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Abstract
Reaction-telegraph equation (RTE)—a nonlinear partial differential equation of mixed
parabolic-hyperbolic type—is believed to be a better mathematical framework to describe
population dynamics than themore traditional reaction–diffusion equations. Beingmotivated
by ecological problems such as habitat fragmentation and alien species introduction (biolog-
ical invasions), here we consider the RTE on a bounded domain with the goal to reveal the
dependence of the critical domain size (that separates extinction from persistence) on biolog-
ically meaningful parameters of the equation. Since an analytical study does not seem to be
possible, we investigate into this critical domain problem by means of computer simulations
using an advanced numerical algorithm. We show that the population dynamics described
by the RTE is significantly different from those of the corresponding reaction–diffusion
equation. The properties of the critical domain are revealed accordingly.

Keywords Telegraph equation · Quasi-non-linear scheme · New numerical modelling ·
Critical lengths

Mathematics Subject Classification 35M10 · 65H10 · 65M06 · 92B05

Introduction

Understanding of critical phenomena – a qualitative change in the systems properties when a
certain parameter passes a critical value – is a major focus in natural sciences and engineering
[1]. In mathematics, the criticality is usually linked to the existence of a bifurcation [2]. One
example is given by the so called “problem of critical domain” that has been considered in
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many applications ranging from nuclear physics [3,4] to ecology [5,6]. Systems where the
dynamics arises from the interplay between the local growth of a substance (e.g. population
density) and its transport over space (e.g. diffusion) often exhibit criticality with regard to the
size of their spatial domain. The systems dynamics would then lead to extinction in spatial
domains of a small size but to a population growth or even an outbreak (“explosion”) in
sufficiently large domains.

The problem of critical domain has been attracting a considerable attention in ecology
and population dynamics where it is linked to habitat fragmentation. Habitat fragmentation
usually results from poorly planned anthropogenic activities (and also exacerbated by the
global climate change) and is thought to be the main factors causing significant biodiversity
loss worldwide [7]. As a result of fragmentation, populations natural areas may shrink by an
order of magnitude or even more and the population extinction in a small habitat is much
more likely [8]. The question thus arises as to what is the minimum size of the habitat that
keeps the population viable.

Biological invasions are admittedly the second major cause of biodiversity loss [9]. Inva-
sion starts with an introduction when an alien species is brought deliberately or occasionally
into a new ecosystem. The new population is usually introduced in small numbers (ulti-
mately, just a few animals or seeds) and hence initially occupies only a small area. Whether
it is going to extinct or to establish and eventually proliferate into space is thought to depend
on the size of the introduced population and/or on the area of the initially occupied area:
small alien populations are likely to disappear but larger colonies are more likely to succeed
[10,11]. Apparently, this is also a problem of the critical domain size, albeit considered from
a somewhat different angle.

Although both habitat fragmentation and biological invasions are essentially biological
problems, there is a general consensus that their comprehensive understanding can hardly
be achieved by means of empirical research approaches traditionally used in ecology (such
as data collection and their statistical analysis and/or small-scale field experiments). Mathe-
matical modelling is a powerful research tool that has been efficiently used to elucidate many
ecological problems [12–14]. The choice of an adequate model or a relevant mathematical
framework is a subtle issue though. The problem of critical domain was previously stud-
ied in terms of reaction–diffusion equations, e.g. see [15,16] and further references there.
Although reaction–diffusion equations have been used widely in theoretical ecology [17],
they have their limits and constraints, and the biological assumptions behind them are not
always relevant or sometimes appear to be oversimplified. Amodelling framework alternative
to reaction–diffusion is based on telegraph equation (the reaction-telegraph equation if births
and deaths are taken into account) [18] and it is thought to be more relevant as it accounts
the directional preference in individual animal movement [19,20]. A comprehensive study of
the problem of critical domain for the reaction-telegraph equation is still lacking. This paper
aims to bridge this gap.

It should be mentioned that, in spite of several decades of intense research, nonlinear
dynamics remains to be a major focus in applied mathematics. In particular, considerable
progress has been made over the last few years in development powerful analytical tools
[21–32] as well as precise and efficient numerical methods [33,34]. However, the com-
prehensive understanding of the critical domain problem is still lacking, especially for the
mathematical frameworks beyond the standard reaction–diffusion systems. In this paper, we
consider an initial-boundary problem for the nonlinear partial differential equation of amixed
parabolic-hyperbolic type [35]. This is a highly nontrivial problem and its analytical solution
is not available. We therefore have to solve it numerically by combining finite differences
(to approximate partial derivatives) with an iteration method (to account for the nonlinear
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growth). Here we emphasize that its numerical solution is a nontrivial problem as well, in
particular because one has to do with unstable stationary solutions. The existence of such
solutions makes it difficult to distinguish between the real large-time asymptotics and the
long term transient quasi-stationary state and hence requires a careful numerical evaluation
of the solution convergence.

Materials andMethods

In this section a complete description of the governing equations and conditions is made.
After, the mathematical model is introduced. Besides, details about a new numerical formu-
lation to model is done as well.

