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Abstract
Stokes incompressible viscous fluid flow through a permeable spheroidal particle which is
a bit deformed from the shape of a sphere is studied and solved analytically. It consists
of two regions, porous region which obeys Darcy’s law and liquid region in which Stokes
approximation is used. Boundary conditions used at the interface are mass conservation,
balance of normal stress, and Beavers–Joseph–Saffman–Jones condition. Expression for
drag which acts on the spheroid is obtained and well known results are deduced in the
limiting cases. Variation of drag coefficient with various parameters like deformation, slip,
permeability, no slip are shown by graphs.
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Introduction

Fluid flow past a permeable particle of varying shapes like sphere, cylinder, spheroid or dis-
ordered geometry has always been a topic of interest because of its application in the field of
sciences. Permeable membrane is a biological or synthetic material containing tiny pores that
allows only small particles like water molecules and ions to pass through it. Movement of
particle under semipermeable membrane generally occurs from areas having high concentra-
tion to the areas having low concentration which is basically known as diffusion. Plants and
animals are mainly composed up of cells. Common example of semipermeable membrane
can be seen in plants and animals through a process known as osmosis. Some examples of
flow past permeable particle includes flow through porous fluidized beds or dense layer of
permeable particle in catalyst reactors, fall of snowflakes, flow of a liquid or gaseous mixture
whose composition is analysed in the chromatography column, sedimentation of flakes dur-
ing coagulation treatment of water, deposition of blood clots in medical tests etc. In the case
of capillary-porous particle structure, the kinematics of mass transfer processes occurring in
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fluid-solid dispersed systems depends greatly on the convective fluid transport in the porous
due to the macroscopic motion of the continuous medium.

Problem considering the flow through porous particle have been generally modelled using
Stokes version of Navier–Stokes equation for the flow in the outer region and Darcy’s law
[1] or Brinkman [2] for flow in the porous region. A number of articles related to the flow
past porous bodies of various shape like sphere, cylinder, spheroid, approximate sphere have
been published. A few of them are pointed out here related to the present topic. Long back in
1962, Leonov [3] investigated the slow stationary axisymmetric stream of an incompressible
fluid about a porous sphere presenting the typical form of the streamline pattern. Later,
Joseph and Tao [4] discussed the stationary porous sphere immersed in a uniform streaming
viscous fluid. They concluded that drag acting on a permeable sphere is similar to the drag
force on an impermeable sphere with reduced radius. They used the continuity of normal
component of velocity, pressure and no tangential velocity at the interface of the porous-fluid
medium. Sutherland and Tan [5] worked on finding the sedimentation of a porous sphere
by using Darcy’s law for flow in porous region. Review article of Neale and Epstein [6]
shows the summary of low Reynolds number flow relative to permeable spheres. In their
work they have compared results of several authors. Jones [7] considered low Reynolds
number flow past a spherical shell by using modified Beaver–Joseph slip condition. With
the aim of studying flow with finite but low Reynolds number, Feng and Michaelides [8]
considered the motion of a permeable sphere. Jager and Mikelic [9] on their work discussed
about the interface boundary condition of Beavers, Joseph, and Saffman. Creeping flow past
and within a permeable spheroid was considered by Vainshtein et al. [10]. Creeping viscous
fluid flow past a porous approximate spherical shell was handled by Srinivasacharya [11] by
using Darcy law for flow in porous media. They considered continuity of normal velocity,
continuity of pressure along with Beavers–Joseph [12] slip condition. Coupling of Stokes–
Darcy equation for the flow through porous media, where Beaver-Joseph-Saffman boundary
conditions are used as the interface condition was reported by Urquiza et al. [13]. Shapovalov
[14] investigated the flow of a viscous fluid through a partially permeable spherical particle.
Heused the sameboundary conditions as in [4] andderived the similar expressions for theflow
parameters and the drag coefficient. Cao et al. [15] investigated the coupled Stokes–Darcy
model by using Beavers–Joseph slip boundary condition at the interface. Vereshchagin and
Dolgushev [16] analysed the viscous incompressible low velocity flow past a hollow porous
sphere by using both slip (Beavers–Joseph) and no slip boundary conditions separately.

