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Abstract
Evolution equations containing fractional derivatives can offer efficient mathematical models
for determination of anomalous diffusion and transport dynamics in multi-faceted systems
that cannot be precisely modeled by using normal integer order equations. In recent times,
researches have found out that lots of physical processes illustrate fractional order character-
istics that alters with time or space. The continuum of order in the fractional calculus permits
the order of the fractional operator be accounted for as a variable. In the current research
work, radial basis functions (RBFs) approximation is utilized for solving fractional mobile-
immobile advection-dispersion (TF-MIM-AD) model in a bounded domain which is applied
for explaining solute transport in both porous and fractured media. In this approach, firstly,
the discretization process of the aforesaid equation with of convergence order O(δt ) in the
t-direction is described via the finite difference scheme for 0 < α < 1. Afterwards, by help
of the meshless methods based on RBFs, we will illustrate how to obtain the approximated
solution. The stability and convergence of time-discretized scheme are also theoretically dis-
cussed in detail throughout the paper. Finally, two numerical instances are included to clarify
effectiveness and accuracy of our proposed concepts which is investigated in the current
research work.
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Introduction

Solute transport in rivers, groundwater and streams is controlled by the physical features or
heterogeneity in different reaches.While the advection-dispersion equation and its extensions
(e.g., the mobile-immobile (MIM) or transient storage models based on a second order
dispersion term) have been successfully used in the past, recent research highlights the need
for transport models that can better describe the heterogeneity and connectivity of spatial
features within a general network perspective of solute transport. The MIM approach is
based on a simple hypothesis: not all the opening spaces in a geologic medium contribute to
universal flow. Based on a literature survey done on recent works of [1], the idea of the MIM
has become famous across hydrologists for studying transport in saturant and unsaturated
zones, and in granular as well as fractured media. The transport flow in porous medium is
mainly controlled by the processes of advection and dispersion (ADE) [2] that will predict a
breakthrough curve (BTC). A Gaussian distribution function from an a straightly releasing
solute source can be defined for predicting a breakthrough curve (BTC).

Investigation of numerical models of solute transport is a fundamental aspect in parameter
reconnaissance at both the field andmicro scales. TheADE is naturally applied to characterize
the motion of solute transport in porous media. However, increasing evidence indicates
that the ADE model is difficult to explain transport in heterogeneous, fractured or even
homogeneous media. As mentioned in [3], the breakthrough curves (BTCs) have been fitted
by both the ADE and MIM models and results are shown that the MIM model does premier
thanADE in both porous and fracturedmedia, especially to explain the peaks and long tails of
the BTCs. Because of suchmentioned reason, theMIMmodel can describe the BTCs better in
a tough walled fracture than in a smooth-walled fracture. The single-rateMIMmodel appears
ADE transport in the mobile region, and transport in the immobile region only by diffusion,
making physical non-equilibrium. We refer the interested reader to previous studies [1,3–8]
for finding more details.

Most phenomena in scientific world are described through nonlinear fractional partial
differential equations. Mathematical models of fractional have become extremely useful
and important to model complex phenomena in the fields of physics, chemistry,acoustics,
viscoelasticity, electromagnetics, biology, and engineering [9–14]. It is worth to point out
that the main characteristic of fractional derivatives, or more precisely derivatives of positive
real order, is so called the memory effect, that is, future state of a physical system depends on
present as well as past states. It is well known that the state of many systems at a given time
depends on their configuration at previous times. The fractional derivative takes into account
this history in its definition as a convolution with a function whose amplitude decays at earlier
times as a power-law. That is because of the fact that, the fractional derivative is natural to
use when modeling dynamical or physical systems in various bioengineering applications
such as frequency dependent damping behavior of materials, motion of a large thin plate in a
Newtonian fluid, creep and relaxation functions for viscoelastic materials in the past several
decades.

The fractional mobile-immobile advection-dispersion equation is a generalization of the
classical mobile-immobile advection-dispersion equation in which the first-order derivative
is replacedwith a fractional-order derivative [15]. The fractionalmobile-immobile advection-
dispersionmodel for solute transport presumes power lawwaiting times in the immobile zone,
resulting to a fractional time derivative in the model equations. The equations are equipollent
to previous models of MIM transport with power law memory functions and are the limiting
equations that govern continuous time randomwalks with heavy tailed randomwaiting times.
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In this paper, our aim is to investigate the mobile-immobile advection-dispersion (MIM-
AD) model based on fractional order derivatives. After that, we are dealing the numerical
approximation of the following time fractional mobile-immobile advection-dispersion (TF-
MIM-AD) model order α (0 < α ≤ 1):

β1
∂u(x, t)

∂t
+ β2

∂αu(x, t)

∂tα
= μ1

∂2u(x, t)

∂x2

−μ2
∂u(x, t)

∂x
+ f (x, t), a ≤ x ≤ b, 0 ≤ t ≤ T , (1)

with intial condition

u(x, 0) = g(x), a ≤ x ≤ b, (2)

and the boundary conditions

u(a, t) = g1(t), (b, t) = g2(t), t > 0, (3)

whereu(x, t) represents the solute concentration, f (x, t) is the source terma, b, α, g(x), g1(t)
and g2(t) are given and

∂αu(x,t)
∂tα represents the Caputo fractional derivative [9,10] which can

be defined as follows:

∂αu(x, t)

∂tα
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
�(1−α)

t∫

0

∂u(x,ξ)
∂ξ

1
(t−ξ)α

dξ, 0 < α < 1,

∂u(x,t)
∂t α = 1.

