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Abstract
In this study, we propose and analyze a new mathematical model formulated by partial
differential equations in order to better understand the mechanisms and dynamics of hepatitis
B virus (HBV) infection in vivo. The proposed model incorporates the intracellular HBV
DNA-containing capsids, spatial diffusion in both capsids and viruses, and adaptive immune
response exerted by cytotoxic T lymphocytes and antibodies. Further, the infection process
is modeled by a general incidence function that includes many cases existing in the literature.
We first show the global existence, uniqueness, positivity and boundedness of solutions. The
global stability and instability of equilibria are established by means of Lyapunov’s direct
and indirect methods. Finally, numerical simulations are presented to illustrate the dynamical
behaviors of the model and to support the theoretical results.

Keywords Adaptive immunity · Diffusion · Delays · General incidence rate ·
Global stability

Introduction

Recently, modeling the dynamics of HBV infection with capsids has attracted interest of
many researchers. In 2015, Manna and Chakrabarty [1] improved the model of Murray et al.
[2] by proposing two models. The first model was formulated by four ordinary differential
equations (ODEs) and the second one by delay differential equations (DDEs) in order to
describe the time delay between the process of infection of cells and the production of new
virions. In 2017, they extended the second DDE model by considering another delay in the
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production of matured capsids [3]. Guo et al. [4] considered a third delay in the production
of matured viruses and they proposed PDE model with general incidence rate and spatial
diffusion only in the viruses. The spatial mobility of both capsids and viruses is considered in
[5,6]. In 2018, Manna [7] extended the model presented in [5] by taking into account the role
of cytotoxic T lymphocyte (CTL) immune response in HBV infection. Another model with
CTL immune response and nonlinear incidence was proposed by Xu and Geng [8]. This last
model is a generalization of both ODE and DDE models with bilinear incidence introduced
in [9].

For HBV infection, immune responses of the host individual acts as a significant defense
mechanism against the infection progression by diminishing the viral load and clearing the
infected hepatocytes [10,11]. Generally, the effective immune response against HBV infec-
tion in an infected host individual comprises of the combination of innate and adaptive
immunity of the host [12]. Innate immunity actually takes part in very early stage of the
infection process to regulate the infection spread and activates adaptive immune response
[12]. The adaptive immunity consists of a complex web of effector cells, namely, antibody B
cells and CTLs [12]. As a consequence of adaptive immune response, the reinfection process
slows down due to the neutralization of free virus particles byB cells and clearance of infected
hepatocytes by CTLs through cytolytic and non-cytolytic mechanisms [12]. Therefore, incor-
poration of adaptive immunity in the modeling approach and their analysis seems to be very
important in order to get valuable insights of the complex dynamical behaviors of the HBV
infection process. But the above mentioned models for HBV infection and their analysis did
not incorporate the effect of the adaptive immunity in the modeling approach. Also to the
best of our knowledge, there does not exist any work in literature which incorporates both
capsid and adaptive immunity for the modeling of HBV infection process in vivo.

The above discussions provide us strong motivation to study an HBV infection model
incorporating both capsid and adaptive immunity. Thus, we propose the following reaction-
diffusion system for HBV infection in vivo:

∂ H

∂t
= s − μH(x, t) − f (H(x, t), I (x, t), V (x, t))V (x, t),

∂ I

∂t
= e−α1τ1 f (H(x, t − τ1), I (x, t − τ1), V (x, t − τ1))V (x, t − τ1)

−δ I (x, t) − pI (x, t)Z(x, t),
∂ D

∂t
= dD�D + ae−α2τ2 I (x, t − τ2) − (β + δ)D(x, t),

∂V

∂t
= dV �V + βe−α3τ3 D(x, t − τ3) − cV (x, t) − p̃V (x, t)W (x, t),

∂W

∂t
= q̃V (x, t)W (x, t) − σ̃ W (x, t),

∂ Z

∂t
= q I (x, t)Z(x, t) − σ Z(x, t), (1)

where H(x, t), I (x, t), D(x, t), V (x, t), W (x, t) and Z(x, t) denote the densities of unin-
fected hepatocytes, infected hepatocytes, HBV DNA-containing capsids, virions, antibodies
and CTL cells at position x and time t , respectively. Uninfected hepatocytes are produced at
rate s, die at rate μH and become infected by the virions at rate f (H , I , V )V . The param-
eter δ is the death rate of infected hepatocytes and capsids. However, σ and σ̃ are the death
rates of CTL cells and antibodies, respectively. The parameters a, β and c are, respectively,
the production rate of capsids from infected hepatocytes, the rate at which the capsids are
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transmitted to blood in order to get converted into virions, and the clearance rate of virions.
Infected hepatocytes are killed by CTL cells at rate pI Z while virions are neutralized by
antibodies at rate p̃V W . Antibodies develop in response to virions at rate q̃V W , and CTL
cells expand in response to viral antigens derived from infected hepatocytes at rate q I Z .
Further, the first delay parameter τ1 denotes the time needed for infected hepatocytes to pro-
duce capsids after viral entry and the factor e−α1τ1 accounts for the probability of surviving
from time t − τ1 to time t , where α1 is the death rate for infected but not yet virus-producing
cells. The second delay parameter τ2 represents the time spent in the production of matured
intracellular HBV DNA-containing capsids which in turn contributes to the production of
virions. The probability of survival of immature capsids is given by e−α2τ2 and the average
life time of an immature capsid is given by 1

α2
. The third delay parameter τ3 denotes the time

necessary for the newly produced capsids to become virions and the factor e−α3τ3 accounts
for the probability of surviving from time t − τ3 to time t , where 1

α3
is the average life time

of an immature virion. Finally, � is the Laplacian operator, and dD and dV are the diffusion
coefficients of capsids and virions, respectively.

As it has been considered in [13,14], we assume that the general incidence function
f (H , I , V ) is continuously differentiable in the interior of R3+ and satisfies the following
assumptions:

(A1) f (0, I , V ) = 0, for all I ≥ 0 and V ≥ 0;
(A2) f (H , I , V ) is a strictly monotone increasing function with respect to H , for any fixed

I ≥ 0 and V ≥ 0;
(A3) f (H , I , V ) is a monotone decreasing function with respect to I and V , i.e,

∂ f
∂ I (H , I , V ) ≤ 0 and ∂ f

∂V (H , I , V ) ≤ 0 for all H ≥ 0, I ≥ 0 and V ≥ 0.

The above assumptions are biologically reasonable and consistent with the reality. For more
details on the biological meanings of these three assumptions, we refer the reader to theworks
[15,16]. In addition, the general incidence function f (H , I , V ) includes many forms such
as the bilinear incidence which was used recently in [7], the saturation incidence presented
in [17], the standard incidence function used in [18], the Beddington-DeAngelis functional
response proposed in [19,20] and used in [21], the Crowley-Martin functional response
introduced in [22] and used in [23], and the Hattaf-Yousfi functional response [24] which
was recently used in [25,26].

The reaction-diffusion system (1) is subjected to the following initial conditions

H(x, θ) = φ1(x, θ) ≥ 0, I (x, θ) = φ2(x, θ) ≥ 0, D(x, θ) = φ3(x, θ) ≥ 0,

V (x, θ) = φ4(x, θ) ≥ 0, W (x, θ) = φ5(x, θ) ≥ 0, and Z(x, θ) =
φ6(x, θ) ≥ 0, ∀ (x, θ) ∈ � × [−τ, 0], (2)

and the following zero-flux boundary conditions

∂ D

∂ν
= 0,

∂V

∂ν
= 0, on ∂� × (0,+∞), (3)

where τ = max{τ1, τ2, τ3},� is a bounded domain inRn with smooth boundary ∂�, and
∂

∂ν
denotes the outward normal derivative on ∂�. Biologically speaking, the zero-flux boundary
conditions mean that the capsids and virions do not have any movement across the boundary
∂�.

The main purpose of this study is to investigate about the global dynamical behaviors of
the proposed generalized delayed reaction-diffusion model of HBV infection. We organize
the rest of this paper as follows. In “Well-posedness and equilibria” section, we establish
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the well-posedness of the model and the threshold parameters for the existence of equilibria.
“Stability analysis” section is devoted for the stability analysis of five equilibria. In “Numer-
ical simulations” section, we present some numerical simulations to support the analytical
results and to further illustrate the dynamical behaviors of themodel. Finally, some biological
and mathematical conclusions are given in the last section.

Well-Posedness and Equilibria

In this section, we prove the existence, uniqueness, non-negativity and boundedness of solu-
tions of the proposed problem (1)–(3) as they represent the densities of hepatocytes, capsids,
virions, antibodies and CTL cells. Furthermore, we define five threshold parameters for the
existence of equilibria.

Let X = C(�,R6) be the Banach space of continuous functions from � to R
6, and

C = C([−τ, 0],X ) be the Banach space of continuous functions from [−τ, 0] toX equipped
with the usual supremum norm. For convenience, we identify an element ϕ ∈ C as a function
from � × [−τ, 0] to R

6 defined by ϕ(x, θ) = ϕ(θ)(x). For any continuous function ω(.) :
[−τ, b) → X for b > 0, we define ωt ∈ C by ωt (θ) = ω(t + θ), θ ∈ [−τ, 0].
Theorem 1 For any given initial condition φ ∈ C satisfying (2), there exists a unique solu-
tion of the problem (1)–(3) defined on [0,+∞) and this solution remains non-negative and
bounded for all t ≥ 0.