Recently, Prakash et al. [17] examined the flow past an assemblage of porous particles.
Prakash and Raja Shekhar [18] investigated the dynamic permeability of an assembly of per-
meable porous particles by using Saffman boundary condition [19]. Saad [20] investigated
the problem of Stokes flow past an assemblage of axisymmetric porous spheroidal particle
by using cell models. Chen [21] focused on extracting fluid from a porous media governed
by Darcy law through a slender permeable prolate-spheroid. The effective permeability of
a porous medium for spherical and spheroidal vug with fracture inclusion was discussed
by Rasoulzadeh and Kuchuk [22] by using the Beaver-Joseph-Saffman boundary condition
proposed by Jones. Recently, Tiwari et al. [23] worked on the flow problem considering
non-homogeneous porous cylindrical particle modelled using Beaver-Joseph slip boundary
condition.By consideringSaffman’s boundary condition,Khabthani et al. [24] analysed lubri-
cating motion of a sphere towards a thin porous slab. Lai et al. [25] studied simple projection
technique for the coupled Navier–Stokes and Darcy flows by using Beaver–Joseph–Saffman
condition.

In present paper, we have concentrated on viscous flow past a permeable spheroid, which
is a slightly deformed sphere and have calculated the hydrodynamic drag force acting on
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Fig. 1 : Geometry of fluid flow through permeable spheroid

the permeable spheroidal particle. The flow considered here is axially symmetric in nature.
Stream function and the component of pressure for the regions outside and inside the per-
meable spheroidal particle are obtained. Variation of drag experienced by the particle versus
permeability parameter, slip coefficient and deformation parameter are shown graphically.
Deduction cases leads to some well known previous results.

Problem Formulation

Consider the steady viscous fluid flow through a permeable spheroid which is kept fixed in
a uniform stream having velocity U ( See Fig. 1). Outside region I and inner porous region
II are represented here by i ,where i = 1, 2.

Flow equation for region I which obeys Stokes equation are

∇ · q(1) = 0 (1)

∇ p(1) + μ∇ × ∇ × q(1) = 0 (2)

where q(1) and p(1) are velocity and pressure in the liquid region, and μ the coefficient of
viscosity of the fluid.

Flow equation for region II that obeys Darcy’s law are

∇ · q(2) = 0 (3)

∇ p(2) + μ

k
q(2) = 0 (4)

where q(2) and p(2) are velocity and pressure in porous region, k the permeability of porous
medium.

We introduce the non-dimensional variables for converting the flow governing equations
to dimensionless form as,

r = ar̃ ,q(i) = U q̃(i),∇ = ∇̃
a

, p(i) = μU

a
p̃(i) (5)
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Substituting them in Eqs. (1) to (2) and then dropping the tildes, we get

∇ · q(1) = 0 (6)

∇ p(1) + ∇ × ∇ × q(1) = 0 (7)

∇ · q(2) = 0 (8)

∇ p(2) + α2q(2) = 0 (9)

where α2 = a2

k
.

Let (r , θ, φ) be the spherical polar co-ordinate system. Consider fluid flow is axially
symmetric in nature, thus all the quantities considered for the flow doesn’t depends on φ.
Here, velocity vectors are denoted by

q(i) = q(i)
r (r , θ)er + q(i)

θ (r , θ)eθ , i = 1, 2 (10)

Consider r = a [1 + f (θ)] as the surface of the spheroid [26]. Orthogonality relations of
Gegenbauer functions ϑm(ζ ), ζ = cos θ allow us, under general circumstances, to assume
the expansion f (θ) = ∑∞

m=2 αmϑm(ζ ) where the Gegenbauer function is related to the
Legendre function Pn(ζ ) by the relation

ϑn(ζ ) = Pn−2(ζ ) − Pn(ζ )

2n − 1
, n ≥ 2 (11)

So, the spheroidal surface will be r = a[1 + αmϑm(ζ )]. Coefficients αm are assumed to be
sufficiently small so that we can neglect their squares and higher powers [26]. Subsequently,
we have (r/a)y ≈ 1 + yαmϑm(ζ ) where y is positive or negative.

