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Abstract
A numerical algorithm for solving multi-term fractional differential equations (FDEs) is
established herein. We established and validated an operational matrix of fractional deriva-
tives of the generalized Fibonacci polynomials (GFPs). The proposed numerical algorithm is
mainly built on applying the collocation method to reduce the FDEs with its initial conditions
into a system of algebraic equations in the unknown expansion coefficients. Output of the
numerical results asserted that our developed algorithm is applicable, efficient and accurate.

Keywords Fractional differential equations · Generalized Fibonacci sequence · Spectral
methods

Mathematics Subject Classification 11B39 · 65N35 · 34A08 · 34A12

Introduction

There are a lot of methods to solve differential equations. Spectral methods are the most
important of these methods. They have many applications in the field of applied mathematics
and scientific computing. For some of these applications, see [1–3]. The main idea of spectral
methods is to approximate the solution of a differential equation by a finite sum of certain
basis functions and then to determine the expansion coefficients in the sum in order to satisfy
the differential equation and its conditions. In addition, we have some versionswhich are used
to determine the expansion coefficients. They are the collocation, Galerkin and tau methods.
In the first method, collocation, it enforce the residual of the given differential equation van-
ishes at given set of points. For example, Doha et al. [4] used the collocation method to solve
nonlinear FDEs subject to initial/boundary conditions. For the second method, Galerkin,
which requires choosing orthogonal polynomials as basis functions which satisfy the ini-
tial/boundary conditions of the given differential equation, and then enforcing the residual
to be orthogonal with the basis functions. For example, Youssri and Abd-Elhameed [5] used
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the Galerkin method for solving time fractional telegraph equation. For the last method, tau,
it is based on minimizing the residual and then, applying the initial/boundary conditions of
the differential equation. For example, Abd-Elhameed and Youssri [6] used the tau method
to solve coupled system of FDEs and also, in [7] they used the modified tau to solve some
types of linear and nonlinear FDEs.

As known that second-order recurrence relations may generate many polynomial
sequences. One of the most important of these sequences is the Fibonacci polynomials.
The Fibonacci polynomial is a polynomial sequence which can be considered as a gen-
eralization circular for the Fibonacci numbers. It used in many applications like biology,
statistics, physics, and computer science [8]. There are several studies that discussed practi-
cally Fibonacci polynomials and GFPs. For example, see [6,9].

Fractional calculus is a generalization for ordinary differentiation and integration to an
arbitrary (non-integer) order. It is a branch of the mathematical analysis which focus on
studying the possibility of defining real/even complex number, powers of the differential
operator and the integration operator. The fractional calculus is recently used inmany fields of
engineering, science, finance, applied mathematics, and engineering [10–12]. It is definitely
hard to obtain analytical solutions for FDEs. Therefore, it is important approach to use
numerical methods to obtain efficient and appropriate solutions to these equations. Many
researches dealt with FDEs using many different methods. For example, the finite difference
method [13], theAdomiandecompositionmethod [14] and the ultrasphericalwaveletsmethod
[15].

In accordance with the previous aspects, this paper focuses on the following two aspects:

(i) Deriving operational matrices for integer and fractional derivatives of the GFPs.
(ii) Presenting an algorithm for solvingmulti-termFDEbyusing collocation spectralmethod.

This paper is organized as follows: in “Preliminaries and Essential Relations” section, some
necessary definitions and mathematical preliminaries of the fractional calculus is introduced.
In “Generalized Fibonacci Operational Matrix of Fractional Derivatives” section, a new
operational matrix of fractional derivatives of GFPs is presented. Section “A New Matrix
Algorithm for Solving Multi-term FDE” is interested in solving one-dimensional multi-term
FDE. In “Illustrative Examples” section, we apply the suggested method to several examples.
Finally a conclusion is presented in “Concluding Remarks” section.

Preliminaries and Essential Relations

This section is devoted to presenting some important definitions of the fractional calculus.

Some Definition and Properties of the Fractional Calculus

Definition 1 As shown in Podlubny [16], the Riemann–Liouville fractional integral operator
I ρ of order ρ on the usual Lebesgue space L1[0, 1] is defined as

I ρh(y) =
⎧
⎨

⎩

1
�(ρ)

∫ y

0
(y − t)ρ−1h(t)dt, ρ > 0,

h(y), ρ = 0.
(1)
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Definition 2 As shown in Podlubny [16], the Caputo definition of the fractional-order deriva-
tive is defined as:

Dρh(y) = 1

�(m − ρ)

∫ y

0
(y − t)m−ρ−1h(m)(t)dt, ρ > 0, y > 0, (2)

where m − 1 � ρ < m, m ∈ N.