Description of theModel

The reaction telegraph equation is deduced from continuity equation and Cattaneo’s consti-
tutive equation [36], then it is obtained that

τ
∂2S

∂t2
+
[
1 − τ

dF (S)

dS

]
∂S

∂t
= D

∂2S

∂x2
+ F (S) , (1)

where t is the time, x a dimensional space and S (t, x) the population density. The term D is
called diffusion coefficient, τ the relaxation time, and finally F(S) is a reactive term (source
term). Particularly, if τ = 0 it is found the reaction–diffusion equation that was exhaustively
studied by several authors, e.g., [37]. Also, when τ → 0 the solution of the Eq. (1) converges
for solution of the reaction–diffusion equation [18]. The parameter τ produces a retard at
solution.

There are any source terms F(S) to study of biological problems. The present paper are
considered:

Exponential Model: F(S) = K1S,

Logistic Model: F(S) = K1S
(
1 − S

K2

)
,

Allee Effect Model: F(S) = K1S
(

S
K3

− 1
)(
1 − S

K2

)
,

(2)

with K1, K2, K3 constants. The parameter K1 defines the per capita growth rate, K2 is the
carrying capacity and K3 the critical point.

Furthermore, a rectangular signal and a null rate are provide how initial condition, which
are given by

SI =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < A

B, A ≤ x ≤ C ; ∂S
∂t

∣∣
t=0 = 0,

0, x > C

(3)

and A, B > 0,C real numbers.
For border, the Dirichlet Boundary Condition (DBC) is assumed with population density

null. Nevertheless, how the partial differential equation (1) is a wave equation, the reflection
phenomena [38]—with phase changing—happens on border. Then a difficulty may arise,
for example negative values for S (t, x) may appear if wave’s amplitude is enough to do it.
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Fig. 1 Computational grid

Considering the cut off condition given by

S (t, x) < 0 → S (t, x) = 0,

the difficulty can be fixed to some cases.
Thus, the analysis model at the present work is:

⎧⎪⎨
⎪⎩

τ ∂2S
∂t2

+
[
1 − τ

dF(S)
dS

]
∂S
∂t = D ∂2S

∂x2
+ F (S) (0, tend ] × (0, L)

S (0, x) = SI ; ∂S(0,x)
∂t = 0 (0, L)

S (t, 0) = S (t, L) = 0 [0, tend ]

(4)

together with cut off condition{
∀ (t, x) ∈ (0, tend ] × (0, L) ; S (t, x) < 0 → S (t, x) = 0 (5)

where tend is the final time and L the length of the one-dimensional domain. Specifically, the
equilibrium happens when the temporal variations of the S (t, x) aren’t significant, what lead
the reactive term be exactly opposite to diffusive term. From this consideration the model (4)
can be rewritten as {

D ∂2S
∂x2

= −F (S) (0, L)

S (0) = S (L) = 0
(6)

with population density changing just in the space, which means S ≡ S (x). Also, to starter
the model (6) one begin condition must be considered, e.g., the rectangular signal SI from (3)
can be used to this purpose.

Numerical Modelling

So far, the model (4) does not have analytical solution, writing by a finite quantity of ele-
mentary mathematical terms, for biological context mentioned here in this paper. Thus, a
new numerical modelling that resolve this model is introduced in this section then. A code
in gfortran to show the numerical modelling efficiency was written too.

The one-dimensional domain of length L is discretized by a set of points. Then an internal
mesh to the domain is done, similar the Fig. 1.

In Fig. 1 are present—discrete points (xi , i = 1, . . . , ni ∈ N ), population density (Si , i =
0, . . . , ni ∈ N ), and cardinal location (W ≡ i − 1, P ≡ i, E ≡ i + 1). Note that Si values
are not localized together with the nodes, these are between discrete nodes except S0, Sni .
The boundary conditions are applied in the red points, to green points the partial differential
equation (PDE) of the model (4) and initial conditions are calculated.

From model (4), the PDE can be written as:

τ
∂2S

∂t2

∣∣∣∣
k+1

P
+
[
1 − τ

dF (S)

dS

]∣∣∣∣
k+1

P

∂S

∂t

∣∣∣∣
k+1

P
= D

∂2S

∂x2

∣∣∣∣
k+1

P
+ F (S)|k+1

P , (7)
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here P is the cardinal location, see Fig. 1, and k + 1 an advance in time’s line, such that
(k + 1) − (k) = Δt is a time lapse. Thus, applying the Finite Difference Method in PDE (7)
is found

τ

Δt2

(
Sk+1
P − 2SkP + Sk−1

P

)
+
[
1 − τ

dF

dS

]∣∣∣∣
k+1

P

1

Δt

(
Sk+1
P − SkP

)

= D

Δx2

(
Sk+1
W − 2Sk+1

P + Sk+1
E

)
+ Fk+1

P , (8)

which results

− CW Sk+1
W + (

CP + τ C̃P
)
Sk+1
P − CE S

k+1
E = b̃P + τ b̄P , (9)

such that

CP = 1
Δt + 2D

Δx2
, C̃P = 1

Δt2
− 1

Δt
dF
dS

∣∣k+1
P ,

CW = D/Δx2, CE = D/Δx2,

b̃P = Fk+1
P + 1

Δt S
k
P , b̄P =

[
2

Δt2
− 1

Δt
dF
dS

∣∣k+1
P

]
SkP − 1

Δt2
Sk−1
P .

