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Abstract
The large-amplitude oscillation of a pendulumwith spinning support was investigated using a
modified continuous piecewise linearizationmethod (CPLM). In contrast to previous studies,
the present study investigated the response of the spinning support pendulum when the non-
dimensional rotation parameter (�) is greater than one. The analysis showed that the natural
frequency increased monotonically with �, while the oscillation history produced a distinct
qualitative change as � increases from � < 1 to � > 1, confirming the presence of a
bifurcation at � � 1. It was also observed that the response exhibits a bi-stable equilibrium
and a double-well potential when� > 1. Finally, the modified CPLM solution was shown to
produce a maximum error of less than 0.30% for A ≤ 179◦ and � ≤ 1, which is better than
other published results. This shows the potential of the modified CPLM to obtain accurate
periodic solutions of complex nonlinear systems.

Keywords Continuous piecewise linearization method · Pendulum · Bi-stable equilibrium ·
Bifurcation · Double-well potential · Large-amplitude oscillation

List of Symbols

ϕ (rad) Angular displacement of pendulum
ϕr (rad) Displacement at the beginning of a discretization
ϕs (rad) Displacement at the end of a discretization
ϕ̇r (rad/s) Velocity at the beginning of a discretization
ϕ̇s (rad/s) Velocity at the end of a discretization
ωrs (rad/s) CPLM constant representing circular frequency of CPLM solution
ϕrs (rad) CPLM constant representing phase angle of CPLM solution when

Krs > 0
�t(s) Time interval covered by a discretization
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�(−) Non-dimensional rotation parameter or dimensionless rotational
speed

A (rad) Amplitude of the pendulum
Ars (rad); Brs (rad) Integration constants for CPLM solution when Krs <0
Crs (rad) CPLMconstant representing steady-state response of CPLM solution
Frs (N/kg) Linearized restoring force for the discretization bounded by points r

and s
Grs (rad/s); Hrs (rad) Integration constants for CPLM solution when Krs � 0
Krs (N/kg rad) Linearized stiffness for the discretization bounded by points r and s
Rrs (rad) CPLM constant representing amplitude of CPLM solution when Krs

>0

Introduction

The simple pendulum is a well-known mechanical system with nonlinear response for oscil-
lations beyond the small-angle regime. Therefore, the simple pendulum has been used to
study many important nonlinear phenomena. An even more interesting mechanical system
is the pendulum with spinning support. Practical applications of the pendulum with spinning
support include vibration absorbers [1], fly-ball governors [1] and breaking symmetry in
quantum mechanics [2]. The spinning support pendulum differs from the simple pendulum
in the sense that its support has a constant rotational speed while the support of the simple
pendulum is fixed. Hence, unlike the case of a simple pendulum, the nonlinear oscillations
of the spinning support pendulum is parameter dependent; the parameter being the rotational
speed of the support or its non-dimensional form.

Several studies have been conducted on the simple pendulum (e.g. Refs. [3–7] and many
references cited therein) but only relatively few studies have been conducted on the spin-
ning support pendulum [1, 2, 8–11]. A plausible explanation is because the restoring force
of the spinning support pendulum has a more complex nonlinearity, which can be repre-
sented as f (sin ϕ, sin 2ϕ). At present, there are many approximate analytical schemes for
estimating the periodic solution of nonlinear oscillators and they include: Lindstedt–Poincare
method [12], Modified Lindstedt–Poincare method [11, 13], Homotopy perturbation method
[10], Adomain decomposition method [11], Laplace-Adomain decomposition method [14],
Homotopy analysis method [8], Harmonic balance method [12], Global residue harmonic
balance method [15], Variational iteration method [11], Max–min approach [11], Ampli-
tude–frequency formulation [11, 16], Energy balance method [11], Variational approach [11,
17], Hamiltonian approach [9–11], Differential transform method [10], Cubication method
[18], Micken iteration method [1] and Continuous piecewise linearization method [19, 20].
In spite of the numerous approximate analytical schemes for the solution of nonlinear oscilla-
tors, only few investigations on the large-amplitude oscillations (i.e. 90◦ < A < 180◦) of the
spinning support pendulum have been reported [1, 8]. In Liao and Chwang [8] second-order
solutions were derived using the homotopy analysis method. The solution for the frequen-
cy–amplitude relation was derived in terms of Bessel functions, which makes the derivation
of higher-order approximations complicated. In Lai et al. [1] a combination of Taylor and
Chebyshev series was applied to transform the original nonlinear oscillator with trigonomet-
ric nonlinearity to an equivalent oscillator with cubic–quintic nonlinearity. The equivalent
cubic-quintic oscillatorwas then solved bymeans of amodifiedMicken iterationmethod. The
frequency–amplitude relation obtained for the second-order approximation is complex but
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produced slightly more accurate results than the second-order approximation of the homo-
topy analysis method in Liao and Chwang [8]. Other studies [9–11] on the spinning support
pendulum focus on small- and moderate-amplitude oscillations.

