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Abstract
A modified homotopy perturbation method for solving a class of nonlinear Lane–Emden
equations with boundary conditions arising in various physical models is proposed. The
proposed algorithm is based on the homotopy perturbation method and integral form of the
Lane–Emden equation. The integral form of the problem overcomes the singular behavior
at the origin. The accuracy and applicability of our algorithm is examined by solving two
singularmodels: (i) the second kind Lane–Emden equation used tomodel a thermal explosion
in an infinite cylinder or a sphere and (ii) the nonlinear singular problem with Neumann
boundary conditions.

Keywords Lane–Emden equations · Neumann boundary conditions · Homotopy
perturbation technique · Approximations
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Introduction

Nonlinear singular boundary value problems represent a significant class of boundary value
problem and have a great application in several branches of science and engineering. For
example, the oxygen diffusion [1,2], the heat conduction [3], and the thermal explosion [4]
are modeled by the singular boundary value problems. A lot of nonlinear singular problems
depending on the boundary conditions usually given byDirichlet boundary conditions, mixed
boundary conditions and Neumann boundary conditions. The Neumann boundary conditions
are usually the most physically reasonable choice [5].
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We consider the following Lane–Emden equation with the Neumann-Robin and Neumann
boundary conditions [6–11]

⎧
⎪⎨

⎪⎩

u′′ + α

x
u′ = f (x, u), x ∈ (0, 1),

u′(0) = 0, au(1) + bu′(1) = c,
u′(0) = 0, u′(1) = c,

(1)

where a > 0, b and c are any finite real constants. The second kind Lane–Emden equation is
used to model a thermal explosion in an infinite cylinder or a sphere [12]. Several methods
are available for analytical [13–17] and numerical solutions [18,19] to solve the Lane–Emden
equation.

In this paper, we propose the homotopy perturbation method for the approximate solution
of the Lane–Emden equation with boundary conditions. In the proposed method, the integral
form of the Lane–Emden equations is considered before designing the recursion scheme for
obtaining the approximations to solutions.

The Homotopy PerturbationMethod

Recently, the idea of the HPM and its applicability to different types of differential and
integral equations has been used in [20,21]. Consider

u(x) = g(x) +
∫ b

a
k(x, s) f (s, u(s))ds, x ∈ �. (2)

To apply the HPM, we reconstitute (2) as

L(u) = u(x) − g(x) −
∫ b

a
k(x, s) f (s, u(s))ds = 0, x ∈ �, (3)

with solution u(x) = y(x). We construct the homotopy of (3), H(u, p)

H(u, p) = (1 − p)(u − g) + p(L(u)) = 0, p ∈ [0, 1], x ∈ � (4)

where p is an embedding parameter, it is clear that for p = 0, then H(u, 0) = u − g = 0
or u0 = g, and for p = 1, then H(u, 1) = L(u) = 0. As the parameter p increases
monotonically from 0 to 1, the changing process of p from 0 to 1 is just that of u(x, p) from
u0 to u.

According to the HPM,we can first view the embedding parameter p as a small parameter,
and construct the solution as a power series in p, i.e.,

u =
∞∑

k=0

pkuk = u0 + pu1 + p2u2 + · · · . (5)

where the coefficients uk , k = 0, 1, 2, ..., are to be determined. The result, nonetheless, is
valid for any p. Setting p = 1, we obtain the solution of Eq. (2) given by

y(x) = lim
p→1

u =
∞∑

k=0

uk . (6)

The series (6) is a convergent series and the rate of convergence depends on the nature of
Eq. (2), [22].
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Lane–Emden Equation with Neumann-Robin Boundary Conditions

Integrating Eq. (1) twice and utilizing boundary conditions u′(0) = 0, au(1)+bu′(1) = c,
we obtain

u(x) = c

a
− b

a

1∫

0

tα f (t, u(t))dt −
1∫

x

1

sα

( s∫

0

tα f (t, u(t))dt

)

ds a > 0. (7)