Consider ψ(i); i = 1, 2 to be Stokes stream functions for inner and outer spheroidal
region, respectively.
Components of velocity in relation to stream function are

q(i)
r = 1

r2
∂ψ(i)

∂ζ
, q(i)

θ = 1

r
√
1 − ζ 2

∂ψ(i)

∂r
; i = 1, 2 (12)

Elimination of terms containing pressure p(1) and p(2) from Eqs. (7) and (9), we get the
equation below for the stream function

E4ψ(1) = 0, (13)

E2ψ(2) = 0. (14)

where E2 = ∂2

∂r2
+ 1 − ζ 2

r2
∂2

∂ζ 2

Boundary Condition

In order to find the flow velocity components inside and outside the permeable spheroid,
appropriate boundary conditions are required to be chosen. At the clear fluid-permeable inter-
face, we consider continuity of normal components of velocity, Shear force is proportional to
the tangential component of the fluid velocity, which is called the Beavers–Joseph–Saffman–
Jones condition [7,12,19,22] and a jump condition for pressures i.e., normal stress in the
clear fluid is equal to pressure in the permeable region [22,23].
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Boundary conditions at spheroidal surface are

(q(1) − q(2)) · n = 0, (15)

n · τ (1) · s = μ

λ
√
k
q(1) · s, (16)

n · τ (1) · n = −p (2). (17)

where λ is the non-dimensional BJS slip coefficient and it depends on the characteristics of
the porous medium. The range of λ is between 0.25 and 10 [19,23,27]. τ (1) is the stress
tensor for viscous fluid. If λ = 0, and the permeability is very low then the problem reduces
to the flow past a semipermeable particle.

Also, n = er − αm

√
1 − ζ 2Pm−1(ζ )eθ , and s are a unit normal vector and an arbitrary

tangential vector at the spheroidal surface r = a[1 + αmϑm(ζ )].
Boundary conditions at infinity (r → ∞) for the external flow are written as q(1)

r =
−U cos θ and q(1)

θ = U sin θ .
Substituting the above values ofn and s in Eqs. (15) to (17), we get the boundary conditions

in non-dimensional form as

q(1)
r − q(2)

r = (q(1)
θ − q(2)

θ )αm

√
1 − ζ 2Pm−1(ζ ), (18)

τ
(1)
rθ + αm

√
1 − ζ 2Pm−1(ζ )

(
τ (1)
rr − τ

(1)
θθ

)
= α

λ

(
q(1)
θ + q(1)

r αm

√
1 − ζ 2Pm−1(ζ )

)
, (19)

τ (1)
rr − 2αmτ

(1)
rθ

√
1 − ζ 2Pm−1(ζ ) = −p(2). (20)

The boundary conditions in relation to stream functionψ(i); i = 1, 2 at the spheroidal surface
are

(
∂ψ(1)

∂ζ
− ∂ψ(2)

∂ζ

)

= rαm Pm−1(ζ )

(
∂ψ(1)

∂r
− ∂ψ(2)

∂r

)

, (21)

[

2r
∂

∂r

(
1

r

∂ψ(1)

∂r

)

− E2ψ (1)

+ 2αmϑ2(ζ )Pm−1(ζ )

(

4
∂2ψ(1)

∂r∂ζ
− 6

r2
∂ψ(1)

∂ζ
+ P1(ζ )

rϑ2(ζ )

∂ψ(1)

∂r

)]

= α

λ

(
∂ψ(1)

∂r
+ 1

r
(1 − ζ 2)αm Pm−1(ζ )

∂ψ(1)

∂ζ

)

, (22)

−p(1) − 2

r2

[
2

r

∂ψ(1)

∂ζ
− ∂2ψ(1)

∂r∂ζ

]

− 2αm Pm−1(ζ )

r

[

2r
∂

∂r

(
1

r

∂ψ(1)

∂r

)

− E2ψ (1)

]

= −p(2).

(23)

Solution of the Problem

Solution for region I and region II obtained by solving Eqs. (13) and (14) are given as

ψ(1) =
[
r2 + a2

r
+ b2r

]
ϑ2(ζ ) +

∞∑

n=3

[
Anr

−n+1 + Bnr
−n+3] ϑn(ζ ) (24)
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ψ(2) =
[

c2r
2 + d2

r

]

ϑ2(ζ ) +
∞∑

n=3

[Cnr
n + Dnr

−n+1]ϑn(ζ ) (25)

Expression of pressure in region I and II are given below

p(1) = −b2
r2

P1(ζ ) +
∞∑

n=3

[(
6 − 4n

n

)

Bnr
−n

]

Pn−1(ζ ) (26)

p(2) = α2

[(

c2r − d2
2r2

)

P1(ζ ) +
∞∑

n=3

[

Cn
rn−1

n − 1
− Dnr−n

n

]

Pn−1(ζ )

]

(27)

Since at the center of the permeable spheroid the pressure is limited, so (p(2) < ∞ at r = 0);
thus the value of d2 = 0.