Nayfeh and Mook [12] posed an exercise on the spinning support pendulum in which
they suggested a qualitative investigation for cases where the non-dimensional rotation is
less than, equal to and greater than unity. However, the exercise did not consider periodic
solutions for cases where the non-dimensional rotation is equal to and greater than unity.
Also, large-amplitude oscillations were not considered in this exercise. The existing studies
[1, 8] on the large-amplitude oscillations of the spinning support pendulum only considered
cases in which the non-dimensional rotation parameter is less than unity i.e. low-rotational
speed of the support. Cases in which non-dimensional rotation parameter is greater than
unity are important for design of high speed fly-ball governors and for analysis of breaking
symmetry in quantum mechanics [2]. Hence, in the present study, frequency–amplitude
solutions and oscillation histories for cases of large-amplitude oscillations where the non-
dimensional rotation is less than, equal to and greater than unity were investigated using
a modified CPLM algorithm [20]. The modified CPLM solution is much simpler than the
other published approximate analytical solutions [1, 8] for the large-amplitude oscillations
of the spinning support pendulum and it is shown to produce results that are accurate for all
possible amplitudes.

Mathematical Description of Pendulumwith Spinning Support

The pendulum with spinning support is depicted in Fig. 1. The system consists of a massless
rod of length l attached at one end to a ball of mass m and at the other end to a vertical
spinning support, which is spinning at a constant speed of � rad/s. The kinetic and potential
energy of the system at any point are expressed as [9]:

T � 1

2
m

(
l2ϕ̇2 + l2�2 sin2 ϕ

)
(1a)

V � mgl(1 − cosϕ) (1b)

The system Lagrangian is obtained from Eqs. (1a, 1b) as:

L � T − V � 1

2
m

(
l2ϕ̇2 + l2�2 sin2 ϕ

) − mgl(1 − cosϕ) (2)

The equation governing the oscillation of the spinning support pendulum is then obtained
from the Lagrange equation given as:

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
� 0 (3)

Substituting Eq. (2) in Eq. (3) and after simplification, we arrive at Eq. (4).

ϕ̈ + ω2
0(1 − Λ cosϕ) sin ϕ � 0 (4)

where ω0 � √
g/l, g � 9.81

[
m/s2

]
and � � (�/ω0)

2. The initial conditions are given
as ϕ(0) � Aε[0◦, 180◦] and ϕ̇(0) � 0. Equation (4) also represents the oscillation of a
simple pendulum subjected to a horizontal force that is proportional to the sine of its angular
displacement [12]. Another oscillator governed by Eq. (4) is the frictionless motion of a
small mass sliding up and down a circular ring that is rotating about its vertical axis with
a constant spin [21]. It should be noted that for the special case when � � 0 the present
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Fig. 1 Diagrammatic illustration
of the oscillation of a pendulum
with spinning support

 

 

−  +  

 

system becomes a simple pendulum. In that case, an exact solution is possible in terms of
the Jacobi elliptic cosine function and the exact time period can be expressed in terms of the
complete elliptic integral of the first kind. However, no exact solution has been derived for
the spinning support pendulum.

From Eq. (4), it is evident that the restoring force of the system is f (ϕ) � ω2
0

(1 − � cosϕ) sin ϕ. The compliance curve for the restoring force is shown in Fig. 2a for
different values of � and it can be seen that the restoring force is strongly dependent on �.
Also illustrated in Fig. 2b is the restoring force per unit displacement given as d f /dϕ � ω2

0[
cosϕ + �

(
1 − 2 cos2 ϕ

)]
. Both plots suggest a more complex response when � > 1, and

this may account for the lack of solutions for the case when � > 1. The present study is an
attempt to bridge this gap using a simple analytical algorithm.

