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Abstract
The analysis of nonlinear equations performs a significant part in examining the physi-
cal phenomena. In this article, the exact solution of time-fractional (2 + 1) dimensional 
Konopelchenko–Dubrovsky equation (KDE) has been derived by utilising the Kudryashov 
method. The Kudryashov technique is effectively implemented in order to acquire the ana-
lytical solutions of the time-fractional KDE. As exact solution of fractional KDE is not 
documented previously, the Kudryashov technique is utilized to construct exact solutions 
via fractional complex transform. The solution thus attained by the above method is illus-
trated graphically and are discussed in details. This research analysis manifests that the 
Kudryashov method deemed capable of yielding solutions of such fractional differential 
equations.

Keywords Fractional complex transform · Fractional Konopelchenko–Dubrovsky 
equation · Generalized Kudryashov method · Jumarie’s modified Riemann–Liouville 
derivative

Introduction

Fractional calculus has been participated a significant role in numerous applications for 
modeling anonymous diffusion, signal processing, image processing, control theory and 
various other dynamical system [1–4]. Fractional differential equations (FDEs) have 
appealed great consideration because of their implementations in various physical diffi-
culty. The descriptions of properties of physical happenings are aptly described by FDEs. 
Therefore, an efficient technique is required for solving nonlinear FDEs. Different analyti-
cal and numerical techniques have been utilized to derive approximate and exact solutions 
of FDEs [5–8].
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The analysis of nonlinear equations performs a significant part in examining the physical 
phenomena. Both mathematicians and physicists made noteworthy development in analys-
ing explicit solutions of nonlinear FDEs. In this present article, the emphasis is on the imple-
mentation of the Kudryashov technique for determining the analytical exact solution of time-
fractional KDE with a prospect to demonstrate the efficiency of this technique in managing 
nonlinear equation. This method is comparatively a new approach that provides analytical 
solutions to both linear and nonlinear problems. It may be deemed as an effective tool for 
physicists, scientists and applied mathematicians in order to yield analytical exact solutions to 
the generalized differential equations.

Some noteworthy attempt has been  anticipated by the researchers for studying nonlin-
ear equations arising in mathematical physics. Here, the KDE has been considered, that plays 
an essential part both in applied mathematics and physics. The analysis of nonlinear equations 
performs a significant part in examining the physical phenomena.

Consider the time-fractional KD equations as follows

where �(0 < 𝛼 ≤ 1) denotes the order of fractional derivative, a and b are real parameters. 
The KDE is a new nonlinear integrable evolution equation on two spatial dimensions and 
one temporal. It was first derived by Konopelchenko and Dubrovsky [9] in 1984. KDE of 
integer order appears in a great variety of subjects as such in physics, signals processing, 
dynamics and control theory, and has attracted much attention of more and more scholars.

Numerous methods such as the Exp-function method [11], homogenous balance method 
[10], the inverse scattering transform method [9], the F-expansion method [12], the improved 
tanh function method [13, 14], the tanh-sech method, the cosh-sinh method and exponential 
method [15], Hirota’s method [16], 

(
G�∕G

)
-expansion method [17], rational expansion method 

[18], and singular manifold method [19] had been utilized to attain exact solutions of KDE.
But the comprehensive analysis of the nonlinear fractional KDE is just the opening. The 

exact analytical solutions of fractional KDE have been documented first time ever in this man-
uscript. Hence, the main objective is to establish novel exact solutions of fractional KDE by 
utilizing the generalized Kudryashov technique.

The manuscript is organized as follows. An introduction to fractional calculus, definitions 
of Jumarie’s modified Riemann–Liouville (mRL) derivative have been provided in Sect. 2. 
In Sect. 3, the algorithm to solve FPDEs by utilizing generalized Kudryashov technique via 
fractional complex transform is proposed. The Kudryashov technique has been employed to 
establish the new analytical solutions for fractional KDE is discussed in Sect. 4. The numeri-
cal simulations are presented in Sects. 5 and 6 completes the manuscript.

