), when t1 ≤ M ≤ T

T P23(p, t1, T ), when N ≤ T ≤ M

T P24(p, t1, T ), when 0 < T ≤ N

Total profit function T P2(p, t1, T ) has four branch functions. More precisely the maxi-
mum values of those four branch functions will be the required solution.

T P21(p, t1, T ) � T P22(p, t1, T ) is continuous at t1 point.

T P22(p, t1, T ) � T P23(p, t1, T ) is continuous atM point.
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T P23(p, t1, T ) � T P24(p, t1, T ) is continuous at N point.

The extremevalue of T P2(p, t1, T ) is determinedby the local extremepoints or the bound-
ary points of (p, t1, T ) , exactly when one need to search for (p, t1, T ) directly. (p, t1, T ) .
One could easily check whether (p, t1, T ) is initiate inside the legal range, i.e.T ≥ t1, t1 ≤
M ≤ T , N ≤ T ≤ M , 0 ≤ T ≤ N .One can select the optimal (p∗, t∗1 , T ∗) points such that
T P∗

2 (p, t1, T ) � max
{
T P∗

21(p, t1, T ), T P∗
22(p, t1, T ), T P∗

23(p, t1, T ), T P∗
24(p, t1, T )

}
To show the concavity of the profit function T P2(p, t1, T ), some theorem are develop

which are as follows.

Theorem 4 The total profit function T P21(p, t1, T ) attains its maximum value with respect
to p, when other decision variables t1, T are fixed.

See “Appendix C”.

Theorem 5 The total profit function T P21(p, t1, T ) attains its maximum value with respect
to t1, when other decision variables p, T are fixed.

See “Appendix C”.

Theorem 6 The total profit function T P21(p, t1, T ) attains its maximum value with respect
to T, when other decision variables p, t1 are fixed.

See “Appendix C”.

Numerical Illustrations

Here, the solution of the projected inventory model is discussed. This model is more relevant
for the deteriorating product like vegetables, fruits, sweets etc. During any season the demand
of this item increases linearly or exponentially with the dependencies on selling price. One
of the popular example of proposed model is ice-cream. This is the practical example of the
anticipated model.

To demonstrate the inventory model, some numerical examples solved. The values of the
input parameters for examples considers for the model are as follows:

For Case 1:

Example 1 (T ≥ t1)We consider the numerical values of the parameters in appropriate units
as follows: Ordering costs C0 � $ 150 per order, a � 600, α � 7,holding cost rate Ch � $ 2,
backorder cost rate for inventory Cb � $ 3, purchase cost of different item Cp � $ 6,
deterioration rate θ � 0.2, interest charged rate Ie � $ 0.09, interest earn rate Ip � $ 0.06,
delay period of retailer M � 3.5 years, the supplier’s trade-credit period offered by retailer
in years N � 0.5.

Example 2 (t1 ≤ M ≤ T )We consider the numerical values of the parameters in appropriate
units as follows: Ordering costs is C0 � $ 150 per order, a � 600, α � 7, holding cost rate
is Ch � $ 2, backorder cost rate for inventory is Cb � $ 3,purchase cost of different item
is Cp � $ 6,deterioration rate is θ � 0.2, interest charged rate Ie � $ 0.09, delay period
of retailer is M � 1.5 years, the supplier’s trade-credit period offered by retailer in years
N � 0.85.

Example 3 (N ≤ T ≤ M) We consider the numerical values of the parameters in appropriate
units as follows: Ordering costs is C0 � $ 150 per order, a � 600, α � 7, holding cost rate
is Ch � $ 2, backorder cost rate for inventory is Cb � $ 3,purchase cost of different item
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Table 2 Results for each inventory model

Examples Condition Results

S* R* t*1 P* T * T P∗
i j (t1, p, T )

Case 1

Example1 T ≥ t1 115.564 63.999 1.4353 15.0883 2.3561 439.7191

Example 2 t1 ≤ M ≤ T 140.403 78.732 1.5000 14.0813 2.4809 589.2986

Example 3 N ≤ T ≤ M 64.5597 68.863 0.6710 13.2881 1.4371 609.8228

Example 4 0 < T ≤ N 65.7450 70.128 0.6594 13.0308 1.4114 664.0494

Case 2

Example 1 T ≥ t1 1755.31 1064.3 1.1017 9.53668 1.8490 5396.707

Example 2 t1 ≤ M ≤ T 4318.75 145.16 2.5000 9.79697 2.609 6241.845

Example 3 N ≤ T ≤ M 1715.02 2572.5 0.9431 8.98632 2.5000 6255.225

Example 4 0 < T ≤ N 518.165 777.24 0.1976 7.53040 0.5000 8326.688

is Cp � $ 6,deterioration rate is θ � 0.2, interest charged rate Ie � $ 0.09, delay period
of retailer is M � 3.5 years, the supplier’s trade-credit period offered by retailer in years
N � 0.5.