The Eqs .(25) and (27) reduces to

ψ(2) = c2r
2ϑ2(ζ ) +

∞∑

n=3

Cnr
nϑn(ζ ) (28)

p(2) = α2

[

c2r P1(ζ ) +
∞∑

n=3

Cn
rn−1

n − 1
Pn−1(ζ )

]

(29)

Now, the solution which corresponds to the boundary r = 1 + αmϑm(ζ ) are first identified.
By comparing the Eqs . (24) and (28) with that obtained in the problem of flow of viscous
incompressible fluid through a permeable sphere, we see that the terms involving An , Bn

and Cn for the value of n > 2 are extra and they doesn’t exist for the case of a permeable
sphere. Here, we have considered the case of a spheroid which is a slightly deformed sphere.
Thus, the flow through this geometry is not expected to be much different from that of a flow
through a permeable sphere [14]. For the solution of the case

r = 1 +
∞∑

m=2

αmϑm(ζ ), (30)

We adopt the same idea for every m and evaluate the stream functions in both the regions.

Application to a Permeable Spheroid

As an application of the above analysis, we consider the case of flow past a permeable prolate
and oblate spheroid. In Cartesian coordinate system, spheroidal surface is represented as

x2 + y2

c2
+ z2

c2(1 − ε)2
= 1 (31)

where the radius of the equator is c and ε is very small so that we can neglect its squares and
higher powers. Equation of the spheroidal surface (31) in polar form is r = a[1 + 2εϑ2(ζ )]
with a = c(1− ε). When 0 < ε ≤ 1, the considered spheroid is oblate, and for ε < 0, it is a
prolate spheroid. In case with ε = 0, it resembles with the equation of the sphere with radius
c. Above results are applicable for the case, when m = 2; αm = 2ε. Therefore, the equation
for the stream functions are

ψ(1) =
[

r2 + a2 + A2

r
+ (b2 + B2)r

]

ϑ2(ζ ) +
[
A4

r3
+ B4

r

]

ϑ4(ζ ), (32)
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ψ(2) = (c2 + C2)r
2ϑ2(ζ ) + C4r

4ϑ4(ζ ). (33)

Drag Force Acting on the Body

Drag force which acts on spheroidal particle due to the flow of viscous fluid in outer region
can be evaluated by taking use of the formula

FD =
∫

S
(n · τ (1)) · kdS (34)

where n = er − ε sin 2θeθ ; dS = 2πa2(1+ 2ε sin2 θ) sin θdθ ; k is the unit vector acting in
the z direction and integrating over the surface of the body r = 1 + ε sin2 θ .

FD = 4πμUa(b2 + B2) (35)

Substituting the values of b2 and B2 along with a = c(1 − ε) and α = β(1 − ε) [20], we
obtain

FD = −4πμUc

[
6β2λ + 3β3 + 12β

(
6β2 + 18

)
λ + 2β3 + 9β

+ εΔ

]

(36)

where

Δ =
[
3β

(
12β

(
β2 − 15

)
λ2 − 12

(
β4 + 19β2 + 36

)
λ − β

(
β2 + 12

) (
2β2 + 5

))

5
(
6β2λ + 18λ + 2β3 + 9β

)2

]

(37)

β = c√
k
.

Some Special Results

First case If λ = 0, it reduces to the semipermeable spheroid and the drag is

FD = 6πμUc

[
2

((
β2 + 12

) (
2β2 + 5

)
ε − 5

(
β2 + 4

) (
2β2 + 9

))

5
(
2β2 + 9

)2

]

(38)

Second case If the deformation parameter ε = 0, it reduces to permeable sphere and the
drag is

FD = −6πμUc

[
2β(2βλ + β2 + 4)

(
6β2 + 18

)
λ + β(2β2 + 9)

]

(39)

Third case If the deformation parameter ε = 0 and λ = 0, it reduces to semipermeable
sphere and the drag is

FD = −6πμUc

[
2β2 + 8

2β2 + 9

]

(40)

Fourth case If β → ∞ ( permeability k = 0), it behaves as a solid spheroid and the drag is

FD = −6πμUc
[
1 − ε

5

]
(41)

which is same as the classical stokes drag past a solid spheroid [26]
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Fifth case If both ε = 0 and β → ∞ i.e., permeability k = 0, it behaves as solid sphere and
the drag is

FD = −6πμUc (42)

which is the renowned classical expression for Stokes drag past a solid sphere [26].
Fourth case For the case with β → 0 ( infinite permeability k → ∞), we have

FD = 0 (43)

which indicates the absence of drag.