Also β1, β2, μ1 and μ2 are constant coefficients. Here a source term f (x, t) is selected
for the purposes of confirmation in Section “Examples and Discussions”. To determine an
exact solution of this problems is extremely difficult thus many researchers are attempting
procedures to approximate these problems [16–23]. There exist some numerical algorithms
for solving fractional mobile-immobile advection-dispersion model such as implicit and
explicit difference method [24–27], spectral method [28,29].

The Literature Review of Meshless Methods

Ameshless (meshfree) method is a numerical method used to establish a system of algebraic
equations for the whole domain of the problem without using a predefined mesh for the
domain (or boundary) discretization.Wewill make use of meshfreemethods for our scattered
data approximation because mesh generation is one of the most time consuming part of any
mesh-based numerical simulation. The meshfree method gives an economical alternative to
methods such as those using wavelets, multivariate splines, finite elements, finite difference
and finite volume, where all require the connectivity of nodes. In the last decade in order to
omit mesh construction, scientists have employed meshless methods. In such approach an
assortment of scattered data were used as instead of constructing ameshing paradigm. One of
the most prominent meshless method is RBF method that seems to be a very well-organized
system while facing interpolation of multidimensional scattered data.

Radial basis function (RBF) approaches were originally studied by RolandHardy, an Iowa
State geodesist, in 1968. This method has been considered as one of the first efficient tech-
niques for the data interpolation in scattered space. Themain disadvantage of previously used
polynomial methods is their unisolvency characteristics for two-dimensional and developed
dimensional scattered data. After a decade of research, Hardy established the method which
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was subsequently be recognized as the multiquadric (MQ) radial basis function which is just
one of numerous existing RBFs [30]. At that time, in 1979, based on research work done by
Richard Franke, MQRBFmethod was introduced to be the best knownmethods for scattered
data interpolation [31]. In honor of Frankes vast applied experiments with the MQ, he is fre-
quently recognized for presenting the MQ into the field of mathematical science [32]. The
subsequent important occurrence in RBF history was in 1986 when, an IBM mathematician
named as Charles Micchelli, explained and established the concept behind the MQ tech-
nique. The invertible mode of system matrix for the MQmethod was proven, which remarks
the affectivity, precision and reliability in RBF scattered data interpolation problems [33].
Some years later, theMQmethod was first utilized to explain partial differential equations by
physicist Edward Kansa [34]. In 1992, results extracted by Wolodymyr Madych and Stuart
Nelson [35] indicated the spectral convergence rate of MQ interpolation. All RBF methods
using an infinitely differentiable RBF have been proven to be comprehensive layout of the
polynomial based pseudo-spectral methods [36].

The use of such novel method for mathematical solution of partial differential equation
is based on the collocation method. It is (conditionally) positive definite, translationally and
rotationally invariant. The chief benefits of this method are straightforward programming
process and probable spectral precision. On the other hand, ill-conditioning of the resulting
linear system is considered to be the main difficulty. RBF approaches that use infinitely
differentiable origin functions that include a free factor are theoretically spectrally accurate.
Thewell utilization of suchRBFmethods comprises development of a linear arrangement that
is extremely ill-conditioned when the parameters of the method are in situation that the best
accurateness is ideally comprehended. Consequently, in several applications, RBF methods
does not possess the potential to produce exact results as they are skilled theoretically. Just
contrary to mesh based approaches such as finite element method, finite difference method
finite volume method and meshless methods use a set of accidental or uniform points which
are not interlinked in the arrangement named as mesh.

The RBF method can be taken into account as a category of compromise between the
finite element (FE) and the Pseudo-spectral (PS) methods. On the one hand, the RBF method
is based on an expansion into basis functions that have a spatial location just similar to FE
method. In this point of view, these basis functions can be grouped in a definite section to
locally increase the accuracy of the method. On the other hand, the basic functions exerted
in the RBF expansion are high-order functions that conventionally cover the whole domain
like with the PS technique. It was remarked that RBFs converge to PS methods in their
at radial function boundary, making RBFs a generalized formulation and methodology to
PS methods, for scattered nodes and non-flat radial functions [37]. RBFs have quite a lot
of rewards over PS methods: in spite of subscription of pliability in terms of the domain
shape , they permit a local node refinement, an easy singularity-free generalization to N
dimensions and a shape parameter letting user extend the solution space to regions outside of
the polynomial space, particularly susceptible to the Runge phenomenon [38]. We refer the
interested reader to [32,33,35]. for discussing the existence, uniqueness, and convergence
of the RBFs approximation. Many detailed discussions have been carried out regarding
meshlessmethods and their related applications for solving complexPDEs [39–45], fractional
equations [46–54] and integral equations [55–57].
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The Organization of the Current Paper

In this regard, our aim is to construct the idea of the interpolation by RBFs to approximate
numerically the TF-MIM-ADmodel. The layout of current research is arranged as follows. In
Section “Construction of the ProposedMethods”, the aforementioned equation is estimated in
the temporal direction based on a scheme ofO(δt2−α). In this section, we also approximated
by using the meshless methods based on RBFs in the spatial variable. Section “Theoretical
Analysis of Time Discrete Scheme” is dedicated to stability and convergence the the time
discrete scheme and the error estimates of this method. Also, in this section we will indicate
that time order of convergence scheme is O(δt ). Two numerical examples are provided
in “Examples and Discussions” section to confirm the convergence behavior and to show
accuracy of the proposed methods. Finally, we end with a concise conclusion in Section
“Conclusion” and some references are brought together at the end.