Example 4 (0 < T ≤ N ) Now, Ordering costs is C0 � $ 150 per order, a � 600, α � 7,
holding cost rate is Ch � $ 2, backorder cost rate for inventory is Cb � $ 3,purchase cost of
different item is Cp � $ 6,deterioration rate is θ � 0.2, interest charged rate Ie � $ 0.09,
delay period of retailer is M � 4.5 years, the supplier’s trade-credit period offered by retailer
in years N � 2.5.

For Case 2:

Example 5 (T ≥ t1) Here, Ordering costs is C0 � $ 250 per order, a � 400,000, α � 2.5,
holding cost rate is Ch � $ 0.5, backorder cost rate for inventory is Cb � $ 1,purchase cost
of different item is Cp � $ 5,deterioration rate is θ � 0.2, interest charged rate Ie � $ 0.07,
interest earn rate Ip � $ 0.06, delay period of retailer is M � 2.5 years, the supplier’s
trade-credit period offered by retailer in years N � 0.5.

Example 6 (t1 ≤ M ≤ T ) In this cases, Ordering costs is C0 � $ 250 per order, a �
400,000, α � 2.5, holding cost rate is Ch � $ 0.5, backorder cost rate for inventory is
Cb � $ 1,purchase cost of different item is Cp � $ 5,deterioration rate is θ � 0.2, interest
charged rate Ie � $ 0.07, delay period of retailer is M � 2.5 years, retailer offered delay
period to suppliers is in years N � 0.5 (Table 2).

Example 7 (N ≤ T ≤ M) In this case, Ordering costs is C0 � $ 250 per order, a �
400,000, α � 2.5, holding cost rate is Ch � $ 0.5, backorder cost rate for inventory is
Cb � $ 1,purchase cost of different item is Cp � $ 5,deterioration rate is θ � 0.2, interest
charged rate Ie � $ 0.07, delay period of retailer is M � 4.5 years, retailer offered delay
period to suppliers is in years N � 2.5.

Example 8 (0 < T ≤ N ) Here, Ordering costs is C0 � $ 250 per order, a� 400,000, α � 2.5,
holding cost rate isCh � $ 0.5, backorder cost rate for inventory isCb � $ 1,purchase cost of
different item is Cp � $ 5,deterioration rate is θ � 0.2, interest charged rate is Ie � $ 0.07,
delay period of retailer is M � 2.5 years, retailer offered delay period to suppliers is in years
N � 0.5.
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The concavity of profit function TP1
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The concavity of profit function TP2
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Example 9 (For different types of Demand function)

Sub Case I: Considering another price-dependent demand D � a − bp.
Taking all the values same as of Example 4 except the value b� 15.
The optimal solution is:

T ∗ � 0.8560930, p∗ � 22.82692, t∗1 � 0.4055169, T P∗(T ∗, p∗, t∗1 ) � 5044.774.

Similarly we can prove it for Example 8.

SubCase II:Considering selling price and the advertisement reliant demand D � Aγ (a−
bp).
Taking all the values same as of Example 4 except the value Ac � 2; γ � 0.4;.
The optimal solution is:

T ∗ � 0.7456812, p∗ � 22.78981, t∗1 � 0.3541833, T P∗(T ∗, p∗, t∗1 ) � 6716.459.

Similarly we can prove it for Example 8.
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Example 10 For different types of deterioration.

Sub Case I: The Weibull distribution deterioration rate is
θ (t) � jk(t − γ )k−1. Here in this paper γ � t1 � 0 (deterioration f ree time).
If j � 0.4; k � 2; γ � 0. The optimal solution is:

T ∗ � 1.100044, p∗ � 13.10023, t∗1 � 0.2920156, T P∗(T ∗, p∗, t∗1 ) � 626.3627.