The homotopy for (7) is constructed as

u(x) − c

a
+ p

{
b

a

1∫

0

tα f (t, u(t))dt +
1∫

x

1

sα

( s∫

0

tα f (t, u(t))dt

)

ds

}

= 0. (8)

Substituting the series (5) into (8), we obtain

∞∑

k=0

pkuk − c

a
+ p

{
b

a

1∫

0

tα f

(

t,
∞∑

k=0

pkuk

)

dt

+
1∫

x

1

sα

( s∫

0

tα f

(

t,
∞∑

k=0

pkuk

)

dt

)

ds

}

= 0. (9)

The nonlinear term in above expression is decomposed as

f

(

x,
∞∑

k=0

pkuk

)

=
∞∑

k=0

pk Hk (10)

where Hn [21] is given by

Hn = 1

n!
dn

dpn

{

f

(

x,
∞∑

k=0

pkuk

)}

p=0
, n ≥ 0. (11)

Equation (9) can be written as

∞∑

k=0

pkuk − c

a
+ p

{
b

a

1∫

0

tα
∞∑

k=0

pk Hkdt +
1∫

x

1

sα

( s∫

0

tα
∞∑

k=0

pk Hkdt

)

ds

}

= 0. (12)

Collecting terms in powers of p and setting their coefficients to zero, we find

k = 0 u0(x) = c

a
,

k = 1 u1(x) = −b

a

1∫

0

tαH0dt −
1∫

x

1

sα

( s∫

0

tαH0dt

)

ds,

...

k = n un(x) = −b

a

1∫

0

tαHn−1dt −
1∫

x

1

sα

( s∫

0

tαHn−1dt

)

ds.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)
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The nth-order approximate solution will be obtained as

ψn(x) =
n∑

k=0

uk(x).

Lane–Emden Equation with Neumann Boundary Conditions

According the approach given in [5], the domain of solution [0, 1] is dividing as [0, 1] =
[0, 1

2 ]∪[ 12 , 1]. Then,wewill solve two sub-problems below. Firstly,we consider the following
Lane–Emden equations with Neumann and Dirichelt boundary conditions as

(xαu′(x))′ = xα f (x, u(x)), 0 ≤ x ≤ 1

2
, (14)

u′(0) = 0, u

(
1

2

)

= d. (15)

Integrating Eq. (14) twice first from 0 to x and then from x to 1
2 , and applying the Neumann

and Dirichelt boundary conditions u′(0) = 0, u
( 1
2

) = d , we obtain

u(x) = d −
1
2∫

x

1

sα

( s∫

0

tα f (t, u(t))dt

)

ds. (16)

Constructing the homotopy for (16) and substituting the relation from (5) and (10), we obtain

∞∑

k=0

pkuk − d + p

1
2∫

x

1

sα

( s∫

0

tα
∞∑

k=0

pk Hkdt

)

ds = 0. (17)

Collecting terms in powers of p and setting their coefficients to zero, we find

k = 0 : u0(x) = d

k = 1 : u1(x) = −
1
2∫

x

1

sα

( s∫

0

tαH0dt

)

ds

...

k = n : un(x) = −
1
2∫

x

1

sα

( s∫

0

tαHn−1dt

)

ds

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

Then, the n-terms approximate solution is defined by

ψ(I )
n (x) =

n∑

k=0

uk(x, d). (19)
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Finally, we consider the following Lane–Emden equations with Dirichelt and Neumann as

(xαu′(x))′ = xα f (x, u(x)),
1

2
≤ x ≤ 1, (20)

u

(
1

2

)

= d, u′(1) = c (21)

Integrating (20) twice first from x to 1 and then 1
2 to x , applying BCs (21), we have

u(x) = d + c

x∫

1
2

ds

sα
−

x∫

1
2

1

sα

( 1∫

s

tα f (t, u(t))dt

)

ds. (22)

As we did before, we construct the homotopy for (22) and substitute the relation from (5)
and (10) we have

∞∑

k=0

pkuk − d − cp

x∫

1
2

ds

sα
+ p

x∫

1
2

1

sα

1∫

s

tα
( ∞∑

k=0

pk Hk

)

dtds = 0. (23)