Proof For any φ = (φ1, φ2, φ3, φ4, φ5, φ6)
T ∈ C and x ∈ �, we define F =

(F1, F2, F3, F4, F5, F6) : C → X by

F1(φ)(x) = s − μφ1(x, 0) − f (φ1(x, 0), φ2(x, 0), φ4(x, 0))φ4(x, 0),

F2(φ)(x) = e−α1τ1 f (φ1(x,−τ1), φ2(x,−τ1), φ4(x,−τ1))φ4(x,−τ1)

−δφ2(x, 0) − pφ2(x, 0)φ6(x, 0),

F3(φ)(x) = ae−α2τ2φ2(x,−τ2) − (β + δ)φ3(x, 0),

F4(φ)(x) = βe−α3τ3φ3(x,−τ3) − cφ4(x, 0) − p̃φ4(x, 0)φ5(x, 0),

F5(φ)(x) = q̃φ4(x, 0)φ5(x, 0) − σ̃ φ5(x, 0),

F6(φ)(x) = qφ2(x, 0)φ6(x, 0) − σφ6(x, 0).

Then the system (1)–(3) can be rewritten as the following abstract functional differential
equation:

ω′(t) = Aω + F(ωt ), t > 0,

ω(0) = φ ∈ C, (4)

where ω = (H , I , D, V , W , Z)T , φ = (φ1, φ2, φ3, φ4, φ5, φ6)
T and Aω =

(0, 0, dD�D, dV �V , 0, 0)T . Obviously, we observe that F is locally Lipschitz in C. It fol-
lows from [27–31] that there exists a unique local solution of system (4) on [0, Tmax ), where
Tmax is the maximal existence time for solution of (4).

Clearly, 0 = (0, 0, 0, 0, 0, 0) is a lower-solution of the problem (1)–(3) and hence, we
have H(x, t) ≥ 0, I (x, t) ≥ 0, D(x, t) ≥ 0, V (x, t) ≥ 0, W (x, t) ≥ 0 and Z(x, t) ≥ 0.

Now, it remains to prove the boundedness of solutions. For this purpose, let us assume

T (x, t) = e−α1τ1 H(x, t − τ1) + I (x, t) + p

q
Z(x, t).
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Thus, we have

∂T

∂t
= se−α1τ1 − μe−α1τ1 H(x, t − τ1) − δ I (x, t) − pσ

q
Z(x, t)

≤ s − γ T (x, t),

where γ = min{μ, δ, σ } and it is obvious that 0 < e−α1τ1 < 1. Hence, we obtain

T (x, t) ≤ max

{

s

γ
,max

x∈�

{e−α1τ1φ1(x,−τ1) + φ2(x, 0) + p

q
φ6(x, 0)}

}

.

This shows that H , I and Z are bounded. Now, using the bound for I and the system (1)–(3),
we notice that D satisfies the following system:

∂ D

∂t
− dD�D ≤ aM1e−α2τ2 − (β + δ)D,

∂ D

∂ν
= 0,

D(x, 0) = φ3(x, 0) ≥ 0,

where M1 = max
{

s
γ
,maxx∈�{e−α1τ1φ1(x,−τ1) + φ2(x, 0) + p

q φ6(x, 0)}
}

.

Let ˜D(t) be a solution to the following ODE:

d ˜D

dt
= aM1e−α2τ2 − (β + δ)˜D,

˜D(0) = max
x∈�

φ3(x, 0).

Thus, we have ˜D(t) ≤ max
{

aM1e−α2τ2

β+δ
,maxx∈� φ3(x, 0)

}

for all t ∈ [0, Tmax ). Now using

the comparison principle [32], we can conclude that D(x, t) ≤ ˜D(t). Therefore, we obtain

D(x, t) ≤ max

{

aM1e−α2τ2

β + δ
,max

x∈�

φ3(x, 0)

}

, ∀ (x, t) ∈ � × [0, Tmax ).

Now, using the bound for D and the system (1)–(3), we observe that V satisfies the following
system:

∂V

∂t
− dV �V ≤ βM2e−α3τ3 − cV − p̃V W ,

∂V

∂ν
= 0,

V (x, 0) = φ4(x, 0) ≥ 0,

where M2 = max
{

aM1e−α2τ2

β+δ
,maxx∈� φ3(x, 0)

}

. Let ˜V (t) and ˜W (t) be the solution of the

following system of ODEs:

d ˜V

dt
= βM2e−α3τ3 − c˜V − p̃˜V ˜W ,

d ˜W

dt
= q̃ ˜V ˜W − σ̃ ˜W ,

˜V (0) = max
x∈�

φ4(x, 0),

˜W (0) = max
x∈�

φ5(x, 0).
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Let us assume T1(t) = ˜V (t) + p̃
q̃

˜W (t). Then, we obtain

dT1
dt

= βM2e−α3τ3 − c˜V − p̃σ̃

q̃
˜W

≤ βM2e−α3τ3 − γ1T1(t),

where γ1 = min{c, σ̃ }. Hence, we have

T1(t) = max

{

βM2e−α3τ3

γ1
,max

x∈�

{

φ4(x, 0) + p̃

q̃
φ5(x, 0)

}}

≡ M3.

Again using the comparison principle [32], we conclude that V (x, t) + p̃
q̃ W (x, t) ≤ M3 for

all (x, t) ∈ � × [0, Tmax ). This implies that V and W are bounded.
The above analysis confirms the boundedness of H(x, t), I (x, t), D(x, t),V (x, t),W (x, t)

and Z(x, t) on � × [0, Tmax ) and further from the standard theory of semi-linear parabolic
PDEs we have Tmax = +∞ [33]. This completes the proof. ��

Now, we discuss about all the biologically feasible spatially homogeneous equilib-
ria for our proposed model (1). Any spatially homogeneous equilibrium point E =
( ̂H , ̂I , ̂D, ̂V , ̂W , ̂Z) of the model (1) satisfies the following system of algebraic equations:

s − μ ̂H − f ( ̂H , ̂I , ̂V )̂V = 0,

e−α1τ1 f ( ̂H , ̂I , ̂V )̂V − δ̂I − p̂I ̂Z = 0,

ae−α2τ2
̂I − (β + δ)̂D = 0,

βe−α3τ3
̂D − ĉV − p̃̂V ̂W = 0,

q̃ ̂V ̂W − σ̃ ̂W = 0,

q̂I ̂Z − σ ̂Z = 0. (5)

Clearly from the above system of equations (5), we can notice that E0 = (H0, 0, 0, 0, 0, 0)
represents a unique infection-free equilibrium for the model (1) with H0 = s

μ
and it exists

always. The basic reproduction number of the model (1) is given by

R0 = aβ

cδ(β + δ)
f

(

s

μ
, 0, 0

)

e−α1τ1−α2τ2−α3τ3 , (6)

and it represents the average number of freshly infected hepatocytes from one infected hep-
atocyte when the infection sets off.

Let us first consider ̂W = 0 and ̂Z = 0 and then we have the following equation

f

(

̂H ,
s − μ ̂H

δ
e−α1τ1 ,

aβ(s − μ ̂H)

cδ(β + δ)
e−α1τ1−α2τ2−α3τ3

)

= cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3 ,

with ̂I = s−μ ̂H
δ

e−α1τ1 and ̂V = aβ(s−μ ̂H)
cδ(β+δ)

e−α1τ1−α2τ2−α3τ3 . Since ̂I represents the number

of infected hepatocytes, we need to have ̂I ≥ 0 and this condition leads to ̂H ≤ s
μ
. Now, we

define a function G1 on the closed interval [0, s/μ] as follows

G1(H) = f

(

H ,
(s − μH)

δ
e−α1τ1 ,

aβ(s − μH)

cδ(β + δ)
e−α1τ1−α2τ2−α3τ3

)

−cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3 .
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Then, we have

G1(0) = −cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3 < 0,

G1(s/μ) = cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3(R0 − 1),

and

G ′
1(H) = ∂ f

∂ H
− μ

δ
e−α1τ1

∂ f

∂ I
− aβμ

cδ(β + δ)
e−α1τ1−α2τ2−α3τ3

∂ f

∂V
.

It can be easily observed that G1(s/μ) > 1 if R0 > 1. From the hypotheses (A2)−(A3)

on the general incidence function f (H , I , V ), we obtain G ′
1(H) > 0 and this implies

that G1 is a strictly increasing function of H . Therefore, for R0 > 1 we have a unique
immune-free equilibrium E1 = (H1, I1, D1, V1, 0, 0), where H1 ∈ (0, s/μ), I1 = (s−μH1)

δeα1τ1 ,

D1 = a(s−μH1)

δ(β+δ)eα1τ1+α2τ2
and V1 = aβ(s−μH1)

cδ(β+δ)eα1τ1+α2τ2+α3τ3
.

Now, let us assume that ̂W 
= 0 and ̂Z = 0, and in this case, we find ̂V = σ̃
q̃ . Then, from

the first two equations of the system (5), we obtain

f

(

̂H ,
s − μ ̂H

δ
e−α1τ1 ,

σ̃

q̃

)

= q̃

σ̃
(s − μ ̂H).