Similarly we can prove it for Example 8.

Sub Case II: Considering variable deterioration rate θ (t) � 0.2 + 0.1t and taking all the
values similar as stated in Example 4, the optimal solution is

T ∗ � 1.347440, p∗ � 13.03511, t∗1 � 0.5754929, T P∗(T ∗, p∗, t∗1 ) � 658.5282.

Similarly, we can prove it for Example 8.

Example 11 For different purposes.

(i) When t1 � T (i.e. no shortages) then the projected model (both Case-1 and Case-2) will
converted an inventory model with no shortages.

(ii) If M � 0 and N � 0 then this model reduces to traditional instantaneous inventory
model (both Case-1 and Case-2) with fully backlogged shortages.

Sensitivity Analysis

The above numerical example is used to study the effect of inventory system parameters on
the optimal values of the initial stock level, maximum shortage level, cycle length, selling
price and the optimum total profit of the system. The percentage changes in the above stated
optimal values are taken as processes of sensitivity. By changing the parameters (increasing
and decreasing) from − 20 to + 20% the analysis is carried out. The outcomes are found by
changing one parameter at a time and keeping the other parameters at their original values.
The outcomes of these investigation are given in Tables 3 and 4.

Table 3, gives following observations.

• The total profit is extremely delicate with respect to the purchase cost cp , a, trade-credit
period M, α and is ascetically delicate with respect to all other parameters. When the
purchase cost decrease then total profit (TP) andmaximum shortage (R) increases, together
with selling price is also increase which is analogous to Tiwari et al. [32].

• The utmost on-hand stock-level S is exceedingly subtle with respect to the purchase cost
cp , a, α,C0 and is temperately sensitive with respect to all other parameters.

• The peak shortage level R is vastly complex with respect to the shortage cost cb, a, α,C0

and is discreetly delicate with respect to all other parameters. When the value of holding
cost increases then the amount of shortages increases which is analogous to Li et al. [11].

• The selling price is extremely delicate with respect to the purchase cost cp and α. It is
abstemiously subtle with respect to other parameters. The control of cp on p*, AP* is
quite spontaneous and actually quite weighty. When the purchase cost cp is increased then
it leads to a significant increase in optimal selling price p* and therefore an important
decrease in demand which is parallel to Li et al. [11].

• When the holding cost is increased then total profit of the chain is decreased and also
observed that with the increase in deterioration rate lessen the profit which is analogous
to Tiwari et al. [33].
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Table 3 Sensitivity analysis for the demand function D(p) � ae

(−p
α

)
for 0 < T ≤ N

Parameter % Changes of
parameters

% Changes in TP* % Changes

S∗ R∗ p∗ t∗1 T ∗

co − 20 3.388 − 9.98 − 9.98 − 0.82 − 10.7 − 11.04

− 10 1.64 − 4.83 − 4.83 − 0.4 − 5.2 − 5.38

10 − 1.56 4.57 4.57 0.38 4.96 5.15

20 − 3.047 8.9 8.9 0.75 9.71 − 11.04
a − 20 − 23.01 − 11.21 − 11.21 0.93 12.01 12.49

− 10 − 11.56 − 5.45 − 5.45 0.42 5.5 5.71

10 11.64 5.18 5.18 − 0.36 − 4.72 − 4.88

20 23.35 10.13 10.13 − 0.67 − 8.83 − 9.12
cp − 20 18.85 14.79 6.18 − 8.48 − 1.86 − 5.84

− 10 9.05 7.09 3.08 − 4.25 − 0.98 − 3.00

10 − 8.36 − 6.55 − 3.05 4.26 1.09 3.15

20 − 16.08 − 12.61 − 6.06 8.54 2.29 6.47
ch − 20 0.98 11 − 2.87 − 0.25 9.75 2.78

− 10 0.47 5.2 − 1.38 − 0.12 4.63 1.31

10 − 0.44 − 4.69 1.27 0.11 − 4.22 − 1.18

20 − 0.84 − 8.94 2.44 0.22 − 8.07 − 2.25
cb − 20 1.92 − 5.66 17.93 − 0.46 − 6.07 6.18