Making i = 1, . . . , ni − 1 and considering the following discrete conditions

S (0, x)0i = S0i ⇒ S0i = SI ,

∂S(0,x)0i
∂t = S(0,x)0i −S(0,x)−1

i
Δt = 0 ⇒ S−1

i = SI ,

S (t, 0)k+1
0 = S (t, L)k+1

ni = 0 ⇒ Sk+1
0 = Sk+1

ni = 0,

the Eq. (9) can be written in the matrix form below

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1+τ C̃1 −C2

−C1 C2+τ C̃2 −C3

−C2 C3+τ C̃3

· · · · · · · · · · · ·
· · · · · · · · · · · ·

−Cni−3Cni−2+τ C̃ni−2 −Cni−1

−Cni−2 Cni−1+τ C̃ni−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

S︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sk+1
1

Sk+1
2

Sk+1
3

· · ·
· · ·
Sk+1
ni−2

Sk+1
ni−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃1+τ b̄1

b̃2+τ b̄2

b̃3+τ b̄3

· · ·
· · ·

b̃ni−2+τ b̄ni−2

b̃ni−1+τ b̄ni−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
b

(10)

where the matrix C and vector b aren’t always constant, also the vector S is calculated by
iterative process. Specifically, to time step k + 1 the terms C̃i , b̃i and b̄i are computed by
code as

C̃i ≡ C̃
k+1(I T )

i = 1
Δt2

− 1
Δt

dF
dS

∣∣k+1(I T−1)

i ,

b̃i ≡ b̃
k+1(I T )

i = F
k+1(I T−1)
i + 1

Δt S
k
i ,

b̄i ≡ b̄
k+1(I T )

i =
[

2
Δt2

− 1
Δt

dF
dS

∣∣k+1(I T−1)

i

]
Ski − 1

Δt2
Sk−1
i ,

(11)
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with I T = 1, . . . , i tmax ∈ N , where S
k+1(0)
i = Ski and i tmax = 106.Beyond Sk+1

i ≡ S
k+1(I T )

i
as well.

Remember that the cut off condition could be requested too. So, the computation may be
done by means of Sk+1

i < 0 → Sk+1
i = 0.

In this way, the interesting is that a set of non-linear algebraic equations (10) is locally a
linear system, i.e., the set of non-linear equations, to each I T assumed, is a linear system of
equations. This is being called a quasi-non-linear scheme.

Also, the matrix C of the linear system is diagonally dominant. The code monitors it
numerically. The system (10) is solved by Gauss-Seidel Iterative Method until to reach
convergence with a stopped criteria ε = 10−7. Consequently, the vector Sk+1 stays available
to verify if the steady state was achieved, the following condition is used to do it

||Sk+1 − Sk ||2
||Sk+1||2 < 10−7. (12)

If previous condition is true the stationary situation was reached, else the code advances to
time step k + 2 and all process begins again.

Of course the set of Eq. (10) could be solved by other form, e.g., from Linearization Tech-
nique which is based on first-order Taylor’s expansions and that presented a good accuracy
already [39]. But, the set of equations would be rewritten, it would have more terms and the
new computations costs would increase then.

Additionally, other numerical modelling concept concerns a new numerical procedure to
calculate the contributions of the PDE’s terms. It is important to know the specific contribution
of the terms—temporal, diffusive and reactive—to each time step, their respectively equations
are:

T ermd (t) =
(

1

ni − 1

) ni∑
i=1

D
∂2S

∂x2

∣∣∣∣
k+1

i
, T ermr (t)=

(
1

ni − 1

) ni∑
i=1

F (S)|k+1
i ,

T ermt (t) =
(

1

ni − 1

) ni∑
i=1

{
τ

∂2S

∂t2

∣∣∣∣
k+1

i
+
[
1 − τ

dF

dS

]∣∣∣∣
k+1

i

∂S

∂t

∣∣∣∣
k+1

i

}
, (13)

to t > 0.
To report questions about equilibrium, the optimized model (6) is used. The model is

resolved by finite difference method and the equilibrium (namely numeric equilibrium) is
found then. Before, inserting the term K1S into PDE, it can be written as

D
∂2S

∂x2
− K1S = −F (S) − K1S, (14)

and approaching derivative’s term by central finite difference at the cardinal point P and
considering other terms in the same cardinal point, the equation stays

EW SW − EP SP + EE SE = MFP , (15)

where

EP = 2D
Δx2

+ K1, EW = EE = D
Δx2

, MFP = −FP − K1SP
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whose matrix form of the last equation is type

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E1 E2

E1 −E2 E3

· · · · · · · · · · · ·
· · · · · · · · · · · ·

Eni−3 −Eni−2 Eni−1

Eni−2 −Eni−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1

S2

· · ·
· · ·
Sni−2

Sni−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MF1

MF2

· · ·
· · ·

MFni−2

MFni−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

The set of algebraic equations (16) is linear for ExponentialModel, and non-linear to other
models. But, from iterative proceeding it’s true that the set is a linear system of equations
if the term MF is caught at previous iteration in any model. In this way, it’s assumed which
Si ≡ SITi , MFi ≡ MFIT−1

i to i = 1, . . . , ni−1with I T = 1, . . . , i tmax and i tmax = 5×105.
It’s interesting adding the K1S term in this process because the coefficients’ matrix

becomes diagonally dominant, thus the Gauss-Seidel scheme’s convergence is guaranteed.
The numeric equilibrium is looked for from Gauss-Seidel scheme with accuracy 10−8.