Again, since ̂W represents the number of antibody immune cells, we need to have ̂W ≥ 0,

i.e., ̂W = aβq̃(s−μ ̂H)
δ(β+δ) p̃σ̃

e−α1τ1−α2τ2−α3τ3 − c
p̃ ≥ 0. This criterion leads to ̂H ≤ s

μ
−

cδ(β+δ)̃σ
aβμq̃ eα1τ1+α2τ2+α3τ3 . Let us consider

G2(H) = f

(

H ,
s − μH

δ
e−α1τ1 ,

σ̃

q̃

)

− q̃

σ̃
(s − μH).

Then, we have G2(0) = − sσ̃
q̃ < 0 and G ′

2(H) = ∂ f
∂ H − μ

δ
e−α1τ1 ∂ f

∂ I + μq̃
σ̃
. Now, using the

hypotheses (A2)−(A3) on the general incidence function f (H , I , V ), we have G ′
2(H) > 0

and this implies that G2 is also a strictly increasing function of H . Now, we define antibody
immune response reproduction number as

R1 = q̃

σ̃
V1, (7)

which denotes the average number of antibody immune cells activated by virus in case of
successful HBV infection and CTL immune response is yet to be established [34]. Here, q̃
is the activation rate of antibody immune response, 1

σ̃
represents the average life span of

antibody immune cells and V1 denotes the number of viruses at the immune-free equilibrium
E1.

Note that when R1 > 1, then V1 > σ̃
q̃ and H1 < s

μ
− cδ(β+δ)̃σ

aβμq̃ eα1τ1+α2τ2+α3τ3 and we
have

G2

(

s

μ
− cδ(β + δ)̃σ

aβμq̃
eα1τ1+α2τ2+α3τ3

)

= f

(

s

μ
− cδ(β + δ)̃σ

aβμq̃
eα1τ1+α2τ2+α3τ3 ,

c(β + δ)̃σ

aβq̃
eα2τ2+α3τ3 ,

σ̃

q̃

)

− cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3 > f (H1, I1, V1)

−cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3 = 0.
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Therefore, the model (1) admits a unique infection equilibrium with only antibody immune

response E2 = (H2, I2, D2, V2, W2, 0), where H2 ∈
(

0, s
μ

− cδ(β+δ)̃σ
aβμq̃ eα1τ1+α2τ2+α3τ3

)

,

I2 = s−μH2
δ

e−α1τ1 , D2 = aI2
β+δ

e−α2τ2 , V2 = σ̃
q̃ and W2 = aβq̃(s−μH2)

δ(β+δ) p̃σ̃
e−α1τ1−α2τ2−α3τ3 − c

p̃ ,
provided R1 > 1.

Now, we consider the case when ̂W = 0 and ̂Z 
= 0, and then we find ̂I = σ
q ,

̂D =
aσ

q(β+δ)
e−α2τ2 and ̂V = aβσ

cq(β+δ)
e−α2τ2−α3τ3 . From the first equation of the system (5), we

obtain

f

(

̂H ,
σ

q
,

aβσ

cq(β + δ)
e−α2τ2−α3τ3

)

= cq(β + δ)

aβσ
(s − μ ̂H)eα2τ2+α3τ3 .

From the second equation of the system (5), we get ̂Z = q
pσ

(s − μ ̂H)e−α1τ1 − δ
p and this

leads to ̂H ≤ s
μ

− δσ
qμ

eα1τ1 since ̂Z denotes the number of CTL cells. Let us denote

G3(H) = f

(

H ,
σ

q
,

aβσ

cq(β + δ)
e−α2τ2−α3τ3

)

− cq(β + δ)

aβσ
(s − μH)eα2τ2+α3τ3 .

Then, we obtain G3(0) = − csq(β+δ)
aβσ

eα2τ2+α3τ3 < 0 and G ′
3(H) = ∂ f

∂ H + cqμ(β+δ)
aβσ

eα2τ2+α3τ3 .
Then using the hypothesis (A2) on the general incidence function f (H , I , V ), we conclude
that G3 is a strictly increasing function of H as G ′

3(H) > 0. Now, we define CTL immune
response reproduction number as

R2 = q

σ
I1, (8)

which represents the average number of CTL immune cells activated by infected hepatocytes
in case of successful HBV infection and antibody immune response is yet to be established
[34]. Here, q is the activation rate of CTL immune response, 1

σ
represents the average life span

of CTL immune cells and I1 denotes the number of infected hepatocytes at the immune-free
equilibrium E1.

Note that when R2 > 1, then I1 > σ
q and H1 < s

μ
− δσ

qμ
eα1τ1 , and we have

G3

(

s

μ
− δσ

qμ
eα1τ1

)

= f

(

s

μ
− δσ

qμ
eα1τ1 ,

σ

q
,

aβσ

cq(β + δ)
e−α2τ2−α3τ3

)

−cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3 > f (H1, I1, V1)

−cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3 = 0.

Therefore, the model (1) admits a unique infection equilibrium with only CTL immune

response E3 = (H3, I3, D3, V3, 0, Z3), where H3 ∈
(

0, s
μ

− δσ
qμ

eα1τ1

)

, I3 = σ
q , D3 =

aσ
q(β+δ)

e−α2τ2 , V3 = aβσ
cq(β+δ)

e−α2τ2−α3τ3 and Z3 = q(s−μH3)
pσ

e−α1τ1 δ
p , provided R2 > 1.

Now, we consider ̂W 
= 0 and ̂Z 
= 0, and then we have ̂I = σ
q ,

̂V = σ̃
q̃ and ̂D =

aσ
q(β+δ)

e−α2τ2 . From the first equation of the system (5), we get

f

(

̂H ,
σ

q
,
σ̃

q̃

)

= q̃

σ̃
(s − μ ̂H).
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From the second equation of the system (5), we obtain ̂Z = q(s−μ ̂H)
pσ

e−α1τ1 − δ
p and this

leads to ̂H ≤ s
μ

− δσ
qμ

eα1τ1 as we need to have ̂Z ≥ 0. Let us define

G4(H) = f

(

H ,
σ

q
,
σ̃

q̃

)

− q̃

σ̃
(s − μH).

Then, we have G4(0) = − sq̃
σ̃

< 0 and G ′
4(H) = ∂ f

∂ H + q̃μ
σ̃

> 0 using the hypothesis (A2).
Here, we define competitive CTL immune response reproduction number as

R3 = q

σ
I2, (9)

which represents the average number of CTL immune cells activated by infected hepatocytes
when the antibody immune response has already been established [34]. So if R3 > 1, then
we have I2 > σ

q , H2 < s
μ

− δσ
qμ

eα1τ1 and

G4

(

s

μ
− δσ

qμ
eα1τ1

)

= f

(

s

μ
− δσ

qμ
eα1τ1 ,

σ

q
,
σ̃

q̃

)

− q̃δμσ

qμσ̃
eα1τ1

= G2

(

s

μ
− δσ

qμ
eα1τ1

)

> G2(H2) = 0.

Therefore, there exists a unique H4 ∈
(

0, s
μ

− δσ
qμ

eα1τ1

)

such that G4(H4) = 0. Now, we

define competitive antibody immune response reproduction number as

R4 = q̃

σ̃
V3, (10)

which denotes the average number of antibody immune cells activated by viruses when CTL
immune response has already been established [34]. From the fourth equation of the system
(5), we obtain W4 = aq̃βσ

p̃qσ̃ (β+δ)
e−α2τ2−α3τ3 − c

p̃ = c
p̃ (R4 − 1).

Therefore, the model (1) admits a unique infection equilibrium with both the anti-
body and CTL immune responses (i.e., in presence of adaptive immune responses) E4 =
(H4, I4, D4, V4, W4, Z4), where H4 ∈

(

0, s
μ

− δσ
qμ

eα1τ1

)

, I4 = σ
q , D4 = aσ

q(β+δ)
e−α2τ2 ,

V4 = σ̃
q̃ , W4 = c

p̃ (R4 − 1) and Z4 = q(s−μH4)
pσ

e−α1τ1 − δ
p , provided R3 > 1 and R4 > 1.

Summarizing the above discussions, we get the following theorem.

Theorem 2 If R0 ≤ 1, the model (1) has a unique infection-free equilibrium E0 =
(H0, 0, 0, 0, 0, 0) with H0 = s

μ
. If R0 > 1, the model (1) has additional four equilibria

along with the equilibrium E0. For R0 > 1,

(i) there always exists a unique immune-free equilibrium E1 = (H1, I1, D1, V1, 0, 0),
where H1 ∈ (0, s/μ) and I1, D1, V1 > 0;

(ii) there exists a unique infection equilibrium with only antibody immune response

E2 = (H2, I2, D2, V2, W2, 0), where H2 ∈
(

0, s
μ

− cδ(β+δ)̃σ
aβμq̃ eα1τ1+α2τ2+α3τ3

)

and

I2, D2, V2, W2 > 0 when R1 > 1;
(iii) there exists a unique infection equilibrium with only CTL immune response E3 =

(H3, I3, D3, V3, 0, Z3), where H3 ∈
(

0, s
μ

− δσ
qμ

eα1τ1

)

and I3, D3, V3, Z3 > 0 when

R2 > 1;
(iv) there exists a unique infection equilibrium with adaptive immune response E4 =

(H4, I4, D4, V4, W4, Z4), where H4 ∈
(

0, s
μ

− δσ
qμ

eα1τ1

)

and I4, D4, V4, W4, Z4 > 0

when R1 > 1, R2 > 1, R3 > 1 and R4 > 1.
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Stability Analysis

In this section, we investigate the stability properties of all five possible equilibria of the
delayed spatiotemporal system (1)–(3). We study the stability properties through the lin-
earization technique and constructing Lyapunov functions. Now, we will present some useful
notations before proceeding further. Let 0 = λ1 < λ2 < · · · < λn < · · · be the eigenvalues
of the operator −� on � in presence of the homogeneous Neumann boundary conditions
and F(λi ) be the eigenfunction space corresponding to the eigenvalue λi in C1(�). Let
{ϕi j : j = 1, 2, . . . , dimF(λi )} denotes an orthonormal basis of F(λi ), X = [C1(�)]6 and
Xi j = {dϕi j : d ∈ R

6}. Then we have

X =
∞

⊕

i=1

Xi and Xi =
dimF(λi )

⊕

j=1

Xi j .