Construction of the ProposedMethods

In this section, we discuss how the meshless methods based on RBFs can be exploited to
solve the TF-MIM-AD equations. Firstly, let {x j = jh| j = 1, 2, 3, . . . , N } in the bounded
interval [a, b], where x1, xN are the boundary points and tn = nδt, n = 0, 1, 2, 3, . . . , M be
an equidistant partition of [0, T ], where h = (b−a)/N , δt = T /M and un(xi ) = u(xi , tn) .

Finite Difference Time Discretization

The time fractional derivative term in Eq. (1) is simulated by using the finite difference
scheme:

∂αu(x, tn+1)

∂tα
= 1

�(1 − α)

∫ tn+1

0

∂u(x, ξ)

∂ξ

1

(tn+1 − ξ)α
dξ

= 1

�(1 − α)

n∑

k=0

∫ (k+1)δt

kδt

∂u(x, ξ)

∂ξ

1

(tn+1 − ξ)α
dξ

≈ 1

�(1 − α)

n∑

k=0

∫ (k+1)δt

kδt

∂u(x, ξk)

∂ξ

1

(tn+1 − ξ)α
dξ. (4)

Now, the first order temporal derivative can be approximated by the forward difference
formula:

∂u(x, ξk)

∂ξ
= u(x, tk+1) − u(x, tk)

δt
+ Rk+1

1 (x),

where ξk ∈ [tk, tk+1]. By making use of Taylor’s Theorem the truncation error can be calcu-
lated as:

|Rk+1
1 (x)| ≤ C1δt, or Rk+1

1 = O(δt).

Therefore, the relation (4) can be discretized by the following statements:

∂αu(x, tn+1)

∂tα
= 1

�(1 − α)

n∑

k=0

(
u(x, tk+1) − u(x, tk)

δt
+ O(δt)

)∫ (k+1)δt

kδt

1

(tn+1 − ξ)α
dξ
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= 1

�(1 − α)

n∑

k=0

(
u(x, tk+1) − u(x, tk)

δt
+ O(δt)

)∫ (k+1)δt

kδt

dr

rα

=

⎧
⎪⎨

⎪⎩

δt−α

�(2−α)
(un+1 − un) + δt−α

�(2−α)

n∑

k=1

[
(k + 1)1−α − k1−α

]
(un+1−k − un−k) n ≥ 1

δt−α

�(2−α)
(u1 − u0) n = 0

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0

[

(un+1 − un) +
n∑

k=1
bk(un+1−k − un−k)

]

n ≥ 1

a0(u1 − u0) n = 0

+ Rk+1
2 , (5)

where a0 = δt−α

�(2−α)
, bk = (k + 1)1−α − k1−α, (k = 0, 1, . . . , n), u0 = u(x, t = 0) = g(x).

Also the truncation error Rk+1
2 satisfy

|Rk+1
2 (x)| ≤ C2δt

2−α, or Rk+1
2 = O(δt2−α).

SubstitutingEq. (5) intoEq. (1), the timederivative of theTF-MIM-ADequation is descritized
taking into account the classic finite difference formula and space derivatives between suc-
cessive two time steps n and n + 1 as :

(β1 + a0δtβ2)u
n+1 − (μ1δt)∇2un+1 + (μ2δt)∇un+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(β1 + β2a0δt)un − β2a0δt
n∑

k=1
bk(un+1−k − un−k) + δt f n+1, n ≥ 1,

(β1 + β2a0δt)u0 + δt f 1, n = 0,

+ Rk+1,

(6)

in which ∇ is the gradient differential operator and f n+1 = f (x, tn+1); n = 0, 1, . . . , M .
The truncation error can be obtained as follows:

|Rk+1(x)| ≤ Ĉδt1+α, or Rk+1 = O(δt1+α),

where Ĉ is a positive constant. We will prove that convergence order of semi-discrete scheme
isO(δt ). By omitting the small term Rk+1 and denotingUk as the approximation of uk , then
we gain the approximate implicit discrete scheme as follows :

(β1 + a0δtβ2)U
n+1 − μ1δt∇2Un+1 + μ2δt∇Un+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(β1 + β2a0δt)Un − β2a0δt
n∑

k=1
bk(Un+1−k −Un−k) + δt f n+1, n ≥ 1,

(β1 + β2a0δt)U 0 + δt f 1, n = 0.

(7)

Now, we will describe the meshless methods based on RBFs to approximate the spatial
derivatives in the next two subsection in details.

Discretization in Space: RBF-CollocationMethod

In this section, the spatial discretization scheme is presented by the Kansa method, as the
domain-type meshless method, that is obtained by direct collocating the RBFs. The approx-
imate expansion of u(xi , tn) at a point of interest xi is as follows:
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Un+1
i = U (xi , tn+1) �

N∑

j=1

λn+1
j φ(ri j ) + λn+1

N+1x j + λn+1
N+2, (8)

where {λnj } are unknown vector of the nth time layer φ(ri j ) radial basis function, ri j =
|xi − x j |. Besides N equations resulting from collocating Eq. (8) at N points, we need
an additional condition (extra 2 conditions) for the polynomial part to guarantee a unique
solution of the N linear equations:

N∑

j=1

λn+1
j =

N∑

j=1

λn+1
j x j = 0. (9)

Substituting Eq. (8) into Eq. (9) in a matrix form, it is to represent that

{U }n+1 = A{λ}n+1, (10)

where {U }n+1 = [Un+1
1 , . . . ,Un+1

N , 0, 0]T and {λ}n+1 = [λn+1
1 , . . . , λn+1

N ]T and the matrix
A = (ai j )(N+2)×(N+2) has entries:

A =
[


 PN×2

PT 02×2

]

where 
 = [φ(ri j )]N×N and P =
⎡

⎢
⎣

x1 1
...

