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Abstract
In this paper, the problem of cross-diffusion and electric field effects on theMHDWilliamson
fluid flow across a variable thickness stretching sheet with flow slip is presented. The trans-
formed differential equations are solved by using the optimal homotopy asymptotic method.
Comparison of results has been made with the numerical solutions from the literature and an
interesting covenant has been observed. Subsequently, the effects of governing parameters
on the flow, heat and mass transfer characteristics of the problem are presented graphically
and discussed exhaustively. Results reveal that velocity and temperature increase with an
increase in the electric field. Finally, we observed that the Dufour and Soret numbers have
drifted to control the thermal and concentration boundary layers.
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u, v Velocity components in x and y directions
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B Magnetic field vector
K Thermal conductivity
KT Thermal diffusion ratio
Tm Mean fluid temperature
C∞ Concentration of the fluid in the free stream
L∗
2 Dimensional temperature jump parameter

r1 Maxwell’s reflection coefficient
b Physical parameter related to stretching sheet
m Velocity power index parameter
M Magnetic interaction parameter
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g Dimensionless temperature
Sc Schmidt number
L1 Dimensionless velocity slip parameter
L3 Dimensionless concentration jump parameter
Nux Local Nusselt number
Rex Local Reynolds number
Cp Specific heat capacity
A Coefficient related to stretching sheet
T Temperature of the fluid
Dm Molecular diffusivity
C Concentration of the fluid
T∞ Temperature of the fluid
L∗
1 Dimensional velocity slip parameter

L∗
3 Dimensional conc. jump parameter

a Thermal accommodation coefficient
d Concentration accommodation coeff
Pr Prandtl number
Du Dufour number
h Dimensionless concentration
Sr Soret number
L2 Thermal slip parameter
C f Skin friction coefficient
Shx Local Sherwood number

Greek Symbols

η Similarity variable
σ Electrical conductivity of the fluid
ρ Density of the fluid
μ Dynamic viscosity
ν Kinematic viscosity
α Wall thickness parameter
ξ1 Mean free path (constant)
� Positive characteristic time
	 Williamson fluid parameter

Introduction

Several researchers have attracted by the concept of heat and mass transfer as they have enor-
mous applications in diverse disciplines such as classification of moisture and temperature
among the farming fields and plantation of fruit trees. When mass and heat transfer happens
at the same time, complex behavior was perceived in the connections between the guiding
potentials and fluxes. And also, it is noticed that the energy flux can be furnished by both
concentration and temperature gradients. The energy flux instigated by temperature gradient
is known as the Soret effect and the energy flux activated by concentration gradient is named
as the Dufour effect. These effects may be ignored as they are of less order in magnitude
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when compared with the effects initiated by Fick’s and Fourier’s laws. But they have their
own moment in the fields such as hydrology and geosciences.

The non-Newtonian fluids like Pseudoplastic fluids have lower viscosity when considered
shear strain. Modern paints are examples of pseudoplastic materials. It is known that the
Navier–Stokes equations are insufficient to show the physical properties of pseudoplastic
fluids, hence there are some physical models were recommended to overcome this gap such
as Ellis, Carreaus, Cross- and power law models.

The flow across a stretching sheet attracted several writers because of its enormous appli-
cations in several extents such as polymer extrusion, metallurgical processes, metal-spinning,
and plastic films. A good example for the boundary layer flow over a stretching surface is the
process of melt spinning (a technique used for rapid cooling of liquids) where the extrudate
is stretched into a sheet when it is pulled from the die. Finally, when this sheet passes by the
controlled cooling system, then it becomes solid.

Initially Eckert et al. [1] acknowledged the importance of Soret and Dufour effects and
argued the consequence of these effects on heat transfer across a cylinder. Ybarra and Velarde
[2] discussed the influence of Dufour and Soret on the stability of a binary gas layer heated
from above or below. Later some progressive work is contributed to Dufour and Soret effects
by considering various channels [3–6]. Further by viewing chemical reaction and magnetic
field together with these effects, Postelnicu [7, 8] conferred a number of cases to study the
qualities of mass and heat transfer in the convective fluid flow. He noted that raising the mag-
netic field reduces the Dufour and Soret values. Likewise, Alam and Rahman [9] have done
the problem by considering MHD flow and Cheng [10, 11] argued the problem by assuming
concentration, wall temperature, wall mass and wall heat fluxes as unchallengeable. Their
one of significant results is an increase in Soret number causes to reduce the temperature
and intensify the concentration field. Raju et al. [12]. discussed radiation and Soret effects
on MHD nanofluid flow across a vertical moving plate through a porous medium and they
observed that the Soret number and buoyancy parameter assist in raising the rate of heat trans-
fer. Reddy and Sandeep [13] studied the heat and mass transfer of magnetic bio-convective
flow caused by a rotating cone and plate in the presence of nonlinear thermal radiation and
cross diffusion. Recently, Reddy et al. [14] investigated the effect of Cross Diffusion on
Magneto-hydrodynamic Bio-Convection flow of Oldroyd-B nanofluid past a melting sheet
and Reddy [15] studied the Cattaneo–Christov heat flux effect on hydromagnetic radiative
Oldroyd-B liquid flow across a cone/wedge in the presence of cross-diffusion.

In non-Newtonian fluids, the most frequently encountered fluids are pseudoplastic fluids
whose behavior has been explained by proposing different models like Carreaus model, Ellis
model, Cross model, and Williamson fluid model. The behavior of blood flow is almost
completely described by the Williamson model of non-Newtonian fluid. This model was
proposed byWilliamson [16] and later on used by several authors [17–20] to investigate fluid
flow characteristics and obtain the solution of the governing system of equations by applying
different methods. Gorla and Gireesha [21] worked on the Williamson nanofluid flow and
heat transfer over a stretching/shrinking sheet with the convective boundary condition.

Lee [22] introduced the notion of variable thickness sheet by thin needles. Later, the work
was continuedonvariable thickness surface bymany researchers [23–26] andvarious physical
effects on peristaltic transport of non- Newtonian fluids are examined by the researchers [27,
28]. Peristaltic transport of Johnson-Segalman and Williamson fluids with slip Hina et al.
[29]. and without slip Iftikhar et al. [30]. conditions are respectively studied.

Researchers studied the perturbation techniques to get the solution of strongly nonlin-
ear combined problems. These methods collect and group small parameters which cannot
be found easily. The methods like Artificial Parameters Method Arshad et al. [31]., Homo-
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topy Analysis Method (HAM) Liu [32] and Homotopy Perturbation Method (HPM) Hayat
et al. [33]. were introduced for the small parameter. The above analytic methods joined the
homotopy with the perturbation techniques.

OHAM is a semi-analytical technique that is directed forward to apply on different type
of problems and the existence of any small or large parameters are not significant. Marinca
et al. [34]. was initially introduced the basic concept of this method in 2008. OHAM reduces
the extent of the computational domain. It is a reliable analytical technique and has already
been successfully applied to various nonlinear coupled differential equations occurring in
science, engineering and other fields of studies. Marinca and Herisanu applied OHAM on
different problem (see, [35–37]). Many researchers applied OHAM to study fluid flow prob-
lems [38–41]. Recently, Gossaye andKishan [42, 43] apply the optimal homotopy asymptotic
method to the electrical MHD non-Newtonian fluid flows over a stretching sheet.

In this paper, we studied the heat and mass transfer characteristics of Dufour and Soret
effects on electrical MHDWilliamson fluid flow over a stretching surface with flow slip and
variable thickness using OHAM. To the author’s utmost knowledge, so far no writing has
conveyed these types of investigation. The momentum, energy and concentration equations
are reduced into a set of the system of ODEs and then solved by using an effective ana-
lytical technique OHAM. The influence of dissimilar governing parameters on the velocity,
temperature and concentration profiles is examined using graphs and tables.

Mathematical Formulation

Consider an electrical MHD two-dimensional steady laminar flow of Williamson fluid past a
slandering stretching sheet coinciding with the plane y � 0 as portrayed in Fig. 1. The origin
is positioned at a slit through which the surface is drawn through the fluid medium. Assume
that

y � A(b + x)
−m+1

2 , Uw � U0(b + x)m, vw � 0,m �� 1

Fig. 1 Flow configuration and co-ordinate system
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with the presence of an external electric field and the sheet is sufficiently thin and m is the
velocity power index.

As the fluid is electrically conducting and in the existence of an external electric field,
the Lorenz force is given by J × B, where J � σ(E + V × B) is the Joule current,σ is the
electrical conductivity, V � (u, v) is the fluid velocity, B � (0, B0, 0)andE � (0, 0,−E0)

are the transverse magnetic and electric field vectors, respectively. The magnetic and electric
fields are applied perpendicular to the flow, such that the Reynolds number is selected small.
The applied magnetic field is greater when it is compared to the induced magnetic field.
Hence the induced magnetic field is negligible for small magnetic Reynolds number.

The coordinate system is illustrated in Fig. 1 above. The Cauchy stress tensor S for
Williamson fluid model is written as (Dapra and Searpi [44]):

S � −pI + τ1 (1)

τ1 �
(

μ∞ +
μ0 − μ∞
1 − γ1�

)
A1, (2)

whereμ0 andμ∞ are the limiting viscosity at 0 and at infinity shear rate, τ1 is the extra stress
tensor, I is an identity tensor, � > 0 is a time constant, A1 is the first Rivlin–Erickson tensor
and the shear rate γ1 is written as:

γ1 � √
0.5π and π � trace

(
A2
1

)
, (3)

where π is the second invariant strain tensor. Here we considered the case for whichμ∞ � 0
and γ1� < 1. Hence, τ1 is defined as

τ1 �
( −μ0

γ1� − 1

)
A1. (4)

By using the binomial expansion, we obtain

τ1 � μ0(1 − γ1�)A1. (5)

The conservative equations in the aforementioned conditions for theWilliamson fluid flow
with the slip boundary conditions are given as (see, [45–47])

Continuity equation

∂u

∂x
+

∂v

∂y
� 0. (6)

Momentum equation

u
∂u

∂x
+ v

∂u

∂y
� ν

∂2u

∂y2
+ �v

√
2

(
∂u

∂y

)(
∂2u

∂y2

)
+
1

ρ

(
∇ × B

μ0

)
× B. (7)

Taking the last term and applying the equation of electrodynamic ∇ × B � Jμ0, where
μ0 is the magnetic permeability, we have

1

ρ

(
∇ × B

μ0

)
× B � J × B

ρ
� 1

ρ
(J × B) � 1

ρ
(σ (E + V × B) × B)

� 1

ρ
(σ ((0, 0,−E0) + (u, v, 0) × (0, B0, 0)) × (0, B0, 0))

� 1

ρ
(σ (0, 0,−E0 + uB0) × (0, B0, 0))

� 1

ρ
(σ (−(−E0 + uB0)B0) � σ

ρ

(
B0E0 − uB2

0

)
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� −σ B2
0

ρ
u +

σ

ρ
B0E0 (8)

Hence we can write Eq. (7) as

u
∂u

∂x
+ v

∂u

∂y
� ν

∂2u

∂y2
+ �v

(
∂u

∂y

)(
∂2u

∂y2

)√
2 − u

σ B2
0

ρ
+

σ

ρ
B0E0. (9)

Energy equation

(10)

u
∂T

∂x
+ v

∂T

∂y
�
(

k

ρCp

)(
∂2T

∂y2

)
+
DmkT
CpCs

∂2T

∂y2
+

μ

ρCp

(
∂u

∂y

)2

+
1

ρCp

(
1

σ

(
∇ × B

μ0

)
.

(
∇ × B

μ0

))
.

Taking the last term and applying the equation of electrodynamic ∇ × B � Jμ0, where
μ0 is the magnetic permeability, we have

1

ρCp

(
1

σ

(
∇ × B

μ0

)
.

(
∇ × B

μ0

))
� 1

ρCp

1

σ
(J .J )

� σ

ρCp
((E + V × B).(E + V × B))

� σ

ρCp

(
(−E0 + uB0)k̂.(−E0 + uB0)k̂

)

� σ

ρCp
(−E0 + uB0)

2 � σ

ρCp
(uB0 − E0)

2. (11)

Hence Eq. (10) can be written as

u
∂T

∂x
+ v

∂T

∂y
�
(

k

ρCp

)(
∂2T

∂y2

)
+

(
DmkT
CpCs

)(
∂2C

∂y2

)
+

(
∂u

∂y

)2( μ

ρCp

)
+

σ

ρCp
(uB0 − E0)

2.

(12)

Concentration equation

u
∂C

∂x
+ v

∂C

∂y
� Dm

(
∂2C

∂y2

)
+

(
DmkT
Tm

)(
∂2T

∂y2

)
(13)

with the corresponding boundary conditions⎧⎪⎪⎨
⎪⎪⎩
u(x, y) � Uw(x) + L∗

1

(
∂u
∂y

)
, v(x, y) � 0,

T (x, y) � Tw(x) + L∗
2

(
∂T
∂y

)
,C(x, y) � Cw(x) + L∗

3

(
∂C
∂y

)
,

u → 0, T → T∞,C → C∞asy → ∞,

(14)

where

L∗
1 � ξ1(x + b)

1−m
2

(
2

r1
− 1

)
, ξ2 � ξ1

Pr

(
2γ

1 + γ

)
,

L∗
2 � ξ2(x + b)

1−m
2

(
2

a
− 1

)
, ξ3 � ξ2

Pr

(
2γ

1 + γ

)
,

L∗
3 � ξ3(x + b)

1−m
2

(
2

d
− 1

)
, B(x) � B0(x + b)

1−m
2 ,

Tw(x) � T∞ + T0(x + b)
1−m
2 and Cw(x) � C∞ + C0(x + b)

1−m
2 .
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To change the governing equations into a set of nonlinearODEs,we establish the following
similarity transformations:⎧⎨

⎩
ψ(x, y) � f (η)

√
2νU0(x+b)m+1

1+m , η � y
√

(m+1)U0(x+b)−1+m

2ν

g � T−T∞
Tw−T∞ and h � C−C∞

Cw−C∞ .
(15)

If stream function ψ is defined as u � ∂ψ
∂y and v � − ∂ψ

∂x , then u and v satisfy Eq. (6) and
become

u � f ′(η)U0(b + x)m and v � −
√

(m + 1)νU0(x + b)m−1

2

(
f (η) + η f ′(η)

(
m − 1

m + 1

))
.

(16)

After a long simplification with the help of Eqs. (15) and (16) the transformedmomentum,
energy and concentration Eqs. (6), (9) and (13) along with the boundary conditions (14) are
given by:

f ′′′ + f ′′(	 f
′′′
+ f ) + M(E1 − f

′
) − 2

(
m
(
f ′)2

m + 1

)
� 0 (17)

g′′ + Pr

(
m − 1

m + 1
g f

′
+ g′ f + h′′Du +

(
f ′′)2Ec + ( f ′ − E1

)2
MEc

)
� 0 (18)

h
′′
+

(
m − 1

m + 1
h f ′ + f h′ + g′′Sr

)
Sc � 0. (19)

The corresponding boundary conditions are{
f (0) � α

( 1−m
m+1

)[
1 + L1 f ′′(0)

]
, f ′(0) � 1 + L1 f ′′(0), g(0) � 1 + L2g′(0),

h(0) � 1 + L3h′(0), f ′(η) → 0, g(η) → 0, h(η) → 0, as η → ∞ (20)

where 	, M, Pr , Du, Sc, Sr , E1 and Ec are defined as

	 � �

√
(m + 1)U 3

0 (x + b)3m−1

ν
, M � 2

σ B2
0

ρU0(m + 1)
,

Pr � μ
Cp

k
, Du � DmkT

(Cw − C∞)

νCpCs(T − T∞)
, Sc � ν

Dm
,

Sr � DmkT
(Tw − T∞)

νTm(Cw − C∞)
, E1 � E0

UwB0(x + b)m
, Ec � U 2

w

Cp(Tw − T∞)
.

The skin-friction coefficient C f , local Nusselt number Nux and local Sherwood number
Shx are defined as

C f � 2μ
∂u

∂y

1

ρU 2
w

, Nux � ∂T

∂y

(b + x)

Tw − T∞
, Shx � ∂C

∂y

(d + x)

Cw − C∞
(21)

By using Eq. (14), Eq. (21) becomes

√
RexC f � 2

√
1 + m

2
f ′′(0), Nux � −

√
1 + m

2

√
Rex g

′
(0) and Shx � −

√
1 + m

2

√
Rexh

′(0),

where Rex � XUw

ν
and X � (b + x).
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Analytical Solution Using OHAM

The OHAM is now applied to nonlinear ODEs (17)–(19) along with the boundary condition
(20) by considering the following assumptions

f � f0 + p f1 + p2 f2, g � g0 + pg1 + p2g2, h � h0 + ph1 + p2h2,

H1(p) � C1 p + C2 p
2, H2(p) � C3 p + C4 p

2, H3(p) � C5 p + C6 p
2,

where p ∈ [0, 1] is an embedding parameter, Hj (p), j � 1, 2, 3 is an auxiliary function
different from zero, and Ci , (i � 1, 2, 3, 4, 5, 6) are convergence parameters [34, 48]).

Analytical Solution of theMomentum Boundary Layer Problem

The OHAM is applied to Eq. (17) using the following assumption

L � f ′′ + f ′′′ and

N � f ′′′(1 + 	 f ′′) + f f ′′ + M(E1 − f ′) −
(

2m

m + 1

)(
f ′)2 − (

f ′′ + f ′′′), (22)

where LandN are the linear and nonlinear operators, respectively. Hence, the OHAM family
of the equation is given by

(1 − p)
(
f ′′ + f ′′′) � H1(p)

[
f ′′′ + 	 f ′′ f ′′′ + f ′′ f

+M(E1 − f ′) − ( 2m
m+1

)(
f ′)2

]
. (23)

After simplification, equating the same powers of p − terms and using the boundary
conditions (20), we have the following:

Equating the zero order equation p0,we obtain

f ′
0 + f ′′′

0 � 0 f0(0) � α

(
1 − m

m + 1

)[
1 + L1 f

′′′(0)
]
, f ′

0(0) � 1 + L1 f
′′
0 (0). (24)

Equating the first order equation p1, we obtain

f ′′
1 + f ′′′

1 � f ′′′
0 + f

′′
0 + C1

[
f ′′′
0 + 	 f ′′

0 f
′′′
0 − ( 2m

m+1

)
f ′2
0−M f ′

0 + ME1 + f0 f ′′
0

]
, (25)

f1(0) � α

(
1 − m

m + 1

)
f ′′
1 (0), f ′

1(0) � 0.

Equating the second order equation p2,we obtain

f ′′
2 + f ′′′

2 � f ′′′
1 + f ′′

1 + C1

[
f ′′′
1 + f0 f ′′

1 + f1 f ′′
0 − ( 4m

m+1

)
f ′
0 f

′
1

−M f
′
1 + ME1 + 	

[
f ′′
1 f ′′′

0 + f ′′
0 f ′′′

1

]
]

+ C2

[
f ′′′
0 + 	 f ′′

0 f ′′′
0 − ( 2m

m+1

)
f ′2
0−M f ′

0 + ME1 + f0 f ′′
0

]
, (26)

f2(0) � α

(
1 − m

m + 1

)
f ′′
2 (0), f ′

2(0) � 0.

After solving the ordinary differential Eqs. (24)–(26) with the corresponding boundary
conditions, we obtain

f0 � −e−η(1 − eη + m − eηm − eηα − 2eηL1α + eηmα + 2eηL1mα)

(1 + L1)(1 + m)
(27)
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The other two terms f1 and f2 are too large to mention here. Hence, the solution f
(η,Ci ), i � 1, 2 is given by:

f (η,Ci ) � f0(η) + f1(η,C1,C2) + f2(η,C1,C2). (28)

To find the constants C1 and C2, we use the residual equation for the problem obtained
in the form

R1(η,C1,C2) �
[
f ′′′ + 	 f ′′ f ′′′ + f f ′′

+M(E1 − f
′
) − ( 2m

m+1

)(
f ′)2

]
. (29)

The unknown convergence parameters C1 and C2 can be optimally obtained from the
following conditions given below

∂ J1(C1,C2)

∂C1
� ∂ J1(C1,C2)

∂C2
� 0, where J1(Ci ) � 5∫

0
R2
1(η,Ci )dη. (30)

In the particular case when m � 0.5, E1 � 0.01, L1 � 	 � M � 0.1andα � 1, the
values of the convergence parameters are given by

C1 � 0.20915340986446768, C2 � 0.5446628379971291

After substituting all the parameters, we get

f (η) � −0.606060606060606e−η
(
1.5 − 2.1eη

)

+ 0.1836547291092745e−2η

⎛
⎝ 0.10980554017884556 + 0.16741580115896eη

−0.3322673815129e2η + 0.3858880411999eηη

+0.001138840316783e2ηη

⎞
⎠

+ 0.01855098273831e−3η

⎛
⎜⎜⎝

−0.03904254535570611 + 0.081522371635994eη

+4.61119455329911e2η − 6.195930191621276e3η

−0.16949057925006eηη + 4.79747772755256e2ηη
+0.0291245122014e3ηη − 0.14783771483123e2ηη2

⎞
⎟⎟⎠

(31)

Analytical Solution of the Thermal Boundary Layer Problems

The OHAM is applied to nonlinear ODE (18) using the following assumption

L � g + g
′
and

N � g′′ + Pr

(
m−1
m+1 g f

′
+ g′ f + h′′Du

+
(
f ′′)2Ec + MEc

(
f ′ − E1

)2
)

− (
g′ + g

)
, (32)

where LandN are the linear and nonlinear operators, respectively. Therefore the OHAM
family equation is given by

(1 − p)
(
g′ + g

) � H2(p)

[
g′′ + Pr

(
m−1
m+1 f ′g + f g′ + Duh′′

+Ec
(
f ′′)2 + MEc

(
f ′ − E1

)2
)]

. (33)

After simplification, equating the like powers of p-terms and using the boundary condi-
tions (20), we have the following:

Equating the zero order equation p0,we get

g
′
0 + g0 � 0, g0(0) � 1 + L2g

′
0(0) (34)
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Equating the first order equation p1, we get

g
′
1 + g1 � g

′
0 + g0 + C3

⎡
⎣g′′

0 + Pr

⎛
⎝

m−1
m+1 f

′
0g0 + f0g

′
0 + Duh

′′
0

+

(
Ec
(
f

′′
0

)2
+ MEc

(
f

′
0 − E1

)2)
⎞
⎠
⎤
⎦ (35)

g1(0) � L2g
′
1(0).

Equating the second order equation p2,we get

g
′
2 + g2 � g

′
1 + g1 + C3

⎡
⎣g′′

1 + Pr

⎛
⎝+ f1g

′
0 +

m−1
m+1 f

′
0g1 +

m−1
m+1 f

′
1g0 + f0g

′
1

+Duh
′′
1 +

(
2Ecf ′′

0 f ′′
1 + MEc

(
f

′
1 − E1

)2)
⎞
⎠
⎤
⎦

+ C4

⎡
⎣g′′

0 + Pr

⎛
⎝

m−1
m+1 f

′
0g0 + f0g

′
0 + Duh

′′
0

+

(
Ec
(
f

′′
0

)2
+ MEc

(
f

′
0 − E1

)2)
⎞
⎠
⎤
⎦, (36)

g2(0) � L2g
′
2(0).

After solving the ODEs (34)–(36) with the corresponding boundary conditions, we obtain

g0 � e−η

1 + L2
. (37)

The other terms g1 and g2 are very large tomention here. Hence, the solution g(η,Ci ), i �
1, 2, . . . , 6 is given by:

g(η,Ci ) � g0(η) + g1(η,Ci ) + g2(η,Ci ). (38)

The residual equation for the problem obtained in the form

R2(η,Ci ) � g′′ + Pr

(
m−1
m+1 f ′g + f g′ + Duh′′

+Ec
(
f ′′)2 + MEc

(
f ′ − E1

)2
)

. (39)

The unknown convergence parameters Ci can be optimally identified from the following
conditions given below

∂ J2(Ci )

∂C1
� ∂ J2(Ci )

∂C2
� ∂ J2(Ci )

∂C3
� ∂ J2(Ci )

∂C4
� ∂ J2(Ci )

∂C5
� ∂ J2(C3,C4)

∂C6
� 0,

where J2(Ci ) � 5∫
0
R2
2(η,Ci )dη. (40)

After obtaining the convergence parameters the simplified solution will be given by

g(η,Ci ) � g0(η) + g1(η,Ci ) + g2(η,Ci ). (41)

In the particular case when m � 0.5, Du � Ec � Sc � 0.2, E1 � 0, Sr � Pr � Le �
2,	 � M � L1 � L2 � L1 � 0.1, then the results of the convergence parameters are
given by

C1 � 0.207433880957080, C2 � 0.5521142384261435, C3 � −0.4353462064643

C4 � 1.417403883169999, C5 � −0.4414273478882194, C6 � 2.01605498183113
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Hence the approximate analytical solution can be expressed as

g(η) � 2.7276429222215e−η + 0.4139475487061e−2η

⎛
⎝ 1.541325830138718

−1.58188703619499eη

+1.0951525635196eηη

⎞
⎠

+ 0.041812883707687e−η

⎛
⎜⎝
0. + 9.68401158814421e−2η − 40.92663701745η

+ e−η(−53.41574223550 + 4.2487405429854η)

+ 4.604486409775797η2

⎞
⎟⎠
(42)

Analytical Solution of the Concentration Boundary Layer Problems

The OHAM is applied to Eq. (19) under the following assumption

L � h′ + h and N � h
′′
+ Sc

(
m − 1

m + 1
h f

′
+ h′ f + Srg′′

)
− (

h′ + h
)
, (43)

where L and N are the linear and nonlinear operators, respectively. Therefore the OHAM
family equation is given by

(1 − p)
(
h′ + h

) � H3(p)

[
h

′′
+ Sc

(
m − 1

m + 1
f ′h + f h′ + Srg′′

)]
. (44)

After simplification, equating the like powers of p-terms and using the boundary condition
(20), we have the following:

Equating the zero order equation p0, we get

h
′
0 + h � 0, h0(0) � 1 + L3h

′
0(0) (45)

Equating the first order equation p1, we get

h
′
1 + h1 � h

′
0 + h0 + C5

[
h

′′
0 + Sc

(
m−1
m+1 f

′h0
0

+ f0h
′
0 + Srg

′′
0

)]
, h1(0) � L3h

′
2(0). (46)

Equating the second order equation p2, we get

h
′
2 + h2 � h

′
1 + h1 + C5

[
h

′′
1 + Sc

( m−1
m+1 f

′
1h0 +

m−1
m+1 f

′
0h1

+ f1h
′
0 + f0h

′
1 + Srg

′′
1

)]

+ C6

[
h

′′
0 + Sc

(
m−1
m+1 f

′h0
0

+ f0h
′
0 + Srg

′′
0

)]
, h2(0) � L3h

′
2(0). (47)

After solving the ODEs (45)–(47) with the corresponding boundary conditions, we obtain

h0 � e−η

1 + L3
. (48)

The terms h1 and h2 are too large to mention here. Hence, the solution h(η,Ci ), i �
1, 2, . . . , 6 is given by:

h(η,Ci ) � h0(η) + h1(η,Ci ) + h2(η,Ci ). (49)

The residual equation for the problem obtained in the form

R3(η,Ci ) � h
′′
+ Sc

(
m − 1

m + 1
f ′h + f h′ + Srg′′

)
. (50)

123



80 Page 12 of 22 Int. J. Appl. Comput. Math (2019) 5 :80

Table 1 Comparison of the values
of − f ′′(0) when M � 	 �
E1 � L1 � 0, α � 0.5.

m Khader and Megahed [49] Fang et al. [50] Present result

0.5 0.9798 0.9799 0.97901

1 1.0000 1.0000 1.00000

2 1.0234 1.0234 1.02375

3 1.0358 1.0359 1.03665

5 1.0486 1.0486 1.04987

7 1.0551 1.0550 1.05654

9 1.0588 1.0589 1.05955

10 1.0603 1.0603 1.06201

The unknown convergence parameters Ci can be optimally identified from the following
conditions:

∂ J3(Ci )

∂C1
� ∂ J3(Ci )

∂C2
� ∂ J3(Ci )

∂C3
� ∂ J3(Ci )

∂C4
� ∂ J3(Ci )

∂C5
� ∂ J3(Ci )

∂C6
� 0, (51)

where J3(Ci ) � 5∫
0
R2
3(η,Ci )dη.

After obtaining the convergence parameters the simplified solution will be given by

h(η) � h0(η) + h1(η) + h2(η). (52)

In the particular case when m � 0.5, Du � Ec � Sc � 0.2, E1 � 0, Sr � Pr � Le �
2,	 � M � L1 � L2 � L1 � 0.1, then the results of the convergence parameters are
given by

C1 � 0.207433880957080, C2 � 0.5521142384261435, C3 � −0.4353462064643

C4 � 1.417403883169999, C5 � −0.4414273478882194, C6 � 2.01605498183113

Hence the approximate analytical solution can be expressed as

h(η) � 0.689113522052e−η + 0.166958844644e−2η

⎛
⎜⎝

0.2913420496062248

−2.32102499519625eη

−2.7531823687788eηη

⎞
⎟⎠

+ 0.045994172078455e−η

⎛
⎜⎝
+e−η(7.3134074370858 − 0.616512685057η)

+36.611365444964η + 0.77416695326706η2

0.06491669864885e−2η

⎞
⎟⎠ (53)

To check the validity of the analytical method (OHAM) used in this study, we compared
the results for − f ′′(0) with the previously published result, see Table 1.

Result and Discussion

The group of nonlinear ODEs (17)–(19) subject to the restrictions (20) is solved analytically
by employing the OHAM. We make known the results to keep up the effect of numerous
parameters such as electric field, Soret,Dufour, and others on the three usual profiles (velocity,
temperature and concentration). Also, we examined the skin friction coefficient with the aid
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Fig. 2 Effects of velocity slip parameter L1 on dimensionless velocity

Fig. 3 Effect of electric field E1 on dimensionless velocity

of a table. Table 1 is computed to validate the present analytic solution in a limiting case. It
is observed that the present limiting results have a good match with the previously published
results.

Hydrodynamic Results

Figures 2, 3, 4 and 5 exhibit the dimensionless velocity profile f ′(η) for dissimilar values
of velocity slip parameter L1, electric field parameter E1 and magnetic field parameter M .

From Fig. 2 we have seen that the rise in velocity slip parameter declines the velocity. The
velocity of the flow is reduced by the slip parameter near the sheet. Influence of electrical field
parameter in the velocity field portrayed in Fig. 3. As the value of electric field parameter
rises, the velocity increases nearer to the stretching sheet. It is the fact that, the Lorentz
force increasing as a result of electric field acts as an accelerating force reduces the frictional
resistance which causes to change the streamlines far from the stretching plate.

The influence of magnetic field parameter M on the velocity profiles in the absence and
presence of electric field, respectively, is depicted in Figs. 4 and 5, respectively. Figure 4
demonstrates the impact of M on the velocity profile in the absence of an electric field
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Fig. 4 Effect of M on dimensionless velocity with the absence of electric field

Fig. 5 Effect of M on dimensionless velocity with the presence of electric field

(E1 � 0). The velocity field reduces significantly with an increase in the values of M . It is
obvious that the magnetic field depends on the Lorenz force, which is stronger for a larger
magnetic field. Because of the absence of an electric field, the Lorenz force increases the
frictional force, which performs as a retarding force that opposes the Williamson fluid flow.
Figure 5 reveals that in the existence of an electric field (E1 �� 0), as the magnetic field
parameter M increases, the velocity boundary layer decreases. After some value of η away
from the wall, it increases significantly over the stretching sheet. Due to an electric field
which acts as speeding up the body force, accelerate the Williamson fluid flow.

Thermal Results

Effects of velocity slip parameter L1, thermal slip parameter L2, electric field parameter E1,

Dufour number Du, Eckert number Ec and Soret number Sr are revealed in the Figs. 6, 7, 8,
9 and 10. From Fig. 6 we observed that the rise in L1 boost up the temperature profiles. The
velocity of the flow is vital to disperse the temperature of the sheet. This, in turn, intensifies
the temperature. Generally, raising the slip causes to boost up the wall friction and leads to
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Fig. 6 Effects of velocity slip parameter L1 on dimensionless temperature

Fig. 7 Effect of viscous dissipation parameter Ec on dimensionless temperature

produce additional heat to the flow. Figure 7 demonstrates the impact of Ec. It is seen that the
rise in Ec, speed up the temperature distribution and hence increase the thermal boundary
layer thickness. This leads to the decline of the rate of heat transfer from the plate sheet.

Figure 8 shows that the effect of thermal slip parameter L2 the temperature field g(η).It is
observed that the temperature decreases with the rise in L2. However, the increase in thermal
jump parameter raises the thermal accommodation coefficient. This can lead to reducing
the thermal diffusion toward the flow. On account of this, the temperature boundary layer
also gets thinner and it is known that the Newtonian fluid occupies lower temperature field
compared with non-Newtonian fluid. Dufour and Soret effects on the temperature profiles
are revealed in Figs. 9 and 10, respectively. The values of the Soret and Dufour numbers
are selected deliberately that their product is constantly providing the mean temperature Tm
is kept constant as well. With an increase in the Dufour number and a decrease in Soret
number, the temperature difference between hot and surrounding fluid reduces, which in
result heightens the temperature.
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Fig. 8 Effect of thermal slip parameter L2 on dimensionless temperature

Fig. 9 Effect of Dufour number Du on dimensionless temperature

Fig. 10 Effect of Soret number Sr on dimensionless temperature
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Concentration Results

Figures 11, 12, 13, 14 and 15 illustrate the effects of Eckert number Ec, thermal and con-
centration parameters L2andL3, respectively, Soret Sr and Dufour Du numbers. Figure 11
demonstrates that as the Eckert number Ec increases, the concentration decreases up to some
point away from the wall and then become increases significantly. Figures 12 and 13 dis-
play that the impact of thermal and concentration slip parameters on concentration field,
respectively. It is seen that the concentration profile reduced with the rise in thermal and
concentration slip parameters, respectively.

Figures 14 and 15 depict Soret and Dufour effects on concentration profiles, respectively.
With a decrease in a Soret and a Dufour number, the temperature difference between hot and
surrounding fluid declines, which in result increases the temperature distribution. Further,
the intermolecular forces become weak and, consequently, the concentration diminutions.

The variations of Nusselt and Sherwood numbers with Dufour and Soret numbers for
different values of thermal and concentration slip parameters are shown in Figs. 16 and 17,
respectively. Figure 16 shows that the Nusselt number decreases for increasing values of
thermal slip parameter. However, it is increasing for the rising values of Dufour number Du.

Fig. 11 Effect of viscous dissipation parameter Ec on dimensionless concentration

Fig. 12 Effect of thermal slip parameter L2 on dimensionless concentration
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Fig. 13 Effect of diffusion slip parameter L3 on dimensionless concentration

Fig. 14 Effect of Soret number Sr on dimensionless concentration

Fig. 15 Effect of Dufour number Du on dimensionless concentration

Fig. 17 demonstrates the Sherwood number which represents rate of mass transfer decreases
when the Soret parameter increases as well as the concentration slip parameter L3 increases.
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Fig. 16 Variation of Nusselt number with Du for different values of thermal slip parameter L2

Fig. 17 Variation of Sherwood number with Sr for different values of concentration slip parameter L3

Conclusions

In this paper, we investigated the impact of electric field, Dufour and Soret numbers on
the MHD boundary layer flow of Williamson fluid over a stretching surface with variable
thickness by considering slip parameters. By using similarity transformations the governing
PDEs were converted into the dimensionless ordinary differential equations. We solved the
transformed equations analytically using OHAM. The graphical illustrations of our results
from the influence of relevant parameters on temperature, concentration and velocity profiles
are argued in depth. Some of the specific conclusions which have been derived from the study
can be concluded as follows:

• The semi-analytic method OHAM is effective, clear, consistent and efficient.
• Controlling and adjusting the convergence of the series solution using the convergence
parameters are very simple.

• Velocity and temperature increase with an increase in the electric field.
• Increasing the magnetic field parameter M declines the velocity field initially and after
some time it becomes increasing significantly.

• The heat transfer rate boosted up with an increment of Dufour number Du.
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• An increase in Soret number Sr reduces the mass transfer rate and intensifies the heat
transfer rate.

• Velocity slip parameter L1 rises the temperature but depreciates the velocity field.
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