Let E∗ = (H∗, I∗, D∗, V∗, W∗, Z∗) be an arbitrary spatially homogeneous equilibrium of
the system (1)–(3) and assume the following perturbations about the components of the
equilibrium E∗:

U1(x, t) = H(x, t) − H∗, U2(x, t) = I (x, t) − I∗, U3(x, t) = D(x, t) − D∗,
U4(x, t) = V (x, t) − V∗, U5(x, t) = W (x, t) − W∗, U6(x, t) = Z(x, t) − Z∗.

Linearizing the model (1) about E∗, we obtain the following linearized system:

∂U

∂t
= D�U + J1U (x, t) + J2U (x, t − τ1) + J3U (x, t − τ2) + J4U (x, t − τ3),

where

J1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−μ − ∂ f
∂ H V∗ − ∂ f

∂ I V∗ 0 − ∂ f
∂V V∗ − f (H∗, I∗, V∗) 0 0

0 −δ − pZ∗ 0 0 0 −pI∗
0 0 −β − δ 0 0 0
0 0 0 −c − p̃W∗ − p̃V∗ 0
0 0 0 q̃W∗ q̃V∗ − σ̃ 0
0 q Z∗ 0 0 0 q I∗ − σ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

J2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
e−α1τ1 ∂ f

∂ H V∗ e−α1τ1 ∂ f
∂ I V∗ 0 e−α1τ1 (

∂ f
∂V V∗ + f (H∗, I∗, V∗)) 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

J3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 ae−α2τ2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, J4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 βe−α3τ3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

D = diag(0, 0, dD, dV , 0, 0) and U = (U1, U2, U3, U4, U5, U6)
T .

Note that the partial derivatives ∂ f
∂ H , ∂ f

∂ I and ∂ f
∂V in the matrices J1 and J2 are evaluated at the

equilibrium E∗. We define LU = D�U + J1U (x, t) + J2U (x, t − τ1) + J3U (x, t − τ2) +
J4U (x, t−τ3).Now,Xi is invariant under the operatorL for each i ≥ 1, ξ is an eigenvalue ofL
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if and only if it is a root of the equation det(−λiD+J1+J2e−ξτ1+J3e−ξτ2+J4e−ξτ3−ξI6) =
0 for some i ≥ 1 and in this case, there exists an eigenvector in Xi .

Theorem 3 The infection-free equilibrium E0 is globally asymptotically stable if R0 ≤ 1
and it becomes unstable if R0 > 1.

Proof Let us define a Lyapunov function L0(t) as follows:

L0(t) =
∫

�

{

H(x, t) − H0 −
∫ H(x,t)

H0

f (H0, 0, 0)

f (η, 0, 0)
dη + eα1τ1 I (x, t)

+ δ

a
eα1τ1+α2τ2 D(x, t) + δ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3V (x, t)

+ δ(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3W (x, t) + p

q
eα1τ1 Z(x, t)

+
∫ t

t−τ1

f (H(x, ζ ), I (x, ζ ), V (x, ζ ))V (x, ζ )dζ + δeα1τ1

∫ t

t−τ2

I (x, ζ )dζ

+δ(β + δ)

a
eα1τ1+α2τ2

∫ t

t−τ3

D(x, ζ )dζ

}

dx,

where H0 = s
μ
. We denote ψ(x, t) = ψ and ψ(x, t − τi ) = ψτi for i = 1, 2, 3 and

ψ ∈ {H , I , D, V , W , Z} for the sake of notational simplicity. Taking the derivative of L0

with respect to time t along the solution trajectories of the system (1)–(3), we obtain

d L0

dt
=

∫

�

{(

1 − f (H0, 0, 0)

f (H , 0, 0)

)

∂ H

∂t
+ eα1τ1

∂ I

∂t
+ δ

a
eα1τ1+α2τ2

∂ D

∂t
+

δ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3

∂V

∂t
+ δ(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3

∂W

∂t

+ p

q
eα1τ1

∂ Z

∂t
+ ( f (H , I , V )V − f (Hτ1 , Iτ1 , Vτ1)Vτ1) + δeα1τ1(I − Iτ2)

+δ(β + δ)

a
eα1τ1+α2τ2(D − Dτ3)

}

dx

=
∫

�

{(

1 − f (H0, 0, 0)

f (H , 0, 0)

)

(s − μH − f (H , I , V )V )

+ eα1τ1(e−α1τ1 f (Hτ1 , Iτ1 , Vτ1)Vτ1 − δ I − pI Z) + δ

a
eα1τ1+α2τ2(dD�D+

ae−α2τ2 Iτ2 − (β + δ)D) + δ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3(dV �V

+ βe−α3τ3 Dτ3 − cV − p̃V W ) + δ(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3 (̃qV W − σ̃ W )

+ p

q
eα1τ1(q I Z − σ Z) + ( f (H , I , V )V − f (Hτ1 , Iτ1 , Vτ1)Vτ1)

+ δeα1τ1(I − Iτ2) + δ(β + δ)

a
eα1τ1+α2τ2(D − Dτ3)

}

dx

=
∫

�

{

μH0

(

1 − H

H0

) (

1 − f (H0, 0, 0)

f (H , 0, 0)

)

+ cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3V
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(

f (H , I , V )

f (H , 0, 0)
R0 − 1

)

− δ(β + δ) p̃σ̃

aβq̃
eα1τ1+α2τ2+α3τ3W − pσ

q
eα1τ1 Z

}

dx

+ δ

a
eα1τ1+α2τ2

∫

�

dD�Ddx + δ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3

∫

�

dV �V dx .

Now, using the zero-flux boundary conditions (3) and the divergence theorem, we obtain
∫

�

�Ddx =
∫

∂�

∂ D

∂ν
dx = 0 and

∫

�

�V dx =
∫

∂�

∂V

∂ν
dx = 0.

Thus, we eventually have

d L0

dt
=

∫

�

{

μH0

(

1 − H

H0

) (

1 − f (H0, 0, 0)

f (H , 0, 0)

)

+ cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3V

(

f (H , I , V )

f (H , 0, 0)
R0 − 1

)

− δ(β + δ) p̃σ̃

aβq̃
eα1τ1+α2τ2+α3τ3W − pσ

q
eα1τ1 Z

}

dx

≤
∫

�

{

μH0

(

1 − H

H0

) (

1 − f (H0, 0, 0)

f (H , 0, 0)

)

+ cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3V

(R0 − 1) − δ(β + δ) p̃σ̃

aβq̃
eα1τ1+α2τ2+α3τ3W − pσ

q
eα1τ1 Z

}

dx .

Further, from the hypothesis (A2) on the general incidence functionwe know that f (H , I , V )

is a strictly increasing functionwith respect to H and this eventually gives rise to the following
inequality:

(

1 − H

H0

) (

1 − f (H0, 0, 0)

f (H , 0, 0)

)

≤ 0.

Hence, we have d L0
dt ≤ 0 if R0 ≤ 1 and d L0

dt = 0 holds if and only if H = H0 = s
μ
,

I = 0, D = 0, V = 0, W = 0 and Z = 0. This indicates that the singleton set {E0} =
{( s

μ
, 0, 0, 0, 0, 0)} is the largest invariant set in {(H , I , D, V , W , Z) ∈ R

6+| d L0
dt = 0}. There-

fore, it follows from LaSalle invariance principle [35] that the infection-free equilibrium E0

is globally asymptotically stable whenever R0 ≤ 1.
Now, it remains to investigate the stability property of the infection-free equilibrium E0

when R0 > 1. Through some simple computations, we arrive at the following characteristic
equation at the infection-free equilibrium E0:

(ξ + μ)(ξ + σ̃ )(ξ + σ)[ξ3 + (c + β + 2δ + λi dD + λi dV )ξ2 + {(β + δ + λi dD)

(c + δ + λi dV ) + δ(c + λi dV )}ξ + δ(β + δ + λi dD)(c + λi dV )

−aβ f (H0, 0, 0)e
−(α1τ1+α2τ2+α3τ3)−ξ(τ1+τ2+τ3)] = 0. (11)

Easily from the above Eq. (11), we can observe that ξ = −μ(< 0), ξ = −σ̃ (< 0) and
ξ = −σ(< 0) represent three roots of the characteristic equation (11). The remaining roots
of the Eq. (11) are obtained by solving the equation gi (ξ) = 0, where

gi (ξ) = ξ3 + (c + β + 2δ + λi dD + λi dV )ξ2 + {(β + δ + λi dD)(c + δ + λi dV )

+ δ(c + λi dV )}ξ + δ(β + δ + λi dD)(c + λi dV )

− aβ f (H0, 0, 0)e
−(α1τ1+α2τ2+α3τ3)−ξ(τ1+τ2+τ3).