− 10 0.9 − 2.64 8.18 − 0.21 − 2.84 2.8

10 − 0.8 2.34 − 6.97 0.19 2.52 − 2.36

20 − 1.51 4.42 − 12.99 0.36 4.78 − 4.37
θ − 20 0.64 6.07 − 1.89 − 0.15 6.81 2.03

− 10 0.31 2.94 − 0.92 − 0.07 3.29 0.98

10 − 0.3 − 2.77 0.87 0.07 − 3.08 − 0.91

20 − 0.58 − 5.4 1.7 0.14 − 5.97 − 1.75
α − 20 − 41 − 11.04 − 11.04 − 9.83 11.81 12.29

− 10 − 21.09 − 5 − 5 − 4.99 5.02 5.21

10 22.02 4.21 4.21 5.08 − 3.87 − 4

20 44.79 7.81 7.81 10.21 − 6.95 − 7.18
Ie − 20 − 6.54 − 1.43 − 1.43 1.57 1.39 1.44

− 10 − 3.28 − 0.71 − 0.71 0.77 0.68 0.71

10 3.3 0.69 0.69 − 0.74 − 0.65 − 0.68

20 6.63 1.36 1.36 − 1.47 − 1.28 − 1.33

M − 20 − 14.594 − 3.34 − 3.34 3.68 3.29 3.417

− 10 − 7.356 − 1.62 − 1.62 1.77 1.57 1.628

10 7.465 1.52 1.52 − 1.64 − 1.44 − 1.488

20 15.03 2.96 2.96 − 3.17 − 2.76 − 2.853

N − 20 8.3 1.69 1.69 − 1.82 − 1.59 − 1.65

− 10 4.13 0.86 0.86 − 0.93 − 0.81 − 0.84

10 − 4.1 − 0.89 − 0.89 0.97 0.85 0.89

20 − 8.17 − 1.8 − 1.8 1.98 1.75 1.82
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Table 4 Sensitivity analysis for the demand function D(p) � ap−α for 0 < T ≤ N

Parameter % Changes of
parameters

% Changes in TP* % Changes

S* R* p∗ t∗1 T ∗

ch − 20 0.13 4.45 − 2.52 − 0.08 4.15 0

− 10 0.06 2.17 − 1.23 − 0.04 2.03 0

10 − 0.06 − 2.08 1.18 0.04 − 1.95 0

20 − 0.12 − 4.08 2.31 0.07 − 3.83 0
cp − 20 41.09 67.44 45.12 − 19.9 − 3.79 − 11.58

− 10 17.71 34.85 25.86 − 9.79 4.15 0

10 − 13.85 − 23.9 − 18.83 9.78 − 3.83 0

20 − 24.92 − 40.82 − 32.93 19.56 − 7.38 0
co − 20 1.201 0 0 0 0 0

− 10 0.6 0 0 0 0 0

10 − 0.6 0 0 0 0 0

20 − 1.201 0 0 0 0 0
θ − 20 0.27 9.12 − 5.43 − 0.17 8.93 0

− 10 0.13 4.36 − 2.6 − 0.08 4.28 0

10 − 0.12 − 4.02 2.38 0.08 − 3.94 0

20 – – – – – –
cb − 20 0.62 − 12.37 9.54 − 0.39 − 12.99 0

− 10 0.29 − 5.91 4.55 − 0.18 − 6.22 0

10 − 0.27 5.42 − 4.17 0.17 5.75 0

20 – – – – – –
a − 20 – – – – – –

− 10 − 10.6 − 10 − 10 0 0 0

10 10.6 10 10 0 0 0

20 21.2 20 20 0 0 0
α − 20 197.3 57.15 57.15 19.35 − 18.13 − 18.3

− 10 71.22 33.88 33.88 7.87 − 4.09 − 4.14

10 – – – – – –

20 − 66.26 − 50.01 − 50.01 − 10 0 0
Ic − 20 − 6.39 − 6.03 − 6.03 2.52 0 0

− 10 − 3.22 − 3.04 − 3.04 1.24 0 0

10 3.28 3.1 3.1 − 1.21 0 0

20 6.63 6.25 6.25 − 2.4 0 0

M − 20 − 7.95 − 7.5 − 7.5 3.17 0 0

− 10 − 4.021 − 3.79 − 3.79 1.56 0 0

10 4.115 3.88 3.88 − 1.51 0 0

20 8.325 7.85 7.85 − 2.98 0 0

N − 20 – – – – – –

− 10 0.62 − 8.71 − 8.71 − 0.6 − 9.89 − 10

10 − 0.73 8.44 8.44 0.6 9.87 10

20 − 1.52 11.85 11.85 1.05 14.49 14.69

N.B. (–) indicates non-optimal solution
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• When the constant demand rate (a) increases then the total profit increase, while as the
price-dependent demand rate α increases, the selling price and optimal total profit per unit
time decrease which is analogous to Tiwari et al. [32].