...

xN 1

⎤

⎥
⎦

N×2

.

Reconstruction of Eq. (6) in the matrix form can be exhibited as follows:

B{λ}1 = {b}1, (11)

in which

B =
[
L(
) L(P)

PT 0

]

(N+2)×(N+2)
, (12)

where operator L is defined by

L(∗) =

⎧
⎪⎨

⎪⎩

[
β1 + β2a0δt − (μ1δt)∇2 + (μ2δt)∇

]
(∗), 1 < i < N ,

(∗), i = 1 or N ,

(13)

and {b}1 = [b11, . . . , b1N , 0, 0]T where b11 = g11 , b2N = g12 and b1i = (β2a0δt + β1)U 0
i +

δt f 1i , i = 2, 3, . . . , N − 1.
Also, for n ≥ 1

B{λ}n+1 = {b}n+1 (14)

{b}n+1 = [bn+1
1 , . . . , bn+1

N , 0, 0]T are calculated by Eq. (6) as follows:

bn+1
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gn+1
1 i = 1,

(β1 + β2a0δt)Un
i − β2a0δt

n∑

k=1
bk(U

n+1−k
i −Un−k

i ) + δt f n+1, 1 < i < N ,

gn+1
2 , i = N .

(15)

Posterior to obtaining the accurate answers for the algebraic system of equations B{λ}n+1 =
{b}n+1 at each time level, the solution can be determined using Eq. (10).
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Discretization in Space: RBF-PSMeshless Method

Fasshauer [58] linked the RBFs collocation method to the pseudo-spectral (PS) method,
known as RBF-PS method. Fasshauer used the RBF-PS method to approximate the Allen-
Cahn equation, 2D Helmholtz equation and 2D Laplace equation with piecewise boundary
conditions [59]. The authors of [60,61] used the RBF-PS method for analyzing beams,
plates and shells problems. Authors of [62,63] exploited the RBF-PS method for composite
and sandwich plates problems, and Marjan Uddin and co-workers [64,65] utilized RBF-PS
method to solve somewave-typePDEs.Now,wedeveloped the approach of [43,58] and used a
numerical scheme for the Eq. (1). First of all, we review the properties of differentiationmatri-
ces (DM). Assume φ j , j = 1, 2, . . . , N be an arbitrary linearly independent set of smooth
functions that will apply as the basis for our investigation space and x = {x1, x2, . . . , xN } be
a set of distinct points in � ⊆ R

d . We suppose that the approximate expansion is as follows:

uh(x) =
N∑

j=1

λ jφ j (x), x ∈ R (16)

where h = hx,� := sup
x∈�

min
1≤ j≤N

‖x − x j‖2. Collocating Eq. (16) at the grid points xi , we get

uh(xi ) =
N∑

j=1

λ jφ j (xi ), i = 1, 2, . . . , N , (17)

then we gain the following matrix-vector form:

u = Aλ, (18)

where

λ = [λ1, λ2, . . . , λN ]T ,

and A is the evaluation matrix with entries Ai j = φ j (xi )

u = [uh(x1), uh(x2), . . . , uh(xN )]T .

We can obtain the derivative of uh by differentiating the basis function in (16)

∂uh(x)

∂x
=

N∑

j=1

λ j
∂φ j (x)

∂x
, (19)

Now, collocating Eq. (19) at the grid points xi in the form matrix, yields

ux = Axλ, (20)

in which matrix Ax has entries
∂φ j (x)

∂x . Hence, we require to ensure invertibility of the evalu-
ation of matrix A for determining the differentiation matrix D. This relies on both the basis
functions selected and the location of the grid points xi . According to Bochner’s theorem,
the invertibility of the matrix A for any set of distinct grid points xi is insured by using the
positive definite radial basis functions. Now, by using Eq. (18) one gets

λ = A−1u.

Considering Eq. (20) and the above result, we then obtain

ux = AxA−1u. (21)
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Now, the approximate solution can be rewritten as follows:

un+1(xi ) =
N∑

j=1

λ jΦ(ri j ), i = 1, 2, . . . , N , (22)

Then, the matrix-vector from Eq. (22) is below as:

un+1 = A, (23)

where

 = (λ1, λ2, . . . , λN )T , un+1 = (un+1
1 , un+1

2 , . . . , un+1
N )T .

The following matrix-vector form is achieved by differentiating Eq. (22) with respect to x
and evaluating it at the grid points(xi ):

un+1
xx = Axx, (24)

where

un+1
xx =

(
∂2un+1

1

∂x2
,
∂2un+1

2

∂x2
, . . . ,

∂2un+1
N

∂x2

)T

,

and elements of matrix Axx are Axx,i j = ∂2φ(‖xi−x j‖)
∂x2

. Now, from Eq. (23) one obtains:

 = A−1un+1,

and Eq. (24) yields

un+1
xx = AxxA−1un+1. (25)

Now, by substituting Eqs. (21) and (25) in the Eq. (7), we can write

(β1 + a0δtβ2)un+1 − μ1δtAxxA−1un+1 + μ2δtAxA−1un+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(β2a0δt + β1)un − β2a0δt
n∑

k=1
bk(un+1−k − un−k) + δt f n+1, n ≥ 1,

(β2a0δt + β1)u0 + δt f 1, n = 0.