Now, since λ1 = 0, we have g1(0) = cδ(β+δ)−aβ f (H0, 0, 0)e−(α1τ1+α2τ2+α3τ3) = cδ(β+
δ)(1 − R0) and for R0 > 1, we obtain g1(0) < 0. Also, we have limξ→+∞ gi (ξ) = +∞.

123



Int. J. Appl. Comput. Math (2019) 5 :65 Page 13 of 29 65

Therefore, there exists a real positive root ξ∗ of g1(ξ) = 0 and this in turn implies that the
infection-free equilibrium E0 is unstable whenever R0 > 1. This completes the proof. ��

Before presenting the remaining analytical results, we introduce the function G(u) =
u − 1 − ln u for u > 0. Note that G(u) = 0 if and only if u = 1. Further, we introduce the
following hypothesis:

(

1 − f (H , I , V )

f (H , Ii , Vi )

)(

f (H , Ii , Vi )

f (H , I , V )
− V

Vi

)

≤ 0 for all H , I , V > 0, (A4)

where Ii and Vi denote the infected hepatocyte and virus components of the equilibrium Ei

for i = 1, 2, 3, 4.

Theorem 4 Let us assume that the hypothesis (A4) and the inequality R0 > 1 hold. Then
the immune-free equilibrium E1 is globally asymptotically stable if R1 ≤ 1 and R2 ≤ 1. It
becomes unstable if R1 > 1 or R2 > 1.

Proof Let us define a Lyapunov function L1(t) as follows:

L1(t) =
∫

�

{

H(x, t) − H1 −
∫ H(x,t)

H1

f (H1, I1, V1)

f (η, I1, V1)
dη + eα1τ1 I1G

(

I (x, t)

I1

)

+ δ

a
eα1τ1+α2τ2 D1G

(

D(x, t)

D1

)

+ δ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3V1G

(

V (x, t)

V1

)

+δ(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3W (x, t) + p

q
eα1τ1 Z(x, t) + f (H1, I1, V1)V1

∫ t

t−τ1

G

(

f (H(x, ζ ), I (x, ζ ), V (x, ζ ))V (x, ζ )

f (H1, I1, V1)V1

)

dζ + δeα1τ1 I1

∫ t

t−τ2

G

(

I (x, ζ )

I1

)

dζ + δ(β + δ)

a
eα1τ1+α2τ2 D1

∫ t

t−τ3

G

(

D(x, ζ )

D1

)

dζ

}

dx,

where H1, I1, D1 and V1 denote the uninfected hepatocyte, infected hepatocyte, capsid and
virus components of the immune-free equilibrium E1, respectively. Taking the derivative of
L1 with respect to time t along the solution trajectories of the system (1)–(3), we obtain

d L1

dt
=

∫

�

{(

1 − f (H1, I1, V1)

f (H , I1, V1)

)

∂ H

∂t
+ eα1τ1

(

1 − I1
I

)

∂ I

∂t
+ δ

a
eα1τ1+α2τ2

(

1 − D1

D

)

∂ D

∂t
+ δ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3

(

1 − V1
V

)

∂V

∂t

+ δ(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3

∂W

∂t
+ p

q
eα1τ1

∂ Z

∂t
+ f (H1, I1, V1)V1

(

f (H , I , V )V

f (H1, I1, V1)V1
− f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H1, I1, V1)V1
+ ln

f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H , I , V )V

)

+ δ I1eα1τ1

(

I

I1
− Iτ2

I1
+ ln

Iτ2
I

)

+ δ(β + δ)

a
D1eα1τ1+α2τ2

(

D

D1
− Dτ3

D1
+ ln

Dτ3

D

)}

dx

=
∫

�

{(

1 − f (H1, I1, V1)

f (H , I1, V1)

)

(s − μH − f (H , I , V )V ) + eα1τ1

(

1 − I1
I

)

123



65 Page 14 of 29 Int. J. Appl. Comput. Math (2019) 5 :65

(e−α1τ1 f (Hτ1 , Iτ1 , Vτ1)Vτ1 − δ I − pI Z) + δ

a
eα1τ1+α2τ2

(

1 − D1

D

)

(dD�D + ae−α2τ2 Iτ2 − (β + δ)D) + δ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3

(

1 − V1
V

)

(dV �V + βe−α3τ3 Dτ3 − cV − p̃V W ) + δ(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3

(q̃V W − σ̃ W ) + p

q
eα1τ1 (q I Z − σ Z) + f (H1, I1, V1)V1

(

f (H , I , V )V

f (H1, I1, V1)V1

− f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H1, I1, V1)V1
+ ln

f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H , I , V )V

)

+ δ I1eα1τ1

(

I

I1
− Iτ2

I1

+ ln
Iτ2
I

)

+ δ(β + δ)

a
D1eα1τ1+α2τ2

(

D

D1
− Dτ3

D1
+ ln

Dτ3

D

)}

dx

=
∫

�

{

μH1

(

1 − H

H1

)(

1 − f (H1, I1, V1)

f (H , I1, V1)

)

− δ I1eα1τ1

(

G

(

f (H1, I1, V1)

f (H , I1, V1)

)

+G

(

f (H , I1, V1)

f (H , I , V )

)

+ G

(

Iτ2 D1

I1D

)

+ G

(

Dτ3V1
D1V

)

+ G

(

f (Hτ1 , Iτ1 , Vτ1)I1Vτ1

f (H1, I1, V1)I V1

))

+δ I1eα1τ1

(

−1 + f (H , I1, V1)

f (H , I , V )
− V

V1
+ f (H , I , V )V

f (H , I1, V1)V1

)

+ δ(β + δ) p̃

aβ

eα1τ1+α2τ2+α3τ3V1W − δ(β + δ) p̃σ̃

aβq̃
eα1τ1+α2τ2+α3τ3W + pI1eα1τ1 Z−

pσ

q
eα1τ1 Z

}

dx + δdD

a
eα1τ1+α2τ2

∫

�

(

1 − D1

D

)

�Ddx + δ(β + δ)dV

aβ

eα1τ1+α2τ2+α3τ3

∫

�

(

1 − V1
V

)

�V dx

=
∫

�

{

μH1

(

1 − H

H1

)(

1 − f (H1, I1, V1)

f (H , I1, V1)

)

− δ I1eα1τ1

(

G

(

f (H1, I1, V1)

f (H , I1, V1)

)

+G

(

f (H , I1, V1)

f (H , I , V )

)

+ G

(

Iτ2 D1

I1D

)

+ G

(

Dτ3V1
D1V

)

+ G

(

f (Hτ1 , Iτ1 , Vτ1)I1Vτ1

f (H1, I1, V1)I V1

))

+δ I1eα1τ1

(

1 − f (H , I , V )

f (H , I1, V1)

) (

f (H , I1, V1)

f (H , I , V )
− V

V1

)

+ δ(β + δ) p̃σ̃

aβq̃

eα1τ1+α2τ2+α3τ3(R1 − 1)W + pσ

q
eα1τ1(R2 − 1)Z

}

dx + δdD

a
eα1τ1+α2τ2

∫

�

(

1 − D1

D

)

�Ddx + δ(β + δ)dV

aβ
eα1τ1+α2τ2+α3τ3

∫

�

(

1 − V1
V

)

�V dx .

Now, again using the zero-flux boundary conditions (3) and the divergence theorem, we
obtain

∫

�

(

1 − D1

D

)

�Ddx = −D1

∫

�

‖∇ D‖2
D2 dx

and

∫

�

(

1 − V1

V

)

�V dx = −V1

∫

�

‖∇V ‖2
V 2 dx .
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This leads to

d L1

dt
=

∫

�

{

μH1

(

1 − H

H1

)(

1 − f (H1, I1, V1)

f (H , I1, V1)

)

− δ I1eα1τ1

(

G

(

f (H1, I1, V1)

f (H , I1, V1)

)

+G

(

f (H , I1, V1)

f (H , I , V )

)

+ G

(

Iτ2 D1

I1D

)

+ G

(

Dτ3V1
D1V

)

+ G

(

f (Hτ1 , Iτ1 , Vτ1)I1Vτ1

f (H1, I1, V1)I V1

))

+ δ I1eα1τ1

(

1 − f (H , I , V )

f (H , I1, V1)

) (

f (H , I1, V1)

f (H , I , V )
− V

V1

)

+ δ(β + δ) p̃σ̃

aβq̃

eα1τ1+α2τ2+α3τ3(R1 − 1)W + pσ

q
eα1τ1(R2 − 1)Z

}

dx − δdD D1

a
eα1τ1+α2τ2

∫

�

‖∇ D‖2
D2 dx − δ(β + δ)dV V1

aβ
eα1τ1+α2τ2+α3τ3

∫

�

‖∇V ‖2
V 2 dx .