The operator Dρ satisfies the following properties for m − 1 � ρ < m, m ∈ N,

(i) (Dρ I ρh)(y) = h(y),

(i i) (I ρ Dρh)(y) = h(y) −
m−1∑

k=0

h(k)(0+)

�(k + 1)
(y − a)k, y > 0,

(i i i)Dρ yk = �(k + 1)

�(k + 1 − ρ)
yk−ρ, k ∈ N, k ≥ �ρ�,

where �ρ� denotes the smallest integer greater than or equal to ρ.

Some Properties and Relations of the GFPs

The following recurrence relation

Fj (y) = y Fj−1(y) + Fj−2(y), j ≥ 2, (3)

generates the sequence of Fibonacci polynomials with the initial values: F0(y) = 0 and
F1(y) = 1.
Let a and b be any two real constants, we define GFPs which may be generated with the aid
of the following recurrence relation:

ϕ
a,b
j (y) = a y ϕ

a,b
j−1(y) + b ϕ

a,b
j−2(y), j ≥ 2, (4)

with the initial values: ϕa,b
0 (y) = 0 and ϕ

a,b
1 (y) = 1. The analytic form of ϕ

a,b
j (y) is

ϕ
a,b
j (y) =

⌊
j−1
2

⌋

∑

m=0

(
j − m − 1

m

)

(ay) j−2m−1(b)m, (5)

where � j� denotes the largest integer that less than or equal to j . Note that ϕ
a,b
j (y) is a

polynomial of degree ( j − 1).
Now, let Pa,b

j (y) of degree j which can be obtained by the following formula:

Pa,b
j (y) = ϕ

a,b
j+1(y), j ≥ 0. (6)

This means that the sequence of polynomials {Pa,b
j (y)} is generated by the following recur-

rence relation:

Pa,b
j (y) = a y Pa,b

j−1(y) + b Pa,b
j−2(y), j ≥ 2, (7)

with the initial values: Pa,b
0 (y) = 1 and Pa,b

1 (y) = a y.
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The analytic form of Pa,b
j (y) is

Pa,b
j (y) =

⌊
j
2

⌋

∑

r=0

(
j − r

r

)

(a y) j−2r (b)r , (8)

which can be expressed alternatively as:

Pa,b
j (y) =

j∑

k=0

akb
j−k
2 δ j+k

( j+k
2
j−k
2

)

yk, (9)

where

δr =
{
1, if r even,

0, if r odd.
(10)

For more properties about GFPs, see [17,18].

Theorem 1 As shown by Abd-Elhameed and Youssri [6], for every nonnegative integer m,
the following inversion formula holds:

ym = a−m
�m

2 �∑

i=0

(−1)i
(m
i

)
(m − 2i + 1)bi

m − i + 1
Pa,b
m−2i (y). (11)

Remark 1 The inversion formula (11) can be written alternatively as:

ym = 2a−m
m∑

r=0
r+m even

(−b)
m−r
2

( m
m−r
2

)
(r + 1)

m + r + 1
Pa,b
r (y). (12)

Generalized Fibonacci Operational Matrix of Fractional Derivatives

This section is devoted to establish an operational matrix of fractional derivatives of the
GFPs.

Operational Matrix of Integer Derivatives

Letu(y)be a squareLebesgue integrable function on (0,1) satisfies the following homogenous
initial conditions:

u(0) = u(1)(0) = u(2)(0) = · · · = u(n−1)(0) = 0.

Assume that it can be written as a combination of a linearly independent GFPs:

u(y) =
∞∑

j=0

e jψ
a,b
j (y), (13)

where

ψ
a,b
j (y) = yn Pa,b

j (y). (14)
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Suppose that u(y) can be approximated as:

u(y) ≈ uM (y) =
M∑

k=0

ekψ
a,b
k (y) = ET ψ( y), (15)

where

ET = [e0, e1, . . . , eM ] (16)

and

ψ( y) = [yn Pa,b
0 (y), yn Pa,b

1 (y), . . . , yn Pa,b
M (y)]T . (17)

At this end, the first derivative of the vector ψ( y) can be expressed in a matrix form as

dψ( y)
dy

= Lψ( y) + λ, (18)

where

λ = (λ0(y), λ1(y), . . . , λM (y))T , (19)

λi (y) =
{
0, if i odd,

n b
i
2 yn−1, if i even,

(20)

and L = (li j )0≤i, j≤M is the (M + 1) × (M + 1) operational matrix of derivative given by:

li j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a b

⌊
i− j
2

⌋

(n + j + 1), if i > j, (i + j) odd,
⌊
i− j
2

⌋
even,

a b

⌊
i− j
2

⌋

(n − j − 1), if i > j, (i + j) odd,
⌊
i− j
2

⌋
odd,

0, otherwise.