• The period of deterioration time t1 is discreetly subtle with respect to all other parameters
although decidedly sensitive with respect to the holding cost Ch , ordering cost C0, a, α

• Total cycle time T is exceedingly complex with respect to ordering cost C0, a and α and
soberly delicate with respect to all other parameters.

Some observations made from Table 4.

• The total profit is exceedingly sensitive with respect to the purchase cost cp , a, trade-
credit periodM, α and is moderately sensitive with respect to all other parameters. When
purchase cost decrease then total profit (TP) and shortage (R) increases which is analogous
to Tiwari et al. [32].

• When the constant demand rate (a) increases then the total profit increase, however as the
price-dependent demand rate α increases as a consequence the price and the optimal total
profit per unit time will decrease which is alike to Tiwari et al. [32].

• The uppermost on-hand stock-level S is extremely sensitive with respect to the purchase
cost cp , a, α,C0 and is discreetly sensitive with respect to all other parameters.

• The maximum shortages level R is exceedingly delicate with respect to the shortage cost
cb, a, α,C0 and is ascetically sensitive with respect to all other parameters. It is noted that
when the holding cost is increased then the amount of shortages also increased which is
analogous to Li et al. [11].

• The selling price is extremely delicate with respect to the purchase cost cp and α and
discreetly sensitive with respect to the other parameters. The influence of cp on p*, AP* is
quite instinctive and actually quite substantial. An increase in the purchase cost cp pointers
to a imperative increase in p* and hence an imperative decreases in the demand which is
analogous to Li et al. [11].

• When holding cost is increased then total profit of the chain is decreased and also observed
that with the increase in deterioration rate lessen the profit which is analogous to Tiwari
et al. [33].

• The time t1 is reasonably exquisite with respect to all other parameters and is highly
sensitive with respect to holding cost Ch , ordering cost C0, a, α

• When the interest earned rate (Ie) is higher, it results more revenue with less quantity
ordered and thus the total profit drops. When a higher interest paid rate is added to the
total costs, it leads to a lesser amount of profit.

• Total cycle time T is discreetly sensitive with respect to all other parameters while highly
sensitive to ordering cost C0, a and α.

Concluding Remarks

The demand function is considered exponentially with the price for the first problem in this
paper. In second problem, demand function is used as a negative power of price. All these
demand are considered under the trade-credit policy which has a great impact on total profit.
The key decision factors/variables of the proposed model are total cycle length, optimal
selling price, optimal profit and different scenarios for a trade-credit period where a retailer
can invest safely for optimal profit in different types of demand. We have used Taylor series
expansion to obtain the closed form of the cycle length, selling price and total profit. Finally,
it is shown graphically the concavity of profit function with the help of MATLAB software
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and also analyzed the sensitivity of different parameters by changing one and keeping the
others same, which helps to the business organization to make better managerial decisions.

For further research, one can easily extend the proposed model in numerous techniques.
It can be expanded for different types of variable demand which are dependent on displayed
stock-level, time and others. On the other way, this model also could be generalized by
considering three level of trade-credit policy. In addition, it can be also extended in fuzzy
environments.

Appendix A

For demand function D � ae− p
α

S � D{eθ t1−1}
θ

expanding the eθ t1 in Taylor series expansion and neglect the higher order
term.

S � D

[
t1 +

θ

2
t21

]

Chol � Ch D
θ2

[
eθ t1 − θ t1 − 1

]
expanding the eθ t1 in Taylor series expansion and neglect

the higher order term.