Particularly, t → ∞ implies that reactive and diffusive terms written in (13) are the same
to model (14) as well. Just writing T ermr and T ermd , it was implemented the following
condition about numeric equilibrium

Qr |d =
∣∣|T ermr | − |T ermd |

∣∣∣∣|T ermr | + |T ermd |
∣∣ . (17)

The quotient (17) is a proportion’s measuring between diffusive and reactive terms. It
done a simulation, if the accuracy condition Qr |d < 10−8 isn’t verified it means the last
population density calculated is far of numeric equilibrium. This carries on a new length of
the domain to be calculated, that is

Lnew =
{
L
(
1 − Qr |d

)
, |T ermr | > |T ermd |

L
(
1 + Qr |d

)
, |T ermr | < |T ermd | . (18)

Thereby, the simulation is started with this new length (18) and the code is run up to condi-
tion (17) to be evaluated again. All this proceeding is going to until convergence.

Whenever τ = 0 the model (4), with F(S) = K1S, becomes a simple reactive-diffusive
model of exponential growth, that has analytical solution [40] given by:

S (t, x) =
∞∑
n=1

Bnsin
(nπx

L

)
e

(
K1− n2π2D

L2

)
t
, (19)

where Bn = 2B
nπ

[
cos

( nπ A
L

)− cos
( nπC

L

)]
in the present work. With population’s density

gotten, from (10) and (19), populations are found to each time step by expression:

Pop (t) =
∫ L

0
S (t, x) dx, (20)

whose integral form is numerically calculated via Composite Trapezoidal Rule to ni odd, or
Composite Simpson’s Rule otherwise. This two rules were considered to increase accuracy
of results.
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Table 1 Parameters for study
when L = Lc

Parameter Value Parameter Value

tend 15.0 Δt Variable

ni Variable L 9.934588266

τ 0.0 D 1.0

K1 0.1 SI (A; B;C) 3.967; 9.9345; 5.967

Besides, for to evaluate performance of the code is used Euclidean Norm. From Euclidean
norm the error’s equation is

||E ||2 = ||AS − NS ||2
||AS ||2 , (21)

where AS, NS are population’s density analytic and numeric, respectively.
To estimate the order of convergence, verifying the numerical scheme’s quickness, is used

the following equation adapted from equation of [41]:

p ≈ 1

log
[ n+1

n

] log
( ||EΔx/n ||2

||EΔx/n+1||2
)

, (22)

with n being an integer multiplicity factor.
In summary, the model (4)–(5) presents in this work is resolved by means of a new

numerical modelling composed by (10), (13), (16), (17) and (18). So, its performance and
results are discussed now in the next section.

Results and Discussion

Assuming τ = 0 the model (4) becomes a reaction–diffusion model. When the source term
is like exponential, then it has analytical solution (19). In the work [16] was demonstrated

that there is a critical length (Lc), whose expression is Lc = π

√
D
K1

. The authors explained

that L > Lc the reactive term (K1S) is dominant and population increases. If L < Lc

the diffusive term
(
D ∂2S

∂x2

)
is dominant and population decreases up to extinction. Though,

whenever L = Lc the diffusion and reaction forces stay identical and population persist. In
the last situation has the equilibrium between forces.

Considering the Table 1, some simulations was performed to verify what are Δt and Δx
values necessary to obtain the equilibrium between forces, but accurately and in agreement
with analytical solution.

Firstly, assuming Δt = 0.01 and changing the number grids points (ni = 300; 400; 500;
600; 700; 800; 900; 1000; 2000; 4000) the accuracy of numerical scheme is investigated.
After this, with ni = 900 mesh points and Δt changing from 0.005 to 0.0001 the accuracy is
seen as well. For each simulation is calculated the error by means equation (21). Therefore,
the parallel axis plot, Fig. 2, shows the error values.

The Fig. 2 displays that:

– if ni increases from 300 to 900, with Δt = 0.01, the norm decreases until 2.7e−03; but
if ni is more than 900 the error is very more than 2.7e−03 and this is not desirable;

– however, if ni = 900 and Δt change from 0.01 to 0.0001 the norm decreases to next
1.1e−03; although this last value is not useful, because the computational costs are a lot
of expensive;
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Fig. 2 Graphic of the errors

Table 2 Estimating of
convergence order to some grids
with Δt = 0.0005

ni ||EΔx/n ||2 p

150 0.010243

300 0.016643 − 0.70

450 0.008914 + 1.53

600 0.005001 + 2.00

750 0.002755 + 2.67

900 0.001987 + 1.79

1050 0.002766 − 2.14

thus,when ni = 900 (Δx ≈ 0.011050) andΔt = 0.0005 the norm is approximately 1.9e−03
with computational costs not being expensive. This result shows which the relationship
between Δx and Δt must to be type Δt

Δx ≈ 0.045245.
Now, the Table 2 shows the estimate order of convergence to numerical modelling

employed. When ni = 150 we get Δx = Lc/(150 − 1) = 0.066675089 with n = 1 to
Eq. (22), also if ni = 300 it implies Δx = Lc/299 = 0.033226048 to n = 2. These provide
p = −0.70, consult equation (22) again.

In summary, the red colour values are saying: if the mesh has 900 points (Δx = 0.011050)
it leads the norm ||EΔx/6||2 = 0.001987 which produces the quickness p = 1.79 of the
numerical code.

How the relation Δt
Δx ≈ 0.045245 provides a satisfactory quickness of the code and a

relative error very small as well, so it will be used as base for next simulations in following
subsections.