Sedimentation Velocity

We can calculate the sedimentation or terminal velocity U∞ by using the formula for drag
given by Eq. (36). The drag force is equated to the excess of the gravity acting on the spheroid
above its buoyancy given as

4

3
πc3g(1 − ε)(ρm − ρ) = −4πμUc

[
6β2λ + 3β3 + 12β

(
6β2 + 18

)
λ + 2β3 + 9β

+ εΔ

]

(44)

where spheroidal mean density is denoted as ρm .
Thus we have terminal velocity as

U∞ = −c2g(ρm − ρ)

3μ

[ ((
6β2 + 18

)
λ + 2β3 + 9β

)
(1 − ε)

6β2λ + 3β3 + 12β + εΔ
((
6β2 + 18

)
λ + 2β3 + 9β

)

]

(45)

In case of sphere (ε = 0), we get the terminal velocity as

U∞ = −c2g(ρm − ρ)

9μ

[(
6β2 + 18

)
λ + 2β3 + 9β

2β2λ + β3 + 4β

]

(46)

and if λ = 0 in Eq. (46), we have the terminal velocity for semipermeable sphere as

U∞ = −2c2g(ρm − ρ)

9μ

[
2β2 + 9

2β2 + 8

]

(47)

Graphical Representation

Variation of drag coefficient DN = FD

−6πμUc
with permeability parameter

(

k1 = 1

β2

)

for

varying deformation parameter ε, slip coefficient λ are shown in Figs. 2 to 4. Figure 2 and 3
illustrates the variation of drag with changing permeability and deformation. It is observed
that the drag coefficient decreases monotonically with the increasing permeability. As the
deformation parameter increases, there is a decrease in drag coefficient. We observed that
the drag on permeable sphere (ε = 0) is lower than that of the drag on permeable prolate
spheroid (ε = −0.1,−0.3) and greater than that of the drag on permeable oblate spheroid
(ε = 0.1, 0.3). In case of permeable particle, we observed the same. From Figure 4, the
variation of drag coefficient with slip parameter λ for varying deformation ε is recognised. It
is well noticed that drag coefficient decreases monotonically with increasing slip. However,
DN is relatively higher for prolate spheroid.
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Fig. 2 Representation of drag coefficient versus permeability for varying deformation parameter ε with fixed
slip coefficient λ = 3

Fig. 3 Representation of drag coefficient versus permeability for varying deformation parameter ε with fixed
slip λ = 0 (Semipermeable case)

Conclusions

The steady creeping flow of viscous fluid with incompressible nature past a permeable
spheroidal particle governed by Darcy law has been investigated using BJSJ condition. An
analytical solution of the problemwith the governing equations for the flow inside and outside
the particle has been obtained. An explicit expression for drag force acting on the spheroidal
particle is presented and well known results are deduced in reduction case. The effect of
permeability, deformation and slip parameter on the flow are discussed. Obtained results
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Fig. 4 Representation of drag coefficient versus slip coefficient for varying deformation parameter ε with
permeability k1 = 0.05

are exhibited in graphically. The drag coefficient is found to be a decreasing function of
permeability, deformation and slip parameter.