Chol � ChDt21
2

R � ae
−
(p/α

)
[T − t1 ]

Csho � 1

2
Cbae

(−p
α

)
(T − t1)

2

T P11(p, t1, T ) � 1

T

⎡
⎢⎢⎢⎣pDT −

⎡
⎢⎢⎢⎣
co + cpD

[
T +

θ t21
2

]
+
1

2
CbD(T − t1)

2 +
ChDt21

2

+
cp IpD

θ2

[
eθ (t1−M) − θ(t1 − M) − 1

]
− pIeD

2

[
t21 − N 2]

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

T P11(p, t1, T ) � 1

T

⎡
⎢⎢⎢⎣pDT −

⎡
⎢⎢⎢⎣
co + cpD

[
T +

θ t21
2

]
+
1

2
CbD(T − t1)

2

+
ChDt21

2
+
cp IpD

θ2

[
θ2(t1 − M)2

]− pIeD

2

[
t21 − N 2]

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

T P12(p, t1, T ) � 1

T

⎡
⎢⎢⎢⎢⎣
pDT −

⎡
⎢⎢⎢⎢⎣

co + cpD

[
T +

θ t21
2

]
+
1

2
CbD(T − t1)

2

+
ChDt21

2
− pIeD

[(
t21 − N 2

)

2
+ t1(t1 − N )

]

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

T P13(p, t1, T ) � 1

T

⎡
⎢⎢⎢⎣pDT −

⎡
⎢⎢⎢⎣
co + cpD

[
T +

θ t21
2

]
+
1

2
CbD(T − t1)

2

+
ChDt21

2
− pIeDT

2
[M − N ]

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦
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T P14(p, t1, T ) � 1

T

⎡
⎢⎢⎢⎣pDT −

⎡
⎢⎢⎢⎣
co + cpD

[
T +

θ t21
2

]
+
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+
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2
− pT Ieae

−p/α[M − N ]

⎤
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⎤
⎥⎥⎥⎦

For demand function D � ap−α

S � D{eθ t1−1}
θ

expanding the eθ t1 in Taylor series expansion and neglect the higher order
term.

S � D

[
t1 +

θ

2
t21

]

Chol � Ch D
θ2

[
eθ t1 − θ t1 − 1

]
expanding the eθ t1 in Taylor series expansion and neglect

the higher order term.
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CbD(T − t1)

2

+
ChDt21

2
− pIeDT

2
[M − N ]

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

T P24(p, t1, T ) � 1

T

⎡
⎢⎢⎢⎣pDT −

⎡
⎢⎢⎢⎣
co + cpD

[
T +

θ t21
2

]
+
1

2
CbD(T − t1)

2

+
ChDt21

2
− pT IeD[M − N ]

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

Appendix B

Proof of Theorem 1 By taking the second order derivative of T P11(p, t1, T ) with respect to
p which is strictly negative, concavity of total profit function will be proved. Considering
D � ae− p

α .
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∂2T P11(p, t1, T )

∂p2
� 1

T

⎡
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DT

α

( p
α

− 2
)

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cp
D

α2

[
T +

θ t21
2

]
+
1

2
Cb

D

α2 (T − t1)
2

+
Cht21
2

D

α2 +
cp Ip
θ2

D

α2

[
θ2(t1 − M)2

]

− Ie
2

[
t21 − N 2]D

α

( p
α

− 2
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

For necessary condition,
∂T P11

∂p
� 0

∂T P11
∂p

� 1

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
DT − p

D

α
T +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cp
D

α

[
T +

θ t21
2

]
+
1

2
Cb

D

α
(T − t1)

2

+
Cht21
2

D

α
+
cp Ip
θ2

D

α

[
θ2(t1 − M)2

]

+
Ie
2
D
(
1 − p

α

)[
t21 − N 2]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

� 0

i .e. ⇒ p
D

α
T − DT � cp

D

α

[
T +

θ t21
2

]

+
1

2
Cb

D

α
(T − t1)

2 +
Cht21
2

D

α
+
cp Ip
θ2

D

α

[
θ2(t1 − M)2

]

+
Ie
2
D(1 − p

α
)
[
t21 − N 2]

⇒ PT

α
− Ie

2
(1 − p

α
)
[
t21 − N 2]

� cp
1

α

[
T +

θ t21
2

]
+
1

2
Cb

1

α
(T − t1)

2

+
Cht21
2

1

α
+
cp Ip
θ2

1

α

[
θ2(t1 − M)2

]

⇒ P �
cp

1
α

[
T +

θ t21
2

]
+ 1

2Cb
1
α
(T − t1)2 +

Cht21
2

1
α
+ cp Ip

θ2
1
α

[
θ2(t1 − M)2

]
[
T
α
+ Ie

2α (1 − p
α
)
[
t21 − N 2

]] � P∗

�

Proof of Theorem 2 By taking the second order derivative of T P11(p, t1, T ) with respect to
t1 which is strictly negative, concavity of total profit function will be proved. Considering
D � ae− p

α .