Modified Continuous Piecewise LinearizationMethod

The CPLM algorithm is an iterative analytical approach that can be used to derive periodic
solutions of nonlinear conservative oscillators. It is based on a piecewise discretization and
linearization approach that was first applied to solve nonlinear impact models [22–24]. It
was first proposed by Big-Alabo [19] but the original formulation was limited to nonlinear
oscillators in which the slope of the restoring force is always positive i.e. Duffing-type oscil-
lators. The original formulation of the CPLM has been applied to investigate the relativistic
oscillator [25] and to analyze the coupled nonlinear vibrations of a two-mass system [26].
The main advantage of the CPLM is its ability to combine simplicity with accuracy notwith-
standing the complexity of the nonlinear restoring force of the conservative oscillator. In
a recent study [20] on the large-amplitude oscillations of the simple pendulum, the CPLM
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Fig. 2 Plot of a compliance and b restoring force per unit displacement for the spinning support pendulum;
− 180◦ ≤ ϕ ≤ 180◦; ω0 � 1.0

algorithmwasmodified to handle nonlinear oscillators characterized by positive and negative
slope restoring force. This modified CPLM has been applied in the present investigation of
the spinning support pendulum and the basic idea is presented as follows.

Equation (4) can be expressed in standard form as:

ϕ̈ + f (ϕ) � 0 (5)

where f (ϕ) � ω2
0(1 − � cosϕ) sin ϕ. According to the CPLM algorithm [19], the linearized

restoring force for each n discretization of f (ϕ) can be expressed as Eq. (6).

Frs(ϕ) � Krs(ϕ − ϕr ) + Fr (6)

where Krs � [ f (ϕs) − f (ϕr )]/(ϕs − ϕr ) and Fr � f (ϕr ). In reality, Krs represents the
restoring force per unit displacement of the nonlinear oscillator. Also, r � 0, 1, 2, . . . , n− 1
and s � r +1 are the start and end states of each discretization respectively. Hence, using the
expression for f (ϕ)we get: Krs � ω2

0[sin ϕs − sin ϕr + 0.5�(sin 2ϕr − sin 2ϕs)]/(ϕs − ϕr )

and Fr � ω2
0(1 − � cosϕr ) sin ϕr .
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Based on the original CPLM formulation [19], Krs must be positive always. However, as
shown in Fig. 2, Krs can be positive or negative depending on the values of � and A. Hence,
Eq. (6) is expressed as [20]:

Frs(ϕ) � ± |Krs |(ϕ − ϕr ) + Fr (7)

Using Eqs. (7), the discretized linear ODE for Eq. (5) can be written as:

ϕ̈ ± |Krs |ϕ � ± |Krs |ϕr − Fr (8)

The solution to Eq. (8) depends on whether the sign is positive or negative. This modifica-
tion generalizes the original CPLM algorithm so that it can solve a wider range of nonlinear
vibration models. However, it is important to note that the CPLM, as a closed-form analytical
algorithm, is limited to the solution of conservative oscillators.

Solution for Positive Linearized Stiffness

The solution for positive linearized stiffness (Krs > 0) has been derived previously [19] and
only the final solutions are presented here. When Krs > 0 the solution for the displacement
and velocity can be expressed as:

ϕ(t) � Rrs sin(ωrs t + ϕrs) + Crs (9a)

ϕ̇(t) � ωrs Rrs cos(ωrs t + ϕrs) (9b)

where ωrs � √
Krs , Crs � ϕr − Fr/Krs and Rrs � [

(ϕr − Crs)
2 + (ϕ̇r/ωrs)

2]1/2. The
initial conditions and other parameters are determined based on the oscillation stage. For
the oscillation stage when ϕ̇ < 0 the initial conditions for each discretization are ϕr � ϕr
(0) � A − r�ϕ and

ϕ̇r � ϕ̇r (0) � −
√∣∣

∣∣2
ϕr∫
A

− f (ϕ)dϕ

∣∣
∣∣ � − ω0

(√
� sin2 ϕr + 2 cosϕr −

√
� sin2 A + 2 cos A

)
;

where �ϕ � A/n and the other parameters are calculated as:

ϕrs �
{
0.5π ϕ̇r � 0
π + tan−1[ωrs(ϕr − Crs)/ϕ̇r ] ϕ̇r < 0

�t �
{

(0.5π − ϕrs)/ωrs (ϕs − Crs) ≥ Rrs(
0.5π + cos−1[(ϕs − Crs)/Rrs] − ϕrs

)
/ωrs (ϕs − Crs) < Rrs

For the oscillation stage when ϕ̇ > 0 the initial conditions are ϕr � ϕr (0) � −A + r�ϕ

and ϕ̇r � ϕ̇r (0) �
√∣∣∣∣2

ϕr∫
A

− f (ϕ)dϕ

∣∣∣∣ � ω0

(√
� sin2 ϕr + 2 cosϕr −

√
� sin2 A + 2 cos A

)

and the other parameters are calculated as:

ϕrs �
{− 0.5π ϕ̇r � 0
tan−1[ωrs(ϕr − Crs)/ϕ̇r ] ϕ̇r < 0

�t �
{

(0.5π − ϕrs)/ωrs (ϕs − Crs) ≥ Rrs(
0.5π − cos−1[(ϕs − Crs)/Rrs] − ϕrs

)
/ωrs (ϕs − Crs) < Rrs

Hence, the time at the end of each discretization is ts � tr +�t and the end conditions ϕs

and ϕ̇s are calculated by replacing r with s in the formulae for initial conditions.
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Solution for Negative Linearized Stiffness

When Krs < 0 the solution for the displacement and velocity can be expressed in terms of
exponential functions as follows [20]:

ϕ(t) � Arse
ωrs t + Brse

−ωrs t + Crs (10a)

ϕ̇(t) � ωrs
(
Arse

ωrs t − Brse
−ωrs t

)
(10b)

where ωrs � √|Krs |; Crs � ϕr + Fr/|Krs |. Applying the initial conditions, Ars and
Brs are derived from Eqs. (10a, 10b) as: Ars � 1

2 (ϕr + ϕ̇r/ωrs − Crs) and Brs � 1
2

(ϕr − ϕ̇r/ωrs − Crs). The initial and end conditions are determined in the same way as
for Krs > 0 above. After applying the end condition in Eq. (10a) the time interval for each
discretization was derived as:

�t �

⎧
⎪⎨

⎪⎩

1
ωrs

loge

[
(ϕs−Crs )±

√
(ϕs−Crs )

2−4Ars Brs
2Ars

]
(ϕs − Crs) > 2

√
Ars Brs

1
ωrs

loge
(

ϕs−Crs
2Ars

)
(ϕs − Crs) ≤ 2

√
Ars Brs

(11)

Hence, the time at the end condition is calculated as ts � tr + �t . In Eq. (11) above, the
sign before the square root is positive for the oscillation stage when ϕ̇ > 0 and vice versa.
Note that if ϕ̇r � 0, then Ars � Brs � 1

2 (ϕr − Crs) and the displacement can be expressed
as Eq. (12).

ϕ(t) � (ϕr − Crs) cosh(ωrs t) + Crs (12)

Therefore,

�t � 1

ωrs
cosh−1

(
ϕs − Crs

ϕr − Crs

)
(13)

Solution for Zero Linearized Stiffness

The linearized stiffness for each discretization is normally positive or negative, but in rear
situations, one or two discretization around the critical point(s) of the compliance curve
may have an approximately zero stiffness. A discretization with zero stiffness is probable
when the interval of each discretization is very small i.e. for very large n. The zero stiffness
discretization can be eliminated by increasing or decreasing n. However, ifwewant to account
for Krs � 0 in the modified CPLM algorithm, then from Eq. (8) we get:

ϕ̈ � −Fr (14)

The solution to Eq. (14) is:

ϕ(t) � Hrs + Grst − 1

2
Fr t

2 (15)

where Grs � ϕ̇r + Fr tr and Hrs � ϕr − ϕ̇r tr − 1
2 Fr t

2
r are integration constants determined

from the initial conditions. Hence, the time interval is derived from Eq. (15) as:

�t � Grs +
√
G2

rs + 2Fr (Hrs − ϕs)

Fr
(16)
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Table 1 Comparison of frequency
estimates for � � 0.1