Exponential Model

– Case τ = 0:

For following results are considered exactly Table’s data 1, but Δt = 0.0005 and ni =
900. The Fig. 3 shows profiles analytical and numerical solutions together for any times.
The simulation is made until to reaching steady state. Note which both solutions are quite
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Fig. 3 Numerical (NS) and analytical (AS) population densities fromTable 1 withΔt = 0.0005 and ni = 900

Fig. 4 Colour map from Fig. 3 of the populations density AS (left) and NS (right)

agreement, it is supported by calculates of Eqs. (21) and (22). The agreement can be observed
from of colour map Fig. 4, yet.

This case, the numeric equilibrium condition (17) is satisfied to time near of 7.15. The

code doesn’t calculate a new length, because was used the exactly value Lc = π

√
1
0.1 ≈

9.934588266. It shows that the numerical modelling is adequated and the code is calibrated
as well.

FromComposite Simpson’s Rule the integral (20) was calculated then. The Fig. 5 displays
the integration on the space to each time. Particularly, in last time both populations were
obtained with good precision:

PopAS (7.15) ≈ 24.854771 and PopNS (7.15) ≈ 24.873675,

still, populations seem to be completely agreement along the time as well.
On Fig. 6 can be seen the development of each PDE term—equations in (13)—note that

|T ermr (7.15) | ∼= |T ermd (7.15) | ≈ 0.25. It means, that the dynamic begins with reactive
term dominating, after a transition period the temporal term moves towards 0, and diffusive
term equilibrates with reactive term. All this process happens from converged numerical
solutions to each lapse time.

If L > Lc the PDE’s reactive term is dominant over time. It happens because K1− n2π2D
L2 >

0 then limt→∞ e

(
K1− n2π2D

L2

)
t = ∞, see solution (19), it implies that population increases.
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Fig. 5 Development of populations PopAs and PopNS at the time

Fig. 6 Contribution of each term of the Eq. (7) when L = Lc

Table 3 Parameters to L > Lc

Parameter Value Parameter Value

tend 15.0 Δt 0.0005

ni Variable L Variable

τ 0.0 D 1.0

K1 0.1 SI (A; B;C) Variable; 9.9345; variable

From parameters’ Table 3 with L = 1.5 × Lc the simulation was carried on then. For
to keep the same relation between Δx and Δt previously considered, we made ni = 1350
because the characteristic length was modified in this new situation. Besides, was changed
the values A = 6.450,C = 8.450 to keep the same initial population of the equilibrium case.

TheFig. 7 shows the pattern of population’s growing, note that PopNS is agreewith PopAs .
At time t = 7.15 (the same used in the previous analysis) was observed that PopNS (7.15) ≈
36.325215, PopAS (7.15) ≈ 36.452911 (see blue arrow position) and one relative error of
0.35%between solutions.Analogously, at the time last t = 15.0was found an error 2.76% too.

The detachment between solutions occurs specifically because of the numerical approach
employed in the temporal term. Remember that ∂S

∂t , Eq. (7), was written by a first order finite
difference and it decreases the numerical model’s accuracy [Eq. (9)] to very long time. But
this was not enough to disqualify the numerical solution.
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Fig. 7 Population’s increasing—PopAs and PopNS on the time

Fig. 8 Population’s decrease—PopAs and PopNS on the time

Now, just changing ni = 450, L = 0.5 × Lc, A = 1.483 and C = 3.483, it was gotten
the figure below.

In opposite to Fig. 7, Fig. 8 shows the population’s declining, here both solutions are
agreement as well. In time t = 7.15 (see blue arrow) the PopNS is 3.95% far of PopAs ,
and at the time last t = 15.0 it is 8.03% far then. The difference between solutions occurs
by same previous reason. But it isn’t bad again, because ∂S

∂t is going to 0. Furthermore, in
this case, the steady state happens a bit more than t = 14, but with population towards to
extinction.

– Case τ �= 0:

Now, it’s important to knowwhat is population’s profile submitted the influences of hyper-
bolic telegraph equation.

Considering e.g., tend = 15.0, ni = 900 to range τ = 0.01; 0.05; 0.10; 0.50; 1.00, on the
cases:

K1 L A; B;C
0.1 9.9345882658 3.9672; 9.9345; 5.9672
0.4 4.9672941329 1.9836; 4.9672; 2.9836
0.7 3.7549214184 1.4994; 3.7549; 2.2554
1.0 3.1415926536 1.2545; 3.1415; 1.8870
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Fig. 9 Population’s profiles from telegraphic equation to several per capita growth rate K1

Table 4 Times whose
S (t, x) < 0

τ\K1 0.1 0.4 0.7 1.00

0.50 2.8737 1.4327 1.0870 0.2366

1.00 4.0621 2.0263 1.5302 0.3288

in Table 3, were found the populations’ profiles plotted at Fig. 9.
Particularly, the analytical solution showed here is from Eq. (19) with the calculus L =

π

√
D
K1

. Besides, the values A; B;C are proportional among themselves for the different

values K1 and L .
Note that there are a delay among population’s values because of changing on τ . When

the values K1 and τ increases, the gradient of populations curves are more evidenced as well.
However, after a time, the gradient decreases and the colours solutions converge to black
analytical solution. So, the equilibrium stays established, see the Fig. 9 again.

On the other hand, there are some problems about use the model (4). At the Table’s
data 4 are shown time values where population’s density stayed negative. Note that negative
population’s density problem happens more earlier if the value τ is kept constant and K1

increase. This problem happened because of reflection phenomena on the border. Thus, it
isn’t true that can be used any value to τ or K1 at governing equation.