∂2T P11
∂t21

� − 1

T

[
cpDθ + chD + cbD + cp IpD

]
< 0

For necessary condition,
∂T P11

∂t1
� 0

∂T P11
∂t1

� − 1

T

[
cpDθ t1 + chDt1 − cbD(T − t1) +

cp IpD

θ

[
eθ(t1−M) − θ (t1 − M) − 1

]]
� 0
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Using the taylor expansion series and neglating the higher order term

⇒ t1
[
cpDθ + chD + cbD + cp IpD

] � cbDT + cp IpDM

⇒ t1 � t∗1 �
(
cbDT + cp IpDM

)
[
cpDθ + chD + cbD + cp IpD

]

�

Proof of Theorem 3 By taking the second order derivative of T P11(p, t1, T ) with respect to
T which is strictly negative, concavity of total profit function will be proved. Considering
D � ae− p

α .

∂2T P11(p, t1, T )

∂T 2 � − 2

T 3

[
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cpDθ t21
2

+
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2
+
cp IpD

θ2

[
eθ (t1−M) − θ(t1 − M) − 1

]
− pIeD

2

[
t21 − N 2]

]

� − 2

T 3

T 2

2
CbD � − 1

T
CbD < 0

The root of the first derivative of total profit function T P11(p, t1, T ) with respect to T is
optimal value of T which is T*:
∂T P11(p, t1, T )

∂T
� 0

i .e. pD − 1

2
CbD − 1

T 2

[
co +

cpDθ t21
2

+
ChDt21

2
+
cp Ip D
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]
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�
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2

+
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+
cp IpD
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2
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]
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2
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Ch Dt21
2 + cp Ip D
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[
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[
t21 − N 2

]]

CbD

�

Appendix C

Proof of Theorem 4 By taking the second order derivative of T P21(p, t1, T ) with respect to
p which is strictly negative, concavity of total profit function will be proved. Considering
D � ap−α .

∂2T P11(p, t1, T )

∂p2
� 1

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

αDT
(
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⎡
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⎤
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< 0

For necessary condition,
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⇒ T − Ie
2
(1 − αp)

[
t21 − N 2] � −p

[
cpα

[
T +

θ t21
2

]
+
1

2
Cbα(T − t1)

2 +
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2
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[
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[
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[
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[
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�

Proof of Theorem 5 By taking the second order derivative of T P21(p, t1, T ) with respect to
t1 which is strictly negative, concavity of total profit function will be proved. Considering
D � ap−α .

∂2T P21
∂t21

� − 1

T

[
cpDθ + chD + cbD + cp IpD

]
< 0

For necessary condition,
∂T P11

∂t1
� 0

∂T P21
∂t1

� − 1

T

[
cpDθ t1 + chDt1 − cbD(T − t1) +

cp IpD

θ

[
eθ(t1−M) − θ (t1 − M) − 1

]]
� 0

Using the taylor expansion series and neglating the higher order term

⇒ t1
[
cpDθ + chD + cbD + cp IpD

] � cbDT + cp IpDM

⇒ t1 � t∗1 �
(
cbDT + cp IpDM

)
[
cpDθ + chD + cbD + cp IpD

]

�

Proof of Theorem 6 By taking the second order derivative of T P21(p, t1, T ) with respect to
T which is strictly negative, concavity of total profit function will be proved. Considering
D � ap−α .

∂2T P21(p, t1, T )
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T 3

[
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2

+
Ch Dt21

2
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2

[
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]

� − 2

T 3
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2
CbD � − 1

T
CbD < 0

The root of the first derivative of total profit function T P21(p, t1, T ) with respect to T is
optimal value of T which is T*:

∂T P21(p, t1, T )

∂T
� 0

i .e. pD − 1

2
CbD − 1

T 2

[
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cpDθ t21
2

+
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2
+
cp Ip D
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[
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]
− pIeD

2
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]
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