Further, from the hypothesis (A2) on the general incidence functionwe know that f (H , I , V )

is a strictly increasing functionwith respect to H and this eventually gives rise to the following
inequality:

(

1 − H

H1

)(

1 − f (H1, I1, V1)

f (H , I1, V1)

)

≤ 0.

Hence, using the hypothesis (A4) we obtain d L1
dt ≤ 0 if R1 ≤ 1 and R2 ≤ 1. Also, we

have d L1
dt = 0 holds if and only if H = H1, I = I1, D = D1, V = V1, W = 0 and

Z = 0. This indicates that the singleton set {E1} = {(H1, I1, D1, V1, 0, 0)} is the largest
invariant set in {(H , I , D, V , W , Z) ∈ R

6+| d L1
dt = 0}. Therefore, it follows from LaSalle

invariance principle [35] that the immune-free equilibrium E1 is globally asymptotically
stable whenever R1 ≤ 1 and R2 ≤ 1.

Now, it remains to investigate the stability property of the immune-free equilibrium E1

when any one of R1 and R2 becomes greater than unity. Through some simple computations,
we arrive at the following characteristic equation at the immune-free equilibrium E1:

(ξ + σ̃ − q̃V1)(ξ + σ − q I1)hi (ξ) = 0, (12)

where

hi (ξ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ + μ + ∂ f
∂ H V1

∂ f
∂ I V1 0 ∂ f

∂V V1 + f (H1, I1, V1)

− ∂ f
∂ H V1e−(α1+ξ)τ1 ξ + δ − ∂ f

∂ I V1e−(α1+ξ)τ1 0 −
(

∂ f
∂V V1 + f (H1, I1, V1)

)

e−(α1+ξ)τ1

0 −ae−(α2+ξ)τ2 ξ + β + δ + λi dD 0
0 0 −βe−(α3+ξ)τ3 ξ + c + λi dV

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

From the above Eq. (12), we can easily notice that ξ1 = q̃V1 − σ̃ and ξ2 = q I1 −σ represent
two roots of the characteristic equation (12). So, if R1 = q̃

σ̃
V1 > 1 then we have ξ1 > 0 and

if R2 = q
σ

I1 > 1 then we have ξ2 > 0. This indicates that if any one of R1 and R2 is greater
than unity then there exists a real positive root of the characteristic equation (12). Therefore,
the immune-free equilibrium E1 is unstable whenever R1 > 1 or R2 > 1. This completes
the proof. ��
Theorem 5 Let us assume that the hypothesis (A4) and the inequalities R0 > 1 and R1 > 1
hold. Then the infection equilibrium with only antibody immune response E2 is globally
asymptotically stable if R3 ≤ 1 and it becomes unstable if R3 > 1.

Proof Let us define a Lyapunov function L2(t) as follows:

L2(t) =
∫

�

{

H(x, t) − H2 −
∫ H(x,t)

H2

f (H2, I2, V2)

f (η, I2, V2)
dη + eα1τ1 I2G

(

I (x, t)

I2

)
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+ δ

a
eα1τ1+α2τ2 D2G

(

D(x, t)

D2

)

+ δ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3V2G

(

V (x, t)

V2

)

+δ(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3W2G

(

W (x, t)

W2

)

+ p

q
eα1τ1 Z(x, t)

+ f (H2, I2, V2)V2

∫ t

t−τ1

G

(

f (H(x, ζ ), I (x, ζ ), V (x, ζ ))V (x, ζ )

f (H2, I2, V2)V2

)

dζ

+ δeα1τ1 I2

∫ t

t−τ2

G

(

I (x, ζ )

I2

)

dζ + δ(β + δ)

a
eα1τ1+α2τ2 D2

∫ t

t−τ3

G

(

D(x, ζ )

D2

)

dζ

}

dx,

where H2, I2, D2, V2 and W2 denote the uninfected hepatocyte, infected hepatocyte, capsid,
virus and antibody components of the infection equilibrium with only antibody immune
response E2, respectively. Taking the derivative of L2 with respect to time t along the solution
trajectories of the system (1)–(3), we obtain

d L2

dt
=

∫

�

{(

1 − f (H2, I2, V2)

f (H , I2, V2)

)

∂ H

∂t
+ eα1τ1

(

1 − I2
I

)

∂ I

∂t
+ δ

a
eα1τ1+α2τ2

(

1 − D2

D

)

∂ D

∂t
+ δ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3

(

1 − V2
V

)

∂V

∂t

+ δ(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3

(

1 − W2

W

)

∂W

∂t
+ p

q
eα1τ1

∂ Z

∂t
+ f (H2, I2, V2)V2

(

f (H , I , V )V

f (H2, I2, V2)V2
− f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H2, I2, V2)V2
+ ln

f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H , I , V )V

)

+ δ I2eα1τ1

(

I

I2
− Iτ2

I2
+ ln

Iτ2
I

)

+ δ(β + δ)

a
D2eα1τ1+α2τ2

(

D

D2
− Dτ3

D2
+ ln

Dτ3

D

)}

dx

=
∫

�

{

μH2

(

1 − H

H2

) (

1 − f (H2, I2, V2)

f (H , I2, V2)

)

− δ I2eα1τ1

(

G

(

f (H2, I2, V2)

f (H , I2, V2)

)

+G

(

f (H , I2, V2)

f (H , I , V )

)

+ G

(

Iτ2 D2

I2D

)

+ G

(

Dτ3V2
D2V

)

+ G

(

f (Hτ1 , Iτ1 , Vτ1)I2Vτ1

f (H2, I2, V2)I V2

))

+
(

f (H2, I2, V2)
f (H , I , V )V

f (H , I2, V2)
− cδ(β + δ)

aβ
eα1τ1+α2τ2+α3τ3V − δ I2eα1τ1

− δ(β + δ) p̃W2

aβ
eα1τ1+α2τ2+α3τ3V + δ I2eα1τ1

f (H , I2, V2)

f (H , I , V )V

)

+ pI2eα1τ1 Z

− pσ

q
eα1τ1 Z

}

dx + δdD

a
eα1τ1+α2τ2

∫

�

(

1 − D2

D

)

�Ddx + δ(β + δ)dV

aβ

eα1τ1+α2τ2+α3τ3

∫

�

(

1 − V2
V

)

�V dx

=
∫

�

{

μH2

(

1 − H

H2

) (

1 − f (H2, I2, V2)

f (H , I2, V2)

)

− δ I2eα1τ1

(

G

(

f (H2, I2, V2)

f (H , I2, V2)

)

+G

(

f (H , I2, V2)

f (H , I , V )

)

+ G

(

Iτ2 D2

I2D

)

+ G

(

Dτ3V2
D2V

)

+ G

(

f (Hτ1 , Iτ1 , Vτ1)I2Vτ1

f (H2, I2, V2)I V2

))
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+ δ I2eα1τ1

(

1 − f (H , I , V )

f (H , I2, V2)

) (

f (H , I2, V2)

f (H , I , V )
− V

V2

)

+ pσ

q
eα1τ1(R3 − 1)Z

}

dx

− δdD D2

a
eα1τ1+α2τ2

∫

�

‖∇ D‖2
D2 dx − δ(β + δ)dV V2

aβ
eα1τ1+α2τ2+α3τ3

∫

�

‖∇V ‖2
V 2 dx .

Further, from the hypothesis (A2) on the general incidence functionwe know that f (H , I , V )

is a strictly increasing functionwith respect to H and this eventually gives rise to the following
inequality:

(

1 − H

H2

)(

1 − f (H2, I2, V2)

f (H , I2, V2)

)

≤ 0.

Hence, using the hypothesis (A4) we obtain d L2
dt ≤ 0 if R3 ≤ 1. Also, we have d L2

dt = 0
holds if and only if H = H2, I = I2, D = D2, V = V2, W = W2 and Z = 0. This
indicates that the singleton set {E2} = {(H2, I2, D2, V2, W2, 0)} is the largest invariant set
in {(H , I , D, V , W , Z) ∈ R

6+| d L2
dt = 0}. Therefore, it follows from LaSalle invariance

principle [35] that the infection equilibrium with only antibody immune response E2 is
globally asymptotically stable whenever R3 ≤ 1.

Now, it remains to investigate the stability property of the infection equilibrium with only
antibody immune response E2 when R3 becomes greater than unity. Through some simple
computations, we arrive at the following characteristic equation at the equilibrium E2:

(ξ + σ − q I2)̂hi (ξ) = 0, (13)

where

̂hi (ξ)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ + μ + ∂ f
∂ H V2

∂ f
∂ I V2 0 ∂ f

∂V V2 + f (H2, I2, V2) 0

− ∂ f
∂ H V2e−(α1+ξ)τ1 ξ + δ − ∂ f

∂ I V2e−(α1+ξ)τ1 0 −
(

∂ f
∂V V2 + f (H2, I2, V2)

)

e−(α1+ξ)τ1 0

0 −ae−(α2+ξ)τ2 ξ + β + δ + λi dD 0 0

0 0 −βe−(α3+ξ)τ3 ξ + c + p̃W2 + λi dV p̃V2

0 0 0 −q̃W2 ξ + σ̃ − q̃V2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

From the above Eq. (13), we can easily notice that ξ = q I2 − σ represents a root of the
characteristic equation (13). So, if R3 = q

σ
I2 > 1 then we have ξ > 0. This indicates that

if R3 is greater than unity then there exists a real positive root of the characteristic equation
(13). Therefore, the infection equilibriumwith only antibody immune response E2 is unstable
whenever R3 > 1. This completes the proof. ��
Theorem 6 Let us assume that the hypothesis (A4) and the inequalities R0 > 1 and R2 > 1
hold. Then the infection equilibrium with only CTL immune response E3 is globally asymp-
totically stable if R4 ≤ 1 and it becomes unstable if R4 > 1.