A
(◦)

Exact Lai et al. [1] Present method

ωe/ω0 ω/ωe % Error ω/ωe % Error

10 0.947477 1.000000 0.0000 0.999747 0.0253

20 0.943828 1.000000 0.0000 1.000037 0.0037

30 0.937654 1.000000 0.0000 1.000057 0.0057

40 0.928817 1.000000 0.0000 1.000080 0.0080

50 0.917139 1.000000 0.0000 1.000101 0.0101

60 0.902406 1.000001 0.0001 1.000125 0.0125

70 0.884376 1.000003 0.0003 1.000153 0.0153

80 0.862791 1.000008 0.0008 1.000182 0.0182

90 0.837376 1.000018 0.0018 1.000214 0.0214

100 0.807840 1.000039 0.0039 1.000246 0.0246

110 0.773857 1.000080 0.0080 1.000283 0.0283

120 0.735040 1.000154 0.0154 1.000324 0.0324

130 0.690863 1.000280 0.0280 1.000367 0.0367

140 0.640508 1.000461 0.0461 1.000420 0.0420

150 0.582500 1.000579 0.0579 1.000481 0.0481

160 0.513636 0.999650 0.0350 1.000577 0.0577

170 0.424456 0.985730 1.4270 1.000751 0.0751

175 0.360553 – – 1.001155 0.1155

179 0.266838 – – 1.001876 0.1876

Results and Discussions

Estimating the Natural Frequency

To verify the accuracy of the modified CPLM solution for the spinning support pendulum a
comparison of natural frequency estimates for � < 1 and 0◦ < A < 180◦ was carried out as
shown in Tables 1, 2 and 3. For all simulations ω0 � 1.0 was assumed. Since the focus of the
present study is on large-amplitude oscillations, frequency estimates for small- to moderate-
amplitude oscillations are only provided for � � 0.1 (see Table 1) to demonstrate that the
present method is applicable to the entire range of possible amplitudes i.e. 0◦ < A < 180◦.
For � � 0.5 and � � 0.9 results are presented for amplitudes in the range of 90◦ <

A < 180◦. Tables 1, 2 and 3 compare results of ‘exact’ numerical solution, the second-order
approximation of Lai et al. [1] and the present method (n � 100). The numerical results used
are those reported in Ref. [1] except for amplitudes greater than 170◦ for which results were
not reported. For all other numerical results, the NDSolve function in Mathematica was used
to integrate Eq. (4) numerically. The absolute error in the numerical results obtained using
the NDSolve function is in the order of 10−8.

Tables 1, 2 and 3 show that the maximum errors of the present method for amplitudes up to
170° are 0.0751%, 0.0903% and 0.0961% for � � 0.1, � � 0.5 and � � 0.9 respectively.
The corresponding maximum errors of the second-order approximation of Lai et al. [1] are
1.4270%, 0.788%and 0.9384% respectively. The error in themethod of Lai et al. [1] increases
gradually at first and then rapidly for A ≥ 150◦. In contrast, the error in the present method
increases gradually with amplitude up to 180◦. Hence, the error in the present method is
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Table 2 Comparison of frequency
estimates for � � 0.5

A
(◦)

Exact Lai et al. [1] Present method

ωe/ω0 ω/ωe % Error ω/ωe % Error

100 0.789963 0.999993 0.0007 1.000253 0.025298

110 0.778014 0.999983 0.0017 1.000304 0.030450

120 0.757597 0.999985 0.0015 1.000360 0.035969

130 0.727867 1.000049 0.0049 1.000419 0.041908

140 0.687817 1.000300 0.0300 1.000487 0.048700

150 0.635859 1.001042 0.1042 1.000570 0.057037

160 0.568623 1.003037 0.3037 1.000682 0.068158

170 0.475894 1.007888 0.7888 1.000903 0.090283

175 0.407132 – – 1.001181 0.118070

179 0.303883 – – 1.002594 0.259422

Table 3 Comparison of frequency
estimates for � � 0.9

A
(◦)