Consequently, the above relation can be rewritten as

Dun+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(β2a0δt + β1)un − β2a0δt
n∑

k=1
bk(un+1−k − un−k) + δt f n+1, n ≥ 1,

(β2a0δt + β1)u0 + δt f 1, n = 0,

(26)

in which

D = (β1 + a0δtβ2)un+1 − μ1δtAxxA−1un+1 + μ2δtAxA−1un+1,

where I is the identity matrix. By solving this linear system we can obtain the numerical
solution at each time levels.
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Theoretical Analysis of Time Discrete Scheme

First of all, we introduce the following preliminary of functional analysis that are used for
discretization of time variable.

An Overview Preliminary of Applied Functional Analysis

Let � demonstrate a bounded and open domain in R
2 let dx be the Lebesgue measure on

R
2. For p < ∞, we define by L p(�) the space of the measurable functions u : � −→ R

such that
∫

�
|u(x)|pdx ≤ ∞. More generally, we can denote Banach space by the norm

||u||L p(�) =
⎛

⎝

∫

�

|u(x)|pdx
⎞

⎠

1
p

.

The space L p(�) is a Hilbert space with the inner product

(u, v) =
∫

�

u(x)v(x)dx,

with the endowed norm in L2,

||u||2 = [(u, u)] 1
2 =

⎡

⎣

∫

�

u(x)u(x)dx

⎤

⎦

1
2

.

Also we suppose that � is an open domain in R
d , γ = (γ1, . . . , γd) is a d- tuple of non-

negative integers and |γ | = ∑p
i=1 γi . Accordingly, we put

Dγ v = ∂ |γ |v
∂xγ

1 ∂xγ
2 · · · ∂xγ

d

.

In this regard, one can obtain:

H1(�) = {v ∈ L2(�),
dv

dx
∈ L2(�)},

H1
0 (�) = {v ∈ H1(�), v|∂(�) = 0 },

Hm(�) = {v ∈ L2(�), Dγ v ∈ L2(�) for all positive integer |γ | ≤ m}.
Now, we present the definition of inner product in Hilbert space:

(u, v)m =
∑

|γ |≤m

∫

�

Dγ u(x)Dγ v(x)dx,

which induces the norm

||u||Hm (�) =
⎛

⎝
∑

|γ |≤m

||Dγ u||2L2(�)

⎞

⎠

1
2

.
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The Sobolev space W 1,p(I ) is said to be

W 1,p(I ) = {u ∈ L p(I ); ∃g ∈ LP (I ) :
∫

I

uϕ
′ =

∫

I

gϕ
′
, ∀ϕ ∈ C1(I )}.

Also, in this paper, we define the following inner product and the associated energy norms
in L2 and H1

||v|| = (v, v)1/2, ||v||1 = (v, v)
1/2
1 , |v|1 =

(
∂v

∂x
,
∂v

∂x

)1/2

.

by inner products of L2(�) and H1(�)

(u, v) =
∫

u(x)v(x)dx, (u, v)1 = (u, v) +
(

∂u

∂x
,
∂v

∂x

)

,

respectively.

Stability and Convergence

The purpose of the current section is to evaluate the stability and convergence behaviour of
the proposed numerical solution. The Eq. (7) can be restated according to below expression:

(β1μ + β2)U
k+1 − ν1∇2Uk+1 − ν2∇Uk+1 = (β1μ + β2(1 − b1))U

k

+ β2

k∑

j=1

(b j − b j+1)U
k− j + β2bkU

0 + Fk+1, (27)

where μ = �(2−α)

δt1−α , ν1 = (δtμ)μ1, ν2 = −(δtμ)μ2, F = (δtμ) f . For the reader’s
convenience, we firstly mention the three following Lemmas for discretization of the time
fractional derivative.

Lemma 1 (See [66,67].) Let g(t) ∈ C2[0, tk] and 0 < α < 1 then
∣
∣
∣
∣

1

�(1 − α)

∫ tk

0

g(t)

(x − t)α
dt

− δt−α

�(2 − α)

⎡

⎣(1 − b0)g(tk) +
k−1∑

j=1

(bk− j−1 − bk− j )g(t j ) + bk−1g(t0)

⎤

⎦

∣
∣
∣
∣

≤ 1

�(2 − α)

[
1 − α

12
+ 22−α

2 − α
− (1 + 2−α)

]

max
0≤t≤tk

|g′′
(t)|δt2−α,

where b j = ( j + 1)1−α − j1−α.

Proof For the proof, see the references [66,67]. ��

Lemma 2 The sequence b j ( j = 0, 1, 2, . . .) of real numbers in the difference scheme defined
by (6) satisfies the properties::

• b0 = 1, b j > 0, j = 0, 1, 2, . . . , bn → 0 as n → ∞;
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• we have

b j > b j+1, j = 0, 1, 2, . . . ;
k−1∑

j=0

(b j+1 − b j ) + bk = (1 − b1) +
k−1∑

j=1

(b j+1 − b j ) + bk = 1;

• there exists a positive constant C > 0 such that:

δt < Cb jδt
α, j = 0, 1, 2, . . . ,

k∑

j=0

b jδt
α = (k + 1)αδtα ≤ T α.

Proof It can be verified as obvious from the definition b j = ( j + 1)1−α − j1−α , where
0 < α < 1. Here we will not cover the detail. ��

Lemma 3 If Uk(x) ∈ H1(�) k = 0, 1, . . . , M is the solution of time-discrete scheme (27),
then

‖Uk‖ ≤ ‖U 0‖ + β−1
1 b−1

k−1 max
0≤l≤M

||Fl ||,

Proof To prove the inequality, we use principle of mathematical induction on k as the counter
of induction. When k = 0, we get

(β1 + μβ2)U
1 = ν1∇2U 1 + ν2∇U 1 + (β1 + μβ2)U

0 + F0. (28)

Multiplying above equation by U 1 and integrating on �, one can obtain:

(β1 + μβ2)||U 1||2 − ν1(∇2U 1,U 1) − ν2(∇U 1,U 1) = (β1 + μβ2)(U
0,U 1) + (F1,U 0) .