The Table 5 presents relative errors values. The left table values were calculated from
model (4) and right by same model, but considering cut off condition (5).

Looking the left table above, the errors values are O
(
10−3

)
. Analogously, to right table,

the errors are same order except if K1 = 1.00 and τ = 0.50; 1.00 that are bad.
The Fig. 10 shows the populations’ profiles from telegraphic equation with cut off con-

dition. Note that the profiles aren’t bad. But to K1 = 1.0 and τ = 0.5; 1.0 the bad values
profiles (green,blue) converged to other equilibrium points far of analytical solution (black),
what aren’t correct.

It happened which the energy associated with PDE was cut off too. This led the other
equilibrium point, of the other PDE, which it does not is the original problem. So, it’s very
important to have careful with cut off condition as well.

In additional, e.g., just to K1 = 0.7; 1.0 with τ = 0.5 can be seen in the Fig. 11 the
populations densities profiles to some times. The top plots are displayed profiles without and
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Table 5 Error’s table calculated by formula (21)

τ\K1 0.1 0.4 0.7 1.00 τ\K1 0.1 0.4 0.7 1.00

0.01 0.0030 0.0017 0.0015 0.0015 0.01 0.0030 0.0017 0.0015 0.0015

0.05 0.0029 0.0017 0.0013 0.0025 0.05 0.0029 0.0017 0.0013 0.0025

0.10 0.0028 0.0015 0.0026 0.0019 0.10 0.0028 0.0015 0.0026 0.0019

0.50 – – – – 0.50 0.0019 0.0015 0.0031 0.1434

1.00 – – – – 1.00 0.0019 0.0034 0.0029 0.3617

This values were calculated between steady state (NS ) and analytical solution (AS )

Fig. 10 Population’s profile to several per capita growth rate K1 with cut off

with cut off, respectively. The profiles present a plenty similarity, the cut off condition wasn’t
enough to promote a great change over profiles, this occurs because K1 = 0.7 isn’t large to
do that yet.

In contrast, the under graphics of the Fig. 11 show other dynamic. If K1 = 1.0 the phase
changing phenomena is more important, which carry on the negatives populations densities
very more evident. So, from cut off condition the energy associated with PDE is severely
modified, consequently the steady state of population is very different then, look Fig. 10
again.

Now on conditions L > Lc or L < Lc the analytical solution, Eq. (19), shows that
the patterning is growing or extinction respectively, see on page 13 for details. So, several
simulations were made considering, e.g., tend = 15.0,Δt = 0.00005, D = 1.0, K1 = 0.1
for ni, L, A, B and C below, to range τ = 0.0; 0.0001; 0.001; 0.01; 0.1; 1.00 in growing

ni L A; B;C
1350 14.90188239 6.450; 9.9345; 8.450

450 4.967294133 1.483; 9.9345; 3.483

case and τ = 0.01; 0.05; 0.10; 0.50; 1.00 about extinction. The profiles are displayed at left
(top–bottom) of the Fig. 12 respectively.
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Fig. 11 Populations density’s profile to several times (t = 0.4; 0.8; 1.2; 1.6)

Fig. 12 Populations profiles, from telegraphic equation. The upper is about growing, and the right plot with
cut off condition. The under is about extinction, and the right plot with cut off as well

Table 6 Times whose
S (t, x) < 0 in cases like growing
and extinction, respectively

τ\K1 0.1 τ\K1 0.1

1.00 6.5626 0.10 0.4934

0.50 1.0986

1.00 1.5537

Over again there are problems about model (4). At Table 6 are shown the time values
where population’s density stayed negative too, so not correct. In repetition, using cut off
condition (5) were gotten the graphics at right (top–bottom) of the Fig. 12. This results
aren’t bad. The negative population’s density problem happened more late when τ increased
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Table 7 Parameters to discover when steady state is achieved

Parameter Value Parameter Value

tend Variable Δt 0.0005

ni Variable L Variable

τ 0.0 D 1.0

K1; K2 0.1; variable SI (A; B;C) Variable; 9.9345; variable

Fig. 13 Populations’ profiles to several values K2 on Logistic model

to extinction’s case. In special, was used small relaxation time values at the growing case,
because it is very sensible from changing on.

Logistic Model

– Case τ = 0:

Parameters’ Table 7 was used to performance simulation for F(S) = K1S
(
1 − S

K2

)
, to

verify if there is numeric equilibrium.
When tend = 15, ni = 900, L = Lc, A = 3.967,C = 5.967 to each K2 = 0.1, 1.0, 10.0,

100.0, 1000.0 are admitted at the Table 7 the pattern of populations’ profile was changed
from extinction to steady state, see Fig. 13. A simple change of the carrying capacity (K2)
provides different patterns between extinction and stabilisation.

Particularly, if K2 = 1000.0 the numerical result agrees with PopAS (the same displayed
at Fig. 5). This is enough to shows that numerical scheme was correctly implemented as well.