Proof Let us define a Lyapunov function L3(t) as follows:

L3(t) =
∫

�

{

H(x, t) − H3 −
∫ H(x,t)

H3

f (H3, I3, V3)

f (η, I3, V3)
dη + eα1τ1 I3G

(

I (x, t)

I3

)

+ (δ + pZ3)

a
eα1τ1+α2τ2 D3G

(

D(x, t)

D3

)

+
(δ + pZ3)(β + δ)

aβ
eα1τ1+α2τ2+α3τ3V3G

(

V (x, t)

V3

)
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+ (δ + pZ3)(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3W (x, t) + p

q
eα1τ1 Z3G

(

Z(x, t)

Z3

)

+ f (H3, I3, V3)V3

∫ t

t−τ1

G

(

f (H(x, ζ ), I (x, ζ ), V (x, ζ ))V (x, ζ )

f (H3, I3, V3)V3

)

dζ+

(δ + pZ3)e
α1τ1 I3

∫ t

t−τ2

G

(

I (x, ζ )

I3

)

dζ + (δ + pZ3)(β + δ)

a
eα1τ1+α2τ2

D3

∫ t

t−τ3

G

(

D(x, ζ )

D3

)

dζ

}

dx,

where H3, I3, D3, V3 and Z3 denote the uninfected hepatocyte, infected hepatocyte, capsid,
virus and CTL cell components of the infection equilibriumwith only CTL immune response
E3, respectively. Taking the derivative of L3 with respect to time t along the solution trajec-
tories of the system (1)–(3), we obtain

d L3

dt
=

∫

�

{(

1 − f (H3, I3, V3)

f (H , I3, V3)

)

∂ H

∂t
+ eα1τ1

(

1 − I3
I

)

∂ I

∂t
+ (δ + pZ3)

a
eα1τ1+α2τ2

(

1 − D3

D

)

∂ D

∂t
+ (δ + pZ3)(β + δ)

aβ
eα1τ1+α2τ2+α3τ3

(

1 − V3

V

)

∂V

∂t

+ (δ + pZ3)(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3

∂W

∂t
+ p

q
eα1τ1

(

1 − Z3

Z

)

∂ Z

∂t

+ f (H3, I3, V3)V3

(

f (H , I , V )V

f (H3, I3, V3)V3
− f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H3, I3, V3)V3

+ ln
f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H , I , V )V

)

+ (δ + pZ3)I3eα1τ1

(

I

I3
− Iτ2

I3
+ ln

Iτ2
I

)

+ (δ + pZ3)(β + δ)

a
D3eα1τ1+α2τ2

(

D

D3
− Dτ3

D3
+ ln

Dτ3

D

)}

dx

=
∫

�

{

μH3

(

1 − H

H3

) (

1 − f (H3, I3, V3)

f (H , I3, V3)

)

− (δ + pZ3)I3eα1τ1

(

G

(

f (H3, I3, V3)

f (H , I3, V3)

)

+ G

(

f (H , I3, V3)

f (H , I , V )

)

+ G

(

Iτ2 D3

I3D

)

+ G

(

Dτ3V3

D3V

)

+G

(

f (Hτ1 , Iτ1 , Vτ1)I3Vτ1

f (H3, I3, V3)I V3

))

+ (δ + pZ3)I3eα1τ1

(

1 − f (H , I , V )

f (H , I3, V3)

)

(

f (H , I3, V3)

f (H , I , V )
− V

V3

)

+ (δ + pZ3)(β + δ) p̃

aβ
eα1τ1+α2τ2+α3τ3

(

V3 − σ̃

q̃

)

W

}

dx + (δ + pZ3)dD

a
eα1τ1+α2τ2

∫

�

(

1 − D3

D

)

�Ddx

+ (δ + pZ3)(β + δ)dV

aβ
eα1τ1+α2τ2+α3τ3

∫

�

(

1 − V3

V

)

�V dx

=
∫

�

{

μH3

(

1 − H

H3

) (

1 − f (H3, I3, V3)

f (H , I3, V3)

)

− (δ + pZ3)I3eα1τ1

(

G

(

f (H3, I3, V3)

f (H , I3, V3)

)

+ G

(

f (H , I3, V3)

f (H , I , V )

)

+ G

(

Iτ2 D3

I3D

)

+ G

(

Dτ3V3

D3V

)

+G

(

f (Hτ1 , Iτ1 , Vτ1)I3Vτ1

f (H3, I3, V3)I V3

))

+ (δ + pZ3)I3eα1τ1

(

1 − f (H , I , V )

f (H , I3, V3)

)
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(

f (H , I3, V3)

f (H , I , V )
− V

V3

)

+ (δ + pZ3)(β + δ) p̃σ̃

aβq̃
eα1τ1+α2τ2+α3τ3 (R4 − 1) W

}

dx

− (δ + pZ3)dD D3

a
eα1τ1+α2τ2

∫

�

‖∇ D‖2
D2 dx − (δ + pZ3)(β + δ)dV V3

aβ

eα1τ1+α2τ2+α3τ3

∫

�

‖∇V ‖2
V 2 dx .

Further, from the hypothesis (A2) on the general incidence functionwe know that f (H , I , V )

is a strictly increasing functionwith respect to H and this eventually gives rise to the following
inequality:

(

1 − H

H3

)(

1 − f (H3, I3, V3)

f (H , I3, V3)

)

≤ 0.

Hence, using the hypothesis (A4) we obtain d L3
dt ≤ 0 if R4 ≤ 1. Also, we have d L3

dt = 0
holds if and only if H = H3, I = I3, D = D3, V = V3, W = 0 and Z = Z3. This
indicates that the singleton set {E3} = {(H3, I3, D3, V3, 0, Z3)} is the largest invariant set
in {(H , I , D, V , W , Z) ∈ R

6+| d L3
dt = 0}. Therefore, it follows from LaSalle invariance

principle [35] that the infection equilibrium with only CTL immune response E3 is globally
asymptotically stable whenever R4 ≤ 1.

Now, it remains to investigate the stability property of the infection equilibrium with
only CTL immune response E3 when R4 becomes greater than unity. Through some simple
computations, we arrive at the following characteristic equation at the equilibrium E3:

(ξ + σ̃ − q̃V3)˜hi (ξ) = 0, (14)

where

˜hi (ξ)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ + μ + ∂ f
∂ H V3

∂ f
∂ I V3 0 ∂ f

∂V V3 + f (H3, I3, V3) 0

− ∂ f
∂ H V3e−(α1+ξ)τ1 ξ + δ + pZ3 − ∂ f

∂ I V3e−(α1+ξ)τ1 0 −
(

∂ f
∂V V3 + f (H3, I3, V3)

)

e−(α1+ξ)τ1 pI3

0 −ae−(α2+ξ)τ2 ξ + β + δ + λi dD 0 0
0 0 −βe−(α3+ξ)τ3 ξ + c + λi dV 0
0 −q Z3 0 0 ξ + σ − q I3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

From the above Eq. (14), we can easily notice that ξ = q̃V3 − σ̃ represents a root of the
characteristic equation (14). So, if R4 = q̃

σ̃
V3 > 1 then we have ξ > 0. This indicates that

if R4 is greater than unity then there exists a real positive root of the characteristic equation
(14). Therefore, the infection equilibrium with only CTL immune response E3 is unstable
whenever R4 > 1. This completes the proof. ��
Theorem 7 Let us assume that the hypothesis (A4) holds. Then the infection equilibrium with
adaptive immune response E4 is globally asymptotically stable whenever it exists (that is,
when R0 > 1, R1 > 1, R2 > 1, R3 > 1 and R4 > 1).