Collecting terms in powers of p and setting their coefficients to zero, we find

k = 0 : u0(x) = d

k = 1 : u1(x) = c

x∫

1
2

ds

sα
+

x∫

1
2

1

sα

( 1∫

s

tαH0dt

)

ds

...

k = n : un(x) =
x∫

1
2

1

sα

( 1∫

s

tαHn−1dt

)

ds.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

Then, we denote the n-terms approximate of the series solution

ψ(I I )
n (x) =

n∑

k=0

uk(x, d). (25)

Note that the approximations ψ
(I )
n (x) and ψ

(I I )
n (x) depending on unknown parameter d .

In order to determine unknown constant d , we will use the continuity condition for the flux
[5] as

ψ ′(I )
n

(
1

2
, d

)

− ψ ′(I I )
n

(
1

2
, d

)

= 0, n = 1, 2, . . . (26)

which leads to a sequence of algebraic equations in d . By solving these equations, we can find
the values of d . After obtaining the value of d , the approximate solution of (1) is obtained as

ψn(x) =
{

ψ(I )
n (x, dn), 0 ≤ x ≤ 1

2 ,

ψ(I I )
n (x, dn),

1
2 ≤ x ≤ 1,

(27)

where dn, n = 1, 2, . . . are approximate values of d .
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Numerical Results

In this section, we present the numerical results and discussion of the proposed method
for solving two singular models. All the results are computed using the symbolic software
Mathematica.

Problem-1

Consider the nonlinear Lane–Emden (1) and u′(0) = 0, au(1) + bu′(1) = c with f (u) =
−δe

u
1+εu where δ and ε are physical parameters [23]. According to HPM (19) with a =

1, b = 0, c = 0, we obtain

k = 0 u0 = 0,

k = 1 u1(x) = −
1∫

x

1

sα

( s∫

0

tαH0dt

)

ds,

...

k = n un(x) = −
1∫

x

1

sα

( s∫

0

tαHn−1dt

)

ds

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

Using (28), the 3rd-order approximations are obtained for two specific parameters α = 1
and α = 2 as follows:

ψ3(x) = δ

(
1

4
− x2

4

)

+ δ2
(

3

64
− x2

16
+ x4

64

)

+ δ3
(

(30 − 22ε)

2304
+ (−45 + 36ε)x2

2304

+ (18 − 18ε)x4

2304
+ (−3 + 4ε)x6

2304

)

+ . . . (for α = 1)

ψ3(x) = δ

(
1

6
− x2

6

)

+ δ2
(

7

360
− x2

36
+ x4

120

)

+ δ3
(

(25 − 19ε)

7560
+ (−42 + 35ε)x2

7560

+ (21 − 21ε)x4

7560
+ (−4 + 5ε)x6

7560

)

+ . . . , (for α = 2)

To verify whether the our approximation converges or not, we define the residual error
function as

Rn(x) =
∣
∣
∣
∣ψ

′′
n (x) + α

x
ψ ′
n(x) + δ exp

(
ψn(x)

1 + ε ψn(x)

)∣
∣
∣
∣ , n = 1, 2, . . . (29)

We next fix the parameters δ = 1, α = 1 and consider the influence of the parameter ε on
the residual error Rn(x), n = 1, 2, 3, 4 in Fig. 1 (where ε = 1), Fig. 2 (where ε = 2), Fig.
3 (where ε = 3) and Fig. 4 (where ε = 5). Similarly, we fix δ = 1, α = 2 and check the
influence of ε on the residual error in the Figs. 5, 6, 7 and 8. In each case, we see that the
residual error increases with an increases in ε. From these plots, it can be observed that the
Rn(x) converges to zero as n tends to infinity.

In Table 1 (with α = 1), Table 2 (with α = 2) and Table 3 (with α = 5), we list
the numerical results of the 6-terms approximate series solution ψ6 obtained by proposed
method. We fix δ = 1 and consider the influence of ε on the solution of the problem in Tables
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Fig. 1 Plot of residual error Rn when α = 1, δ = 1, ε = 1

Fig. 2 Plot of residual error Rn when α = 1, δ = 1, ε = 2

1, 2, 3. From the same Tables, we observe that the solution decreases when α increases from
α = 1 to α = 5.