The central question is—what is the domain length necessary to found steady state? So,
e.g., from green population (Fig. 13 with K2 = 10.0), keeping Δt

Δx ≈ 0.045245, setting
tend = 30, and changing ni, L, A and C , the steady state is found and it can be seen in the
Fig. 14 by colour red. This figure shows clear evidence of existence of critical length, called
Logistic critical length (Ll

c).
Specifically, the new numerical modelling calculated the Logistic critical length Ll

c =
11.592287147 (labelled by red triangle) iteratively, whose population is plotted by red dots.
Thus, the code calculated the population densitywith Ll

c, ni = 1050, A = 4.796,C = 6.796.
The results are displayed at the Figs. 15 and 16.
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Fig. 14 Populations’ profiles to several lengths values when Logistic model is used to K2 = 10.0 (left). The
critical length to Logistic model Llc (right)

Fig. 15 Numerical solution of population’s density and its colour map to Logistic model

Fig. 16 Contribution of each term of the Eq. (7) when Llc = 11.592287147

– Logistic equilibrium:

More, after a lot of simulations with the equilibrium model (6) it was observed one
connection between parameters Ll

c and K2 in numeric equilibrium situation, the Fig. 17 shows
it. It can be seen that there is an inverse relation between parameters. This is displayed by line
black. In additional, e.g., if Ll

c decreases and K2 increases, it leads to growing population
value, look the dots’ colour maps. This is consistent with biological phenomenons observed.
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Fig. 17 Critical length against carrying capacity value, with population’s colour map highlighted to Logistic
model

Fig. 18 Population’s profile from telegraphic equation with Logistic model

– Case τ �= 0:

From data that led to Figs. 15 and 16, it was obtained the plot 18 to τ value between 0.00
and 1.00. In special case τ = 1.0, it was found S (t, x) < 0. So, bymeans cut off condition (5)
one new simulation (labelled τ = 1.00c) was made and putted into the graphic, then.

The Fig. 18 displays that telegraph equation with different relaxation time values provide
solutions delayed. But, the populations values are very near each other one another in the
steady state.

The data Table 8 presents the stationary values showed in the Fig. 18, and their percentage
deviations with respect of 23.87245253. Look that deviations are not large. Besides, there
are a good agreement between populations, with and without cut off if τ = 1.00, as well.
The precisions happened with five digits.

This shows that new numerical modelling is able to resolve biological problems with
Logistic model implemented too. Though, very careful over parameters’ values is necessary
as well.
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Table 8 Population’s value in
steady state with percentage
deviation to Logistic model

τ Pop in steady state Deviation (%)

0.00 23.87245253 –

0.01 23.88023520 0.032590

0.05 23.91107780 0.161537

0.10 23.94952412 0.321808

0.50 24.26904442 1.634147

1.00 24.27553462 1.660446

1.00c 24.27553560 1.660450

Table 9 Parameters to discover when steady state is achieved to Allee effect model

Parameter Value Parameter Value

tend Variable Δt 0.0005

ni Variable L Variable

τ 0.0 D 1.0

K1; K2; K3 0.1; variable; variable SI (A; B;C) Variable; 9.9345; variable

Fig. 19 Populations’ profiles to several values K3 on Allee effect model

Allee Effect Model

– Case τ = 0:

Analogously, the aim now consists to investigate the population’s profile pattern when

Allee Effect Model, F(S) = K1S
(

S
K3

− 1
)(
1 − S

K2

)
, is used. In this case the PDE does not

have analytical solution as well, though it can be solved numerically.
The values of the Table 9 were used to make simulations. Firstly, the set tend = 50.0, ni =

900, L = Lc, K2 = 10.0 and A = 3.967,C = 5.967 together with a range of critical points
K3 were used such that the Allee Effect be clearly visualized. So, the several population’s
profiles were simulated and now showed at the Fig. 19. For this analysis was kept the con-
dition: 0 < S < K3 (where population have negative growth rate); and positive growth rate
to K3 < S < K2 assuming 0 < K3 < K2, that are common to biological problems. A
large number values K3 were used to show one split of populations groups. One populations’
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Fig. 20 Populations’ profiles to several lengths values when Allee Effect Model is used to K3 = 1.4 (left).
The critical length to Allee Effect Model Lac (right)

Fig. 21 Numerical solution of population’s density and its colour map to Allee Effect Model

group which reach the steady state (with different times), and other that to go to extinction,
see previous figure again.

Changing the values tend , ni, L, A,C , keeping K2 = 10.0, K3 = 1.4, and Δt
Δx ≈

0.045245, what is the new population’s profile? Setting tend = 100.0, ni = 900, L = Lc,
A = 3.967,C = 5.967 the code is executed until to get the profile and Allee Critical Length
(La

c ), labelled by triangle, in red colour, see Fig. 20. The red population profile was found
to: La

c = 10.730020417, ni = 973, A = 4.365,C = 6.365, its details can be seen in the
Figs. 21 and 22.

– Allee Effect equilibrium:

Similarly what it was done with Logistic model about equilibrium, now with Allee
Effect Model were gotten several populations’ values that achieving steady state or went
to extinction. From D = 1.0, K1 = 0.1, L = 14.901882389, ni = 1350, A = 6.450, B =
9.9345,C = 8.450, the Fig. 23 was obtained to K2 × K3 = [1; 10] × [0.1; 3].