(21)

For example, for M = 5, one gets

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
a(n + 1) 0 0 0 0 0

0 a(n + 2) 0 0 0 0
a b(n − 1) 0 a(n + 3) 0 0 0

0 a b(n − 2) 0 a(n + 4) 0 0
a b2(n + 1) 0 a b(n − 3) 0 a(n + 5) 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)

Operational Matrix of Fractional Derivatives

Now, we will state and prove an important theorem. The following theorem displays the
fractional derivatives of the vector ψ( y).

Theorem 2 Letψ( y) be the GFP vector defined in Eq. (17). Then for all α > 0 the following
formula holds:

Dαψ( y) = dαψ( y)
dyα

= y−αL(α)ψ( y), (23)
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where L(α) = (lαi j )0≤i, j≤M is an (M + 1) × (M + 1) matrix and the elements can be written
explicitly in the form

lαi j =
{

βα(i, j), if i ≥ j, (i + j) even,

0, otherwise,
(24)

where

βα(i, j) =
i+�α�∑

k=�α�

( j + 1) δi+k−�α� δ j+k−�α� b
i− j
2

(
i+k−�α�

2

)
! (−1)

k− j−�α�
2 (k + n − �α�)!

(
i−k+�α�

2

)
!
(
k− j−�α�

2

)
!
(

j+k−�α�
2

)
!
(

j+k+2−�α�
2

)
�[1 + n + k − α − �α�]

,

(25)

δr is defined in (10). The operational matrix L(α) can expressed explicitly as:

L(α) =

⎡

⎢
⎢
⎢
⎢
⎣

βα(0, 0) 0 . . . 0
0 βα(1, 1) . . . 0
...

...
. . .

...

βα(M, 0) βα(M, 1)
... βα(M, M)

⎤

⎥
⎥
⎥
⎥
⎦

(26)

Proof Equation (9) enables us to write Eq. (14) as

ψ
a,b
i (y) =

i∑

k=0

akb
i−k
2 δi+k

( i+k
2

i−k
2

)

yk+n . (27)

The application of the fractional differential operator Dα to Eq. (27) yields

Dαψ
a,b
i (y) =

i∑

k=0

δi+kakb
i−k
2

( i+k
2

)!(n + k)!
( i−k

2

)!(k)!(k + n − α)! yk+n−α, (28)

by using the formula given in (12) and performing some algebraic calculations we have

Dαψ
a,b
i (y) = y−α

i∑

j=0

βα(i, j)ψa,b
j (y), (29)

where βα(i, j) is given in (25). ��

A NewMatrix Algorithm for SolvingMulti-term FDE

In this section, we are interested in solving one-dimensional multi-term (FDE)

Dα1v(y) +
N∑

i=2

εi (y)D
αi v(y) = f (y, v(y)), y ∈ [0, 1], (30)

which governed by the nonhomogeneous initial conditions:

v(i)(0) = ai , i = 0, 1, . . . , n1 − 1, (31)

where

ni − 1 < αi ≤ ni , n1 ≥ n2 ≥ · · · ≥ nN , n1, n2, . . . , nN ∈ N, ai ∈ R,
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and εi : [0, 1] → R, i = 2, 3, . . . , N , f : [0, 1] × R → R is a given continuous
function.

Nonhomogenous Initial Conditions

In the following, our aim is to illustrate howproblemswith nonhomogeneous initial conditions
convert to problems with homogeneous initial conditions.
Let

v(y) = u(y) +
n1−1∑

j=0

c j y
j , (32)

then Eq. (30) becomes

Dα1u(y) +
N∑

i=2

εi (y)D
αi

⎛

⎝u(y) +
n1−1∑

j=0

c j y
j

⎞

⎠ = f

⎛

⎝y, u(y) +
n1−1∑

j=0

c j y
j

⎞

⎠ ,

y ∈ [0, 1], (33)

where

c j = 1

j ! a j , j = 0, 1, . . . , n1 − 1.

The transformation (32) converts the nonhomogeneous initial conditions (31) to homoge-
neous initial conditions

u(i)(0) = 0, i = 0, 1, . . . , n1 − 1. (34)

With the aid of the approximations in Eqs. (15), (23). The residual of Eq. (33) takes the form

R(y) = y−α1 ET L(α1) ψ( y) +
N∑

i=2

εi (y) y
−αi ET L(αi ) ψ( y)

+
N∑

i=2

n1−1∑

j=0

εi (y) c j
�( j + 1)

�( j + 1 − αi )
y