Problem-2

Consider the Lane–Emden model (1) with u′(0) = 0, u′(1) = c, f (x, u) = 4x2e2u −2(α+
1)eu and c = − 2

5 . Its analytical solution is u = ln 1
4+x2

. According to HPM (19), we obtain
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Fig. 3 Plot of residual error Rn when α = 1, δ = 1, ε = 3

Fig. 4 Plot of residual error Rn when α = 1, δ = 1, ε = 5

k = 0 : u0 = d

k = 1 : u1 = −
1
2∫

x

1

sα

( s∫

0

tαH0dt

)

ds

...

k = n : un = −
1
2∫

x

1

sα

( s∫

0

tαHn−1dt

)

ds

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)
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Fig. 5 Plot of residual error Rn when α = 2, δ = 1, ε = 1

Fig. 6 Plot of residual error Rn when α = 2, δ = 1, ε = 2

Using (30), the three terms approximation is obtained below.

ψ
(I )
3 (x, d) = d + ed

4
+ e2d

32
− e3d

128
+ 3e4d

8192
+

(

−ed − e2d

4
+ e3d

64

)

x2

+
(
e2d

2
+ e3d

8
− e4d

128

)

x4 − 1

4
e3d x6 + 1

32
e4d x8 + · · · (for α = 1).
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Fig. 7 Plot of residual error Rn when α = 2, δ = 1, ε = 3

Fig. 8 Plot of residual error Rn when α = 2, δ = 1, ε = 5

ψ
(I )
3 (x, d) = d + ed

4
+ e2d

32
− e3d

168
+ 13e4d

57600
+

(

−ed − e2d

4
+ e3d

80

)

x2

+
(
e2d

2
+ e3d

10
− e4d

200

)

x4 − 23

105
e3d x6 + 1

45
e4d x8 + . . . (for α = 2).
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Table 1 Numerical solution ψ6 for α = 1, δ = 1