Employing the Cauchy–Schwarz inequality and Uk(x) ∈ H1(�), it can be deduced that:

(β1 + μβ2)||U 1|| ≤ (β1 + μβ2)|U 0|| + ||F1|| ≤ (β1 + μβ2)||U 0|| + max
0≤l≤M

||Fl ||,

notice that 1
β1μ+β2

≤ 1
β2

(β1 ≥ 0, β2 > 0) yields

||U 1|| ≤ ||U 0|| + β−1
1 b−1

0 max
0≤l≤M

||Fl ||, (29)

which is obviously true. Suppose that the theorem is true for all j

||U j || ≤ ||U 0|| + β−1
1 b−1

j−1 max
0≤l≤M

||Fl ||, j = 1, . . . , k. (30)

Multiplying Eq. (27) by Uk+1 and integrating on �, we get the following equation

(β1 + μβ2)||Uk+1||2 − ν1(∇2Uk+1,Uk+1) − ν2(∇Uk+1,Uk+1)

= (β1μ + β2(1 − b1))(U
k,Uk+1)+

β2

k∑

j=1

(b j − b j+1)U
k− j + β2bk(U

0,Uk+1) + (Fk+1,Uk+1).
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From Uk(x) ∈ H1(�), b j+1 < b j < 1 and taking into account the Cauchy–Schwarz
inequality, it follows that

(β1 + μβ2)||Uk+1|| ≤ (β1μ + β2(1 − b1))||Uk || + β2

k∑

j=1

(b j − b j+1)||Uk− j ||

+ β2bk ||U 0|| + ||Fk+1|| . (31)

It should be noticed that in view of Eq. (30)

||U j || ≤ ||U j || + β−1
1 b−1

j−1 max
0≤l≤M

||Fl || ≤ ||U j || + β−1
1 b−1

j max
0≤l≤M

||Fl ||. (32)

Noting Lemma 2, we get b j < bi < 1; 1 ≤ i ≤ j and easily it results

(1 − b1)||Uk || +
k∑

j=1

(b j − b j+1)||Uk− j || =
k−1∑

j=0

(b j − b j+1)||Uk− j ||

≤
k−1∑

j=0

(b j − b j+1)

[

||U 0|| + β−1
1 b−1

k− j−1 max
0≤l≤M

||Fl ||
]

≤ (1 − bk)||U 0|| + β−1
1 (1 − bk)b

−1
k max

0≤l≤M
||Fl ||

= (1 − bk)||U 0|| + β−1
1 (b−1

k − 1) max
0≤l≤M

||Fl ||. (33)

In view of the expressions (31)–(33), one obtains :

||Uk+1|| ≤ ||U 0|| + β−1
1 b−1

k max
0≤l≤M

||Fl ||,
which concludes the proof of Lemma 3. ��
Theorem 1 The time -discrete numerical approach defined by Eq. (27) is un-conditionally
stable.

Proof We assume that Û k(x), k = 1, . . . , M is the solution of the approach (27) with the
initial condition Û 0 = u(x, 0), then the error εk = Uk(x) − Û k(x) satisfies

(β1 + μβ2)ε
k+1 − ν1∇2εk+1 + ν2∇εk+1 = (β1μ + β2(1 − b1)ε

k

+β1

k∑

j=1

(b j − b j+1)ε
k− j + bkε

0 + Fk+1,

and εk+1|∂� = 0. In view of Lemma 3 and above-mentioned equation, the following inequal-
ity is obtained:

‖εk‖ ≤ ‖ε0‖, k = 1, . . . , M .

This completes the proof of Theorem 1. ��
Theorem 2 Assume that {u(x, tk)}Mk=1 is the exact solution of Eqs. (1)–(3) and {Uk(x)}Mk=1
be the time-discrete solution of Eq. (27) with initial condition U 0(x) = u(x, 0). Then we get
the following error estimation

||u(x, tk) −Uk(x)|| ≤ Cδt,

where C is a positive constant.
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Proof Suppose the error term is defined as ζ k = u(x, tk)−Uk(x) at t = tk; k = 1, 2, . . . , M .
From Eqs. (7) and (6), we simply write the following round-off error equation

(β1 + μβ2)ζ
k+1 − ν1∇2ζ k+1 + ν2∇ζ k+1 = (β1 + μβ2)ζ

k

−β2

k∑

j=1

b j (ζ
k+1− j − ζ k− j ) + Rk+1,

and ζ 0(x) = 0, ζ 0(x)|∂� = 0. Returning again to Lemma 3 leads to

||ζ k ||2 ≤ b−1
k−1 max

0≤l≤M
||Rl || ≤ b−1

k−1β
−1
1 δtα+1.

Since b−1
k−1β

−1
1 δtα is bounded [68], it holds that

||ζ k || = ||u(x, tk) −Uk(x)|| ≤ Cδt,

and the proof of Theorem 2 is finished. In the next section, we will evaluate the convergence
order in the time approximation by some numerical experiments. ��

Examples and Discussions

To demonstrate the effectiveness of our approach, we current the numerical results of the
suggested approach on two test problems in this section. In our computation, we applied
the RBFs based on multiquadric (MQ)

√
c2 + r2 where c is MQ shape parameter. It should

be noted that generally the choice of the optimal shape parameter in RBFs is still an open
problem. Determination of suitable shape parameter is extracted experimentally for the each
types of RBFs. In our experiments the optimal value of c is to be found numerically for the
each time step separately. We obtain the accurateness and stability of the methods defined in
this paper for different values of h, δt and c. To show the accuracy of method, we calculate
the following error norm:

L∞ = max
1≤ j≤N−1

|U (x j , T ) − u(x j , T )|.