Appendix

On applying the Eqs. (21) to (23) upto first order of αm , we obtain the following equations

(1 + a2 + b2 − c2) P1(ζ ) + αm(2 − a2 + b2 − 2c2)[ϑm(ζ )P1(ζ ) + ϑ2(ζ )Pm−1(ζ )]

+
∞∑

n=3

(An + Bn − Cn)Pn−1(ζ ) = 0 (48)

((6λ + α)a2 − αb2 − 2α) ϑ2(ζ ) + αmϑ2(ζ ) [−((18λ + 2α)a2 + 2α)ϑm(ζ )

+ ((18λ + 2α)a2 + (6λ + 2α)2b2 + 2α) P1(ζ )Pm−1(ζ )
]

−
∞∑

n=3

[(2(1 − n2)λ + α(1 − n)
)
An + (2n(2 − n)λ + α(3 − n)) Bn]ϑn(ζ ) = 0 (49)

(6a2 + 3b2 + α2c2)P1(ζ ) + αm[−12a2 − 6b2 + α2c2]ϑm(ζ )P1(ζ )

−12a2αm[ϑ2(ζ )Pm−1(ζ ) + ϑm(ζ )P1(ζ )]

+
∞∑

n=3

[

2(n + 1)An + 2(n2 + n − 3)

n
Bn + α2

n − 1
Cn

]

Pn−1(ζ ) = 0 (50)

Solving the leading terms of Eqs. (48) to (50), we get the values of a2, b2, and c2 as

a2 = α(α2 + 6)

6
(
α2 + 3

)
λ + α(2α2 + 9)

(51)
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b2 = − 3α(2αλ + α2 + 4)

6
(
α2 + 3

)
λ + α(2α2 + 9)

(52)

c2 = 3(6λ + α)

6
(
α2 + 3

)
λ + α(2α2 + 9)

(53)

In order to calculate other arbitrary constants An , Bn , and Cn ,we require the following iden-
tities

ϑm(ζ )ϑ2(ζ ) = − (m − 2)(m − 3)

2(2m − 1)(2m − 3)
ϑm−2(ζ )

+ m(m − 1)

(2m + 1)(2m − 3)
ϑm(ζ )

− (m + 1)(m + 2)

2(2m − 1)(2m + 1)
ϑm+2(ζ ) (54)

ϑm(ζ )P1(ζ ) + Pm−1(ζ )ϑ2(ζ ) = − (m − 2)(m − 3)

2(2m − 1)(2m − 3)
Pm−3(ζ )

+ m(m − 1)

(2m + 1)(2m − 3)
Pm−1(ζ )

− (m + 1)(m + 2)

2(2m − 1)(2m + 1)
Pm+1(ζ ) (55)

P1(ζ )ϑ2(ζ )Pm−1(ζ ) = − (m − 1)(m − 2)(m − 3)

2(2m − 1)(2m − 3)
ϑm−2(ζ )

+ m(m − 1)

2(2m + 1)(2m − 3)
ϑm(ζ )

+ m(m + 1)(m + 2)

2(2m − 1)(2m + 1)
ϑm+2(ζ ) (56)

ϑm(ζ )P1(ζ ) = (m − 2)

(2m − 1)(2m − 3)
Pm−3(ζ )

+ 1

(2m + 1)(2m − 3)
Pm−1(ζ )

− (m + 1)

(2m − 1)(2m + 1)
Pm+1(ζ ) (57)

By taking the use of these identities in Eqs (43) to (45) we see that the values of An , Bn

and Cn = 0 for n 	= m − 2,m,m + 2 and for n = m − 2,m,m + 2 we have the following
expressions

An + Bn − Cn + ξ1an = 0 (58)
(
2(1 − n2)λ + α(1 − n)

)
An + (2n(2 − n)λ + α(3 − n)) Bn + ξ2an + ξ3bn = 0 (59)

2(n + 1)An + 2(n2 + n − 3)

n
Bn + α2

n − 1
Cn + ξ4cn + ξ5an = 0 (60)

where

ξ1 = 2 − a2 + b2 − 2c2
ξ2 = −(18λ + 2α)a2 − 2α

ξ3 = (18λ + 2α)a2 + (6λ + 2α)2b2 + 2α
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ξ4 = −12a2 − 6b2 + α2c2

ξ5 = −12a2

and

an = n(n − 1)αn

(2n + 1)(2n − 3)
(61)

bn = n(n − 1)αn

2(2n + 1)(2n − 3)
(62)

cn = αn

(2n + 1)(2n − 3)
(63)

The expression for B2 is

B2 = −6αε
(
36α

(
α2 + 5

)
λ2 + 12

(
2α4 + 13α2 + 12

)
λ + α

(
4α4 + 33α2 + 60

))

5
(
6α2λ + 18λ + 2α3 + 9α

)2

(64)
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