x ε = 1 ε = 2 ε = 3 ε = 5

0.0 0.299429075 0.290036655 0.283358485 0.271075397

0.1 0.296282831 0.287032882 0.280456442 0.268333380

0.2 0.286861740 0.278032422 0.271756059 0.260115998

0.3 0.271218965 0.263068341 0.257275337 0.246444493

0.4 0.249443914 0.242197359 0.237046856 0.227341444

0.5 0.221663442 0.215502337 0.211121687 0.202820779

0.6 0.188043575 0.183095921 0.179574935 0.172887819

0.7 0.148791724 0.145125634 0.142513042 0.137554477

0.8 0.104159428 0.101780945 0.100083291 0.096867726

0.9 0.054445568 0.053303222 0.052486989 0.050943327

1.0 0.000000000 0.000000000 0.000000000 0.000000000

Table 2 Numerical solution ψ6 for α = 2, δ = 1

x ε = 1 ε = 2 ε = 3 ε = 5

0.0 0.186763707 0.184257303 0.182326869 0.179404251

0.1 0.184813805 0.182350979 0.180452896 0.177575144

0.2 0.178973836 0.176639024 0.174836166 0.172091685

0.3 0.169273091 0.167142694 0.165492516 0.162965237

0.4 0.155760636 0.153898103 0.152449242 0.150214322

0.5 0.138505676 0.136957295 0.135746513 0.133864896

0.6 0.117598064 0.116389811 0.115439473 0.11395217

0.7 0.093148944 0.092284862 0.09160123 0.090524666

0.8 0.065291513 0.064754221 0.064327005 0.063650868

0.9 0.034181879 0.033936065 0.033740017 0.033428766

1.0 0.000000000 0.000000000 0.000000000 0.000000000

Table 3 Numerical solution ψ6 for α = 5, δ = 1

x ε = 1 ε = 2 ε = 3 ε = 5

0.0 0.08772507 0.087467266 0.087240475 0.08685905

0.1 0.086822002 0.086569748 0.086347677 0.085973834

0.2 0.084115904 0.083879825 0.083671547 0.083319920

0.3 0.079616099 0.079405441 0.079218931 0.078902583

0.4 0.073338151 0.073159969 0.073001446 0.072730861

0.5 0.065303905 0.065162420 0.065035792 0.064817960

0.6 0.055541539 0.055437746 0.055344218 0.055181892

0.7 0.04408563 0.044017231 0.043955159 0.043846418

0.8 0.030977228 0.030939003 0.030904090 0.030842399

0.9 0.016263937 0.016248652 0.016234632 0.016209710

1.0 0.000000000 0.000000000 0.000000000 0.000000000
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Table 4 The approximate value of d when α = 1, 2

d1 d2 d3 d4 d5

α = 1 −1.489863 −1.4495769 −1.4468808 −1.4468894 −1.4469154

α = 2 −1.517663 −1.4577144 −1.4482032 −1.4469627 −1.4468886

Table 5 Maximum absolute errors of problem 2

E(1)
max E(2)

max E(3)
max E(4)

max E(5)
max

α = 1 4.29E−02 2.9941E−03 3.95E−05 1.91E−05 2.97E−06

α = 2 7.71E−02 1.1609E−02 1.37E−03 4.73E−05 3.21E−05

According to the HPM (24), we have

k = 0 : u0 = d

k = 1 : u1 = −2

5

x∫

1
2

ds

sα
−

x∫

1
2

1

sα

1∫

s

tαH0d tds

...

k = n : un = −
x∫

1
2

1

sα

1∫

s

tαHn−1d tds.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(31)

Using (31), the two terms approximation is obtained below.

ψ
(I I )
2 (x, d) = d + ed

4
− e2d

64
− ed x2 + 1

4
e2d x4

+
(

−2

5
+ 2ed − e2d

)

ln(2x) + ... (for α = 1).

ψ
(I I )
2 (x, d) =d + 1

80

(
−64 + 340ed − 129e2d

)
+ 32 − 160ed + 64e2d

80x
− ed x2

+ 1

5
e2d x4 + ... (for α = 2).

To find the unknown constant d , we use the continuity condition for the flux as

ψ ′(I )
n

(
1

2
, d

)

− ψ ′(I I )
n

(
1

2
, d

)

= 0, n = 1, 2, . . . (32)

which leads to a sequence of algebraic equations in d . Using the Newton’s method, we obtain
the approximate values of d , see Table 4.

After finding the numerical value of d , we obtain the approximate solution of the original
problem as follows

ψn(x) =
{

ψ(I )
n (x, dn), 0 ≤ x ≤ 1

2 ,

ψ(I I )
n (x, dn),

1
2 ≤ x ≤ 1.

(33)
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To show the accuracy of the proposed method, we define the maximum absolute error as

E (n)
max = max

x∈(0,1)
|ψn(x) − u(x)|, n = 1, 2, . . . (34)

where u is the exact solution and ψn is the approximate solution. The maximum absolute
errors E (n)

max, n = 1, 3, . . . 5, are computed and listed in Table 5. From these numerical results,
it is observed that the maximum absolute errors E (n)

max converging to zero as n becomes very
large. In Figure 9we show that the curves of the exact solution u and the approximate solution
ψn, n = 2, 3 for α = 1, 2, where ψ3 and the exact solution overlap.

Conclusion

We investigated the perturbed second kind Lane–Emden equation that models the steady
state temperature distribution [12]. We have proposed a modified homotopy perturbation
method, where the integral form of Lane–Emden equations was considered to derive the
recursive relation that will handle the given boundary conditions. We also decomposed the
domain into two subintervals to give a reliable treatment for the Lane–Emden equation
with Neumann boundary conditions. The proposed methods provide the direct recursive
schemes for computing approximation to solutions; andwe also graphically showed that these
approximations to solutions are almost identical to the analytical solutions. The advantage of
the proposed schemes is that they donot require the computation of undetermined coefficients,
whereas most of previous recursive schemes do require the computation of undetermined
coefficients.
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