Exact Lai et al. [1] Present method

ωe/ω0 ω/ωe % Error ω/ωe % Error

100 0.766035 1.000142 0.0142 1.000251 0.0251

110 0.776727 1.000105 0.0105 1.000312 0.0312

120 0.774385 0.999988 0.0012 1.000374 0.0374

130 0.758335 0.999812 0.0188 1.000440 0.0440

140 0.727766 0.999690 0.0310 1.000514 0.0514

150 0.681266 0.999963 0.1042 1.000603 0.0603

160 0.615520 1.001721 0.1721 1.000728 0.0728

170 0.519821 1.009384 0.9384 1.000961 0.0961

175 0.446906 – – 1.001282 0.1282

179 0.335803 – – 1.002599 0.2599

significantly smaller than the error in the method of Lai et al. [1] for 150◦ ≤ A < 180◦.
Notwithstanding, the above comparison shows that themethod of Lai et al. [1] and the present
method are both sufficiently accurate for the response of the spinning support pendulumwhen
� < 1 and 0◦ < A < 180◦. Yet the present method is much simpler than the method of Lai
et al. [1] and does not require higher order approximations. Furthermore, the present method
can give accurate predictions of the response of the spinning support pendulum for � > 1;
an investigation that seems not to have been given proper attention in the archived literature.

Figure 3 is a plot of the time period against the non-dimensional rotation parameter for
three different cases of large-amplitude oscillations: A � 170◦, 175◦ and 179◦. The time
period estimates of the present method agrees with exact numerical solutions, confirming
that the present method works extremely well even when � ≥ 1. Figure 3 shows that the
time period decreases with increase in � for each of the amplitudes considered. It was also
observed that the trend in the time period remains the same for � < 1 and � ≥ 1. The
implication is that the rotation of the support to which the pendulum is attached causes an
increase in the frequency of the pendulum as the rotational speed increases, but there is no
observed qualitative change in the frequency-rotational speed relationship as the rotational
speed increases from low (� < 1) to high (� > 1) speed.
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Estimating the Oscillation Plots

Further investigation was conducted to determine the displacement and velocity profiles dur-
ing large-amplitude oscillations. Plots generated based on the present methodwere compared
with exact numerical solutions as shown in Figs. 4, 5, 6 and 7. The blue colour represents
the displacement profile while the green colour represents the velocity profile.

Figures 4, 5, 6 and 7 show that the large-amplitude oscillation of the spinning support
pendulum exhibits an-harmonic response. The latter is further amplified by an increase in the
rotational speed. When� < 1 (low rotational speed), the velocity profile has a single turning
point in each half-cycle (see Fig. 4). For � � 1, a single turning point was also observed
although a relatively constant velocity occurred around the turning point (see Fig. 5). The
relatively constant velocity is due to the inflexion of the compliance response around the
origin as shown in Fig. 2a. Physically, this behaviour implies that the pendulum approaches
and returns from the amplitudewithout a significant change in its velocity.When� > 1 (high
rotational speed), the velocity profile shows three turning points in each half-cycle consisting
of two maximum points and one minimum point (see Figs. 6, 7). A local minimum velocity
was observed at ϕ � 0◦ and this observed response seemed to be counter-intuitive at first
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glance because it is contrary to the general belief that the velocity of a conservative system
reaches its maximum when its displacement is zero. An examination of the compliance
response in Fig. 2a showed that the compliance exhibits an oscillation around the origin
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Fig. 8 Phase diagram as a function of non-dimensional rotation parameter when A � 170◦

when � > 1. The oscillation in the compliance response is responsible for the observed
behaviour in the velocity profile.

Bifurcation Analysis of the Large-Amplitude Response of the Spinning Support
Pendulum

To investigate further the qualitative change observed in the oscillation profile as the rotational
speed increases from � < 1 to � > 1, a phase diagram was plotted as shown in Fig. 8. The
phase plots show how the velocity flattens across the ϕ � 0 line when� � 1, and afterwards
exhibits an oscillation across the ϕ � 0 line when � > 1. From Eq. (1b), the potential
energy is zero when ϕ � 0◦. The corresponding kinetic energy obtained from Eq. (1a) is
T � 1

2ml2ϕ̇2
lmin ,where ϕ̇lmin is the localminimumvelocity.At themaximumvelocity (ϕ̇max ),

the kinetic energy is also maximum and given as Tmax � 1
2m

(
l2ϕ̇2

max + l2�2 sin2 ϕ
)
where

|ϕ̇max | > |ϕ̇lmin | and sin2 ϕ > 0. This analysis agrees with the observations in Figs. 6 and 7.
For � < 1, Fig. 2a shows that f (ϕ) � 0 has only one solution in the range − 180◦ <