The computational orders (denoted by C1-order and C2-order) in time variable and in space
variable respectively can be computed as below

C1 − order = log2

( ||L∞(2δt, h)||
||L∞(δt, h)||

)

,

C2 − order = log2

( ||L∞(16δt, 2h)||
||L∞(δt, h)||

)

.

Matlab programming has been used for calculation in this paper.

Example 1 Let us consider the time fractional mobile-immobile advection-dispersion equa-
tion

∂u(x, t)

∂t
+ ∂αu(x, t)

∂tα
= μ1

∂2u(x, t)

∂x2
− μ2

∂u(x, t)

∂x
+ f (x, t), x ∈ [0, 1], 0 ≤ t ≤ T ,
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Table 1 Time order of convergence for Eample 1 using MQ-RBF with γ = 0.1 and h = 0.1

δt c α = 0.4 α = 0.9

L∞ C1-order L∞ C1-order

1/10 0.50 1.452 × 10−2 − 1.596 × 10−2 −
1/20 0.50 7.426 × 10−3 0.9673 8.126 × 10−3 0.9736

1/40 0.65 3.753 × 10−3 0.9884 4.106 × 10−3 0.9852

1/80 0.90 1.872 × 10−3 1.0035 2.098 × 10−3 0.9895

1/160 0.90 8.759 × 10−4 1.0951 9.726 × 10−4 1.0833

1/320 1.0 4.073 × 10−4 1.1050 4.567 × 10−4 1.0906

TCO 1 1

Table 2 Space order of convergence for Example 1 using MQ-RBF with γ = 1/30 and c = 0.5

h δt α = 0.2 α = 0.6

L∞ C2-order L∞ C2-order

1/4 1/4 9.816 × 10−2 − 2.381 × 10−2 −
1/8 1/64 6.034 × 10−3 4.0239 1.052 × 10−3 4.5000

1/16 1/1024 2.823 × 10−4 4.4178 4.826 × 10−5 4.4462

1/8 1/8 1.028 × 10−2 − 1.854 × 10−2 −
1/16 1/128 4.852 × 10−3 4.4051 9.073 × 10−4 4.3529

where f (x, t) = exp(−(x−0.5)2

γ
)
[

t1−α

�(2−α)
+ 1 − 2(x−0.5)

γ
+ 2

γ
− 4(x−0.5)

γ 2

]
, and analytic solu-

tion is u(x, t) = t exp
(−(x−0.5)2

γ

)
which is a Gaussian distribution solution with t height

centered at x = 0.5 [26].
The initial and boundary conditions can be achieved from the exact solution. This example

is solved by using the method introduced in this paper with various values of h, δt , for a = 0,
b = 1, c at final time T = 1. The L∞-error, C1-order and C2-order of applied method are
shown in Tables 1 and 2, respectively. Computational orders in Table 1 verify the first order of
accuracy in the temporal variable. Table 1 shows that the proposed numerical approach gives
results with good accuracy. Also, in view of Table 2, we conclude that the convergence order
of our proposed numerical approach in space is good agreement with [27]. In view of Table 3,
the error achieved by RBF collocation technique is relatively close to the error achieved by
RBF-PS collocation method but the coefficient matrix RBF-PS collocation approach is more
well-posed than the coefficient matrix of the RBF collocation method. It is worth to mention
that ”Cond(M)” denotes the coefficient matrix of the presented techniques. Figure 1 shows
plots of approximate solution and error for different values of γ usingMQ-RBF scheme with
parameters h = 0.01, δt = 0.01, α = 0.65 and c = 0.5. Figure 2 displays the approximation
solution of Example 1 using MQ with c = 0.5.

The initial and boundary conditions can be achieved from the analytic solution. This
example is solved by help of the method exhibited in this paper with various values of h, δt ,
for a = 0 b = 1, c at final time T = 1 . The L∞-error, C1-order and C2-order of applied
method are shown in Tables 4 and 5, respectively. Computational orders in Table 4 verify
the first order of accuracy in the time variable. Table 4 indicates that the proposed numerical
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Table 3 Errors and condition number evaluated for present methods with γ = 0.1, δt = 1/100 and α = 0.9

h MQ-RBF(c = 1) MQ-RBF-PS (c = 1)

L∞ Cond (M) L∞ Cond (M)

1/5 3.174 × 10−3 7.564 × 102 3.174 × 10−3 1.00532

1/10 6.180 × 10−4 4.330 × 107 6.182 × 10−4 1.03468

1/15 4.361 × 10−4 6.090 × 109 4.362 × 10−4 1.09272

1/20 3.597 × 10−4 9.146 × 1012 3.595 × 10−4 1.18542

1/25 2.401 × 10−4 1.272 × 1016 2.401 × 10−4 1.32217
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Fig. 1 Graphs of approximation solution and errors obtained for different values of γ using MQ-RBF scheme
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Fig. 2 Surface plot of numerical solution of numerical solution of Example 1 with γ = 0.01, α = 0.7,
δt = 0.001 and h = 0.01

Table 4 Time order of convergence for Example 2 using MQ-RBF and h = 1/10

δt c α = 0.4 α = 0.9

L∞ C1-order L∞ C1-order

1/10 0.50 1.253 × 10−2 − 1.053 × 10−2 −
1/20 0.65 6.318 × 10−3 0.9878 5.242 × 10−3 1.0063