About Fig. 23-left can be said that in fact there is a non-linear relation among La
c , K2 and

K3. Additionally, e.g., PopNS move from extinction state to persistence for K3 < 2, with K2

increasing then. On the other hand, e.g., the persistence state is lost by means of K3 growing
to all K2 values as well. Particularly, the greatest population value happens if K3 is very far
of K2, i.e., K3 = 0.1 and K2 = 10.
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Fig. 22 Contribution of each term of the Eq. (7) when Lac = 10.730020417

Fig. 23 Final values of populations over grid K2 × K3 (left) and some contour lines to Lac (right)

More, the Fig. 23-right shows behaviour of La
c over K2×K3. Specifically, e.g., increasing

K2 and decreasing K3, this carries on to successive growing of the La
c , thereby, the numerical

equilibrium stays established, with population’s persistence. Still, the Allee efect model
shows to be very sensible by changing in carrying capacity and critical point, what modify
PopNS value between extinction and persistence quickly. This behaviour is very common in
biological process as well.

– Case τ �= 0:

Analogously, from data which carried on to Figs. 21 and 22, but with τ �= 0, results were
gotten and are showed at Fig. 24 then.

In fact, τ �= 0 provides a delay at solution too. So, for biological problems the question is
to know what is the best τ to be applied, that explain the population behaviour then.

In contrast, data’s Table 10 shows populations values in stationary state for several different
relaxation time. Additionally, are displayed others solutions and their deflects respect to
63.86172295. Look that there are a good agreement among populations values. The values
S (t, x) < 0 arose just when τ = 1.00. The table presents solution from cut off condition
(τ = 1.00c). Observe that solution is very accurate with five digits precision too.
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Fig. 24 Population’s profile from telegraphic equation with Allee Effect Model

Table 10 Population’s value in
steady state with percentage
deviation to Allee effect model

τ Pop in steady state Deviation (%)

0.00 63.86172295 –

0.01 63.86170697 0.000025

0.05 63.86165347 0.000109

0.10 63.86158181 0.000221

0.50 63.86097017 0.001179

1.00 63.86014400 0.002473

1.00c 63.86014147 0.002476

Again, new numerical modelling can be used to solve biological problems modelled by
Allee EffectModel. But, it is necessary to have very careful about the choice of the parameters
values as well.

Discussion and Concluding Remarks

Critical phenomena are ubiquitous in nature [1]. Their understanding is important for a
predictive modelling of system’s dynamics to identify critical transitions and regime shifts
where the system’s properties can change abruptly (over a short transition time) following
a change in the system’s parameters [42–44]. In particular, in an open reaction–diffusion
system (that is allowing for the mass flow through the domain boundaries) the size of the
domain is known to be a parameter that can have such an effect [4].

In ecology, the size of the habitat is known to be a factor that can change the population
dynamics qualitatively [7,8,10]. Population dynamics of a given species becomes unsustain-
able when the habitat size becomes too small (e.g. as a result of human intervention or the
climate change) – to fall below a certain critical value – resulting in the species extinction.
A thorough understanding of this phenomenon is therefore needed in the context of nature
conservation and indeed the problem of critical domain has been in the focus of theoreti-
cal ecology for several decades [5,6,10]. However, the theoretical approaches have mostly
been limited to the reaction–diffusion framework. Meanwhile, although reaction–diffusion
systems have been successfully used in theoretical ecology for several decades, they have
their limitations and arguably, not all their properties are fully relevant. An alternative math-
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ematical framework is based on correlated random work (contrary to uncorrelated Brownian
motion) and the corresponding mean-field model is the reaction-telegraph equation.

Whilst the problem of critical domain can be solved exactly for the linearized models,
both for the reaction–diffusion and reaction-telegraph equations [4,5,45], themore interesting
and more realistic nonlinear case can only be studied by numerical simulations. Meanwhile,
calculating the critical domain size in themodel (4) is nontrivial, in particular if the population
growth rate is affected by the strong Allee effect, because in this case the system possesses
an unstable stationary solution. The problem becomes even more complicated in the case of
a finite relaxation time, i.e. for τ �= 0.

In the present work, we have proposed a new, efficient numerical algorithm to solve the
reaction-telegraph equation, see (10), (13), (16), (17), (18). One feature of our numerical
algorithm that makes it superior to standard approaches is the way to deal with non-linear
coefficients C̃P , b̃P and b̄P by means of (11), hence making use of the fact that at each I T
the matrix form (10) is a linear system. A numerical code was built and validated by means
of numerical simulations in a simpler case τ = 0; see Section 3.1. The code was then used
to investigate the critical domain problem by means of extensive simulations to calculate
the critical lengths Ll

c and La
c (in the case of the logistic growth and the strong Allee effect,

respectively) to reveal their dependence on essential model parameters; see Figs. 14–17 and
20–23.

One generic problem with the reaction-telegraph equation considered on a bounded
domain is that its solutions are not positively defined. Although this issue has been a focus
of several studies [46–48], the question as to what is the root of the problem and how the
model (either the equation or the boundary conditions) could possibly be modified to restore
the positivity remains largely open. In this paper (see also [45]), we addressed this issue by
introducing a cutoff as given by condition (5).We have shown that, for values of τ sufficiently
small, the reaction-telegraph equation with cutoff is well defined and do not attain any artifi-
cial properties; in particular, the total mass is conserved. For a larger value of τ , however, the
mass conservation principle becomes violated. Interestingly, the critical value of τ where the
model attains unrealistic properties appears to depend on the parameters of the growth rate,
e.g. on K1, K2 and K3. That opens a possibility of identifying the corresponding domain in
the parameter space where the extension of the reaction-telegraph equation using the cutoff
is well defined. Further investigation into this issue will become a focus of future work.
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