ϕ < 180◦, which is ϕ � 0. This critical point has a stable equilibrium (i.e. it is a center)
because d f /dϕ > 0 as shown in Fig. 2b. Also, the phase plot in Fig. 8 shows the single
center when � ≤ 1 and A � 170◦. For � > 1, Fig. 2a shows that there are three critical
points in the range − 180◦ < ϕ < 180. For instance, when � � 2.0 the critical points are:
ϕ � 0◦, − 60◦ and + 60◦. From Fig. 2b, d f /dϕ < 0, > 0 and > 0 respectively for the
critical points. This means that an unstable equilibrium (i.e. saddle point) exists at ϕ � 0◦
and two centers occur at ϕ � − 60◦ and + 60◦. The maximum kinetic energy occurs at the
centers and the potential energy is minimum at these points but not necessarily equal to zero
as explained above. Hence, a qualitative change is observed in the behaviour of the spinning
support pendulum as the rotational speed increases from � < 1 to � > 1, and this confirms
the existence of a bifurcation at � � 1.

The phase plotwhen� > 1 is typical of a bi-stableDuffing oscillator [27],which is charac-
terized by a double-well potential. Therefore, we consider the potential function (i.e. E(ϕ) �
∫ f (ϕ)dϕ � −ω2

0

[
cosϕ + (�/2) sin2 ϕ

]
) plot as shown in Fig. 9. When� ≤ 1, the potential

function has a minimum value at ϕ � 0◦, but when � > 1, the potential function exhibits a
double-well potential with a local maximum potential at ϕ � 0◦ and the minimum potential
occurring when |ϕ| > 0◦. The double-well potential behaviour is well known in nonlinear
oscillators with negative linear stiffness [17, 19], but Fig. 9 shows that the spinning support
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Fig. 9 Dependence of potential function on the non-dimensional rotation parameter

pendulum exhibits a double-well potential when� > 1. This qualitative change in the poten-
tial response of the system from� < 1 to� > 1 is due to bifurcation of the system at� � 1.

Conclusions

The large-amplitude oscillation of the pendulum with spinning support was investigated
using the modified CPLM algorithm. A comparison of time period estimates obtained using
the modified CPLM with exact numerical results showed that the error in the modified
CPLM is negligible. Typically, the maximum relative error was found to be less that 0.3%
for amplitudes up to 179° when the rotational speed is low (� < 1). Since the spinning
support pendulum is a parameter dependent system, investigations were conducted to unravel
the effect of the dimensionless rotation parameter (�) on the oscillation response of the
pendulum. It was observed that the time period of oscillation varied inversely with �. The
implication is that increasing the speed of rotation of the support leads to an increase in the
oscillation frequency of the pendulum.

Investigations on the displacement and velocity profiles focussed on large-amplitude
oscillations where � > 1. Such cases represent a scenario where the rotational speed of
the support is greater than ω0 � √

g/l and is therefore considered to be high. The results
obtained showed a qualitative change in the oscillation response for � > 1 compared to
the case of � ≤ 1. Therefore, a qualitative analysis was conducted and the presence of a
bifurcation at� � 1.0 was established. The bifurcation accounts for the observed qualitative
change in the oscillation profile as the rotational parameter increases from � < 1 to � > 1.
Additionally, the qualitative analysis showed that the response of the spinning support
pendulum for � > 1 is characterized by a bi-stable equilibrium which creates a double-well
potential in the potential response.

The present study also shows the prospects of the modified CPLM in obtaining accurate
periodic solution for nonlinear conservative oscillators and its ability to capture essential an-
harmonic response in the oscillation plot. Given the simplicity and accuracy of the modified
CPLM, it is recommended to both students and experts in the field of nonlinear dynamics.
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The pseudocode algorithm above is for the negative velocity oscillation stage (i.e. ϕ̇ < 0)
when the pendulum swings from + A to − A. This stage constitutes the first half-cycle of
the oscillation. For the remaining half-cycle when the pendulum swings from − A back to
+ A a similar algorithm is applicable and the necessary changes can be made by referring to
“Modified Continuous Piecewise Linearization Method” section.
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