Proof Let us define a Lyapunov function L4(t) as follows:

L4(t) =
∫

�

{

H(x, t) − H4 −
∫ H(x,t)

H4

f (H4, I4, V4)

f (η, I4, V4)
dη + eα1τ1 I4G

(

I (x, t)

I4

)

+ (δ + pZ4)

a
eα1τ1+α2τ2 D4G

(

D(x, t)

D4

)

+ (δ + pZ4)(β + δ)

aβ
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eα1τ1+α2τ2+α3τ3V4G

(

V (x, t)

V4

)

+ (δ + pZ4)(β + δ) p̃

aβq̃

eα1τ1+α2τ2+α3τ3W4G

(

W (x, t)

W4

)

+ p

q
eα1τ1 Z4G

(

Z(x, t)

Z4

)

+ f (H4, I4, V4)V4

∫ t

t−τ1

G

(

f (H(x, ζ ), I (x, ζ ), V (x, ζ ))V (x, ζ )

f (H4, I4, V4)V4

)

dζ

+ (δ + pZ4)e
α1τ1 I4

∫ t

t−τ2

G

(

I (x, ζ )

I4

)

dζ + (δ + pZ4)(β + δ)

a
eα1τ1+α2τ2

D4

∫ t

t−τ3

G

(

D(x, ζ )

D4

)

dζ

}

dx,

where H4, I4, D4, V4, W4 and Z4 denote the corresponding components of the infection
equilibrium with adaptive immune response E4, respectively. Taking the derivative of L4

with respect to time t along the solution trajectories of the system (1)–(3), we obtain

d L4

dt
=

∫

�

{(

1 − f (H4, I4, V4)

f (H , I4, V4)

)

∂ H

∂t
+ eα1τ1

(

1 − I4
I

)

∂ I

∂t
+ (δ + pZ4)

a
eα1τ1+α2τ2

(

1 − D4

D

)

∂ D

∂t
+ (δ + pZ4)(β + δ)

aβ
eα1τ1+α2τ2+α3τ3

(

1 − V4

V

)

∂V

∂t

+ (δ + pZ4)(β + δ) p̃

aβq̃
eα1τ1+α2τ2+α3τ3

(

1 − W4

W

)

∂W

∂t
+ p

q
eα1τ1

(

1 − Z4

Z

)

∂ Z

∂t
+ f (H4, I4, V4)V4

(

f (H , I , V )V

f (H4, I4, V4)V4
− f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H4, I4, V4)V4

+ ln
f (Hτ1 , Iτ1 , Vτ1)Vτ1

f (H , I , V )V

)

+ (δ + pZ4)I4eα1τ1

(

I

I4
− Iτ2

I4
+ ln

Iτ2
I

)

+ (δ + pZ4)(β + δ)

a
D4eα1τ1+α2τ2

(

D

D4
− Dτ3

D4
+ ln

Dτ3

D

)}

dx

=
∫

�

{

μH4

(

1 − H

H4

) (

1 − f (H4, I4, V4)

f (H , I4, V4)

)

− (δ + pZ4)I4eα1τ1

(

G

(

f (H4, I4, V4)

f (H , I4, V4)

)

+ G

(

f (H , I4, V4)

f (H , I , V )

)

+ G

(

Iτ2 D4

I4D

)

+ G

(

Dτ3V4

D4V

)

+G

(

f (Hτ1 , Iτ1 , Vτ1)I4Vτ1

f (H4, I4, V4)I V4

))

+ (δ + pZ4)I4eα1τ1

(

1 − f (H , I , V )

f (H , I4, V4)

)

(

f (H , I4, V4)

f (H , I , V )
− V

V4

)}

dx − (δ + pZ4)dD D4

a
eα1τ1+α2τ2

∫

�

‖∇ D‖2
D2 dx

− (δ + pZ4)(β + δ)dV V4

aβ
eα1τ1+α2τ2+α3τ3

∫

�

‖∇V ‖2
V 2 dx .

Hence, using the hypotheses (A2) and (A4) we obtain d L4
dt ≤ 0. Also, we have d L4

dt = 0
holds if and only if H = H4, I = I4, D = D4, V = V4, W = W4 and Z = Z4. This
indicates that the singleton set {E4} = {(H4, I4, D4, V4, W4, Z4)} is the largest invariant
set in {(H , I , D, V , W , Z) ∈ R

6+| d L4
dt = 0}. Therefore, it follows from LaSalle invariance

principle [35] that the infection equilibrium with adaptive immune response E4 is globally
asymptotically stable whenever it exists, that is, when R0 > 1, R1 > 1, R2 > 1, R3 > 1 and
R4 > 1. This completes the proof. ��
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Numerical Simulations

In this section, we present a particular example for our generalized model by incorporating a
specific functional response term in place of the general incidence function f (H , I , V ) and
provide several numerical illustrations of it in order to corroborate the obtained theoretical
results. For this purpose, we consider the incidence function f (H , I , V ) = k H

H+V [36,37].
Then the generalizedmodel (1) gets transformed into the following delayed reaction-diffusion
system:

∂ H

∂t
= s − μH(x, t) − k H(x, t)V (x, t)

H(x, t) + V (x, t)
,

∂ I

∂t
= e−α1τ1

k H(x, t − τ1)V (x, t − τ1)

H(x, t − τ1) + V (x, t − τ1)
− δ I (x, t) − pI (x, t)Z(x, t),

∂ D

∂t
= dD�D + ae−α2τ2 I (x, t − τ2) − (β + δ)D(x, t),

∂V

∂t
= dV �V + βe−α3τ3 D(x, t − τ3) − cV (x, t) − p̃V (x, t)W (x, t),

∂W

∂t
= q̃V (x, t)W (x, t) − σ̃ W (x, t),

∂ Z

∂t
= q I (x, t)Z(x, t) − σ Z(x, t), (15)

subjected to the non-negative initial conditions (2) and the zero-flux boundary conditions (3).
We can easily observe that the considered specific form of incidence function indeed

satisfies the hypotheses (A1)–(A3). The infection-free equilibrium for the model (15) is
given by E0 = ( s

μ
, 0, 0, 0, 0, 0) and the basic reproduction number is given by R0 =

aβk
cδ(β+δ)

e−α1τ1−α2τ2−α3τ3 . When R0 > 1, we can obtain remaining four equilibria numer-
ically for suitable parameter values and also we can numerically compute other reproduction
numbers, such as R1, R2, R3 and R4. Therefore, we can directly apply the theoretical results
obtained earlier for this specific model (15). For the simplicity of numerical illustrations
of the obtained theoretical results, we consider one-dimensional bounded spatial domain
� = [0, 50]. For all numerical simulations, we consider the spatial step size as �x = 1,
temporal step size as �t = 0.1 and diffusion coefficients as dD = dV = 0.1. All the
numerical results have been obtained for the time delays τ1 = 1, τ2 = 2 and τ3 = 5.
All other hypothetical parameter values for each situation are mentioned in the caption
of the corresponding figure. Figure 1 validates the result demonstrated in Theorem 3 and
shows that the solution trajectories approach towards the infection-free equilibrium E0 =
(1000, 0, 0, 0, 0, 0). We observe that the solution trajectories tend towards the immune-free
equilibrium E1 = (12.17, 184.53, 293.94, 52.41, 0, 0) in Fig. 2, which is actually the situa-
tion shown in Theorem 4. Then Fig. 3 supports the statement of Theorem 5 and demonstrates
that the corresponding solution trajectories eventually approach the infection equilibriumwith
only antibody immune response E2 = (998.33, 0.31, 0.496, 0.017, 54.54, 0). Further, The-
orem 6 is supported by the Fig. 4 where the solution trajectories tend towards the infection
equilibrium with only CTL immune response E3 = (992.89, 0.25, 0.398, 0.071, 0, 1.14).
Finally, the last figure (i.e., Fig. 5) exhibits the asymptotic stability of the infection equilib-
riumwith adaptive immune response E4 = (998.33, 0.25, 0.398, 0.017, 4.13, 0.065), which
is actually the case exhibited by Theorem 7.
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Conclusion

In this paper, we have proposed and investigated a reaction-diffusion HBV infection model
with capsids, three delays, adaptive immunity and general incidence rate that includes
the classical bilinear incidence rate, the Beddington-DeAngelis functional response, the
Crowley-Martin functional response and the Hattaf-Yousfi functional response. We have
derived five threshold parameters in order to fully characterize the dynamical behaviors
of model. These parameters are the basic reproduction number R0, the antibody immune
response reproduction number R1, the CTL immune response reproduction number R2, the
competitive CTL immune response reproduction number R3, and the competitive antibody
immune response reproduction number R4. More concretely, when R0 ≤ 1, the infection-
free equilibrium is globally asymptotically stable which biologically indicates that the HBV
is cleared and the infection dies out. When R0 > 1, the infection-free equilibrium becomes
unstable and four infection steady states are appeared which are: (1) the immune-free equi-
librium is globally asymptotically stable if R1 ≤ 1 and R2 ≤ 1 and it becomes unstable
if R1 > 1 or R2 > 1; (2) the infection equilibrium with only antibody immune response
exists if R1 > 1, it is globally asymptotically stable if R3 ≤ 1 and becomes unstable if
R3 > 1; (3) the infection equilibrium with only CTL immune response exists if R2 > 1, it is
globally asymptotically stable if R4 ≤ 1 and becomes unstable if R4 > 1; (4) the infection
equilibriumwith both antibody and CTL immune responses is globally asymptotically stable
whenever it exists. It follows from these results that the activation of one or both arms of
adaptive immunity is unable to eradicate the virus from the liver. In addition, the proposed
model and the results obtained in this paper extend and improve the ODE, DDE and PDE
models and the corresponding results presented in [1,3–9].

Recently, there has been growing interest among researchers to model biological phe-
nomena in fractional calculus setup as these models can eventually predict more realistic
information about the complex dynamical behaviors [38,39]. Therefore, an immediate future
direction will be to study our model in fractional calculus setup. Another interesting relevant
future study will be to adopt off-line nonlinear model predictive control (NMPC) approach in
our present model [40]. Further, wewant to study the effect of discretization on the dynamical
behavior of our model as in [41–43]. We will carry out these interesting research prospects
in our subsequent future studies.

Acknowledgements The authors convey their gratitude to the learned reviewer for his/her valuable suggestions
and comments.
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