1/40 0.55 3.016 × 10−3 1.0668 2.549 × 10−3 1.0402

1/80 0.55 1.423 × 10−3 1.0837 1.237 × 10−3 1.0431

1/160 0.95 7.019 × 10−4 1.0196 6.025 × 10−4 1.0378

1/320 0.90 3.364 × 10−4 1.0611 2.963 × 10−4 1.0239

TCO 1 1

scheme produces results with good accuracy. Also, in view of Table 5, we conclude that the
convergence order of our proposed numerical approach in space is good agreement with [27].
Table 6 shows that the results of this paper are better in comparison with the results of [26].
In view of Table 7, we can observe clearly that the coefficient matrix of RBF-PS collocation
technique is more well conditioned than the coefficient matrices of the RBF collocation
scheme. Figure 3 shows graphs of approximate solution and error using MQ-RBF scheme
with parameters h = 0.01, δt = 0.01, α = 0.5 and c = 0.5, which demonstrates that the
numerical results agree well with the exact solution. Figure 4 displays the approximation
solution and error of Example 2 using MQ with c = 0.5.

Example 2 Now, we consider the time fractional mobile-immobile advection-dispersion
equation

∂u(x, t)

∂t
+ ∂αu(x, t)

∂tα
= μ1

∂2u(x, t)

∂x2
− μ2

∂u(x, t)

∂x
+ f (x, t), x ∈ [0, 1], 0 ≤ t ≤ T ,
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Table 5 Space order of convergence for Example 1 using MQ-RBF and c = 0.65

h δt α = 0.1 α = 0.8

L∞ C2-order L∞ C2-order

1/4 1/4 8.716 × 10−2 − 6.318 × 10−2 −
1/8 1/64 5.194 × 10−3 4.0687 2.826 × 10−3 4.4826

1/16 1/1024 2.065 × 10−4 4.6526 1.143 × 10−4 4.6279

1/8 1/8 2.318 × 10−2 − 3.465 × 10−2 −
1/16 1/128 1.302 × 10−3 4.1541 1.852 × 10−3 4.2257

Table 6 Comparison of numerical solutions and obtained errors with h = δt = 0.01 for Example 2

x Exact solution Method of [26] Our method

Numerical solution L∞ Numerical solution L∞

0.1 0.1620000 0.16184371 1.56290 × 10−4 0.161999 2.4791 × 10−7

0.2 0.5120000 0.51059931 1.40069 × 10−3 0.511999 6.2301 × 10−6

0.3 0.8820000 0.87902481 2.97519 × 10−3 0.881999 1.5352 × 10−6

0.4 1.1520000 1.14770234 4.29766 × 10−3 1.151999 8.8700 × 10−6

0.5 1.2500000 1.24502781 4.97219 × 10−3 1.249999 6.2301 × 10−6

0.6 1.1520000 1.14719659 4.80341 × 10−3 1.151999 2.4792 × 10−6

0.7 0.8820000 0.87818473 3.81527 × 10−3 0.881999 9.6736 × 10−6

0.8 0.5120000 0.50972531 2.27469 × 10−3 0.511999 3.7014 × 10−6

0.9 0.1620000 0.16127920 7.20750 × 10−4 0.161999 1.3887 × 10−7

Table 7 Errors and condition number evaluated for present methods with δt = 0.01

h MQ-RBF(c = 0.5) MQ-RBF-PS (c = 0.5)

L∞ Cond (M) L∞ Cond (M)

1/5 3.254 × 10−3 8.195 × 102 3.253 × 10−3 1.22629

1/10 8.371 × 10−4 3.396 × 106 8.371 × 10−4 1.03451

1/15 6.041 × 10−4 6.137 × 109 6.042 × 10−4 1.09225

1/20 4.519 × 10−4 9.204 × 1012 4.518 × 10−4 1.18444

1/25 3.427 × 10−4 1.284 × 1016 3.427 × 10−4 1.43034

where

f (x, t) = 10x2(1 − x)2
(

1 + t1−α

�(2 − α)

)

+ 10(t + 1)(−2 + 14x − 18x2 + 4x3).

In this case the analytic solution is as follows u(x, t) = 10(1 + t)x2(1 − x)2 [26].
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Fig. 3 Graphs of approximate solution and error obtained of Example 2 with α = 0.5, δt = 0.01 and h = 0.01
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Fig. 4 Surface plot of numerical solution of Example 2 with α = 0.5, δt = 0.001 and h = 0.01

Conclusion

In the research, an attempt was made to extend a meshless approach based on RBF colloca-
tion method for numerical solution of time fractional mobile-immobile advection-dispersion
models, which is a category of fractional partial differential equation (FPDE). Also, we
assessed the stability and also convergence of the proposedmeshless approach hypothetically
and mathematically. Two numerical instances with different problem domains are utilized
to investigate the developed meshless model effectiveness and accuracy. As can be inferred
from mentioned investigations, the convergence order of this current approach concerning
to time is O(δt ). We would like to mention that well-known RBF-PS technique is nothing
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else that a generalized finite difference scheme and also the obtained numerical results using
RBFs collocation approach and RBF-PS method are equal but the condition number of the
coefficient matrix of RBF-PS technique is less than the condition number of the coefficient
matrix of RBF collocation method. All in all, the current meshless formulation is very oper-
ative to model and simulate of fractional differential equations, and it has well prospective to
advance a robust simulation tool for models in science and engineering which are appeared
by the numerous kinds of fractional differential equations. In the future studies, we will focus
on problems with much more complexity.
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