Modified Riemann–Liouville Derivative

The Jumarie’s mRL derivative [20, 21] of order � is stated by

(1.1)
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, 𝛼 ∈ ℜ, 0 < 𝛼 ≤ 1
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which can be written as

Algorithm of Generalized Kudryashov method

The steps involving generalized Kudryashov technique are discussed below:
Step 1 Consider a nonlinear FPDE, comprising two variables x and t  as

where P is a polynomial involving u and its various partial derivatives and nonlinear terms, 
u = u(x, t) is an unknown function.

Step 2 Utilizing the FCT [22, 23]:

where c1 and k are constants that are to be evaluated later. Hence the FDE is transformed to 
the following ODE for u(x, t) = U(�):

Here, P is function of U(�) and “׳” denotes d
d�
.

Step 3 Suppose that the solution of Eq.  (3.3) can be expressed by a polynomial in 
�(�) as follows:

where an, n = 0, 1, 2,… ,N(aN ≠ 0) are constant to be evaluated, the integer N is com-
puted by balancing the nonlinear term with the highest order derivative term occurring in 
Eq. (3.3) and �(�) is the function of the form

that satisfies the ODE

Step 4 Putting Eq. (3.4) in Eq. (3.3) and utilizing Eq. (3.5), collecting all the terms 
with the same powers of �i(i = 0, 1, 2,…) together, the eq. (3.3) is transformed to a new 
polynomial in � . Equating every coefficient of this polynomial to zero provides a set of 
algebraic equations for ai(i = 0, 1, 2,… , n).

Step 5 The algebraic equations acquired above can be solved and subsequently substi-
tuted in Eq. (3.4), the explicit exact solutions of Eq. (3.1) can be attained immediately.

(2.2)D𝛼

t
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t
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Analytical solution of time‑fractional KDE

This segment consists of the solutions of fractional KDE by using the newly proposed 
Kudryashov technique to calculate the exact solution of time-fractional KDE (1.1).

By applying the FCT � = k1x + k2y +
k3t

�

� (�+1)
 , Eq. (1.1) can be converted to the nonlinear 

ODEs as:

Now, by balancing the nonlinear term with the highest order derivative term of 
Eq. (4.1), the value of N is 1.

Therefore, from Eq. (3.4)

where �(�) = 1

1+exp(�)
 is new variable as given in Eq. (3.5)

Then from Eq. (4.2), putting the derivatives of U(�) and taking the ansatz into account, 
a system of algebraic equations were obtained. Collecting the same powers of �i and equat-
ing to zero, the following system of nonlinear equations can be acquired:

The following family of nontrivial solutions can be acquired by solving the above sys-
tem of algebraic equations.

Case I

and k1 and k2 are arbitrary.
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Substituting the values of a0, a1 and k3 , obtained above, we get

where � = k1x + k2y +
k3t

�

� (�+1)
.

Case II

and k1 and k2 are arbitrary.
Substituting the values of a0, a1 and k3, obtained above, we get

where � = k1x + k2y +
k3t

�

� (�+1)
.

(4.8)
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Fig. 1  The 3-D plot of Solitary 
wave solution of u(x, y, t) for KD 
equation when a = b = 1, y = 1 
and � = 1
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Results

For time fractional KD equation, the exact solutions have been attained for the first time by 
generalized Kudryashov technique with the aid of fractional complex transform. In case of 
time fractional KD equation, the following Figs. 1, 2, and 3 show the solitary wave solution 
of u(x, y, t) , obtained by the proposed Kudryashov technique for different values of α.

Fig. 2  The 3D plot of Solitary wave solution of u(x, y, t) for fractional KD equation when a = b = 1, y = 1 
and � = 0.75

Fig. 3  The 3D plot of Solitary 
wave solution of u(x, y, t) for 
fractional KD equation when 
a = b = 1, y = 1 and � = 0.5
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Conclusion

In this manuscript, the solitary wave solutions of time-fractional (2 + 1) dimensional KDE 
have been acquired by utilizing the Kudryashov technique. By applying the FCT, a FDE 
can be transformed into its equivalent ODE form. The novel exact solutions, thus obtained 
may be suitable for description of physical phenomena accurately. This study signifies that 
the focused method is efficient for analytical solution of time fractional KD equation. Also 
it manifests that performance of the technique is substantially influential and absolutely 
dependable for finding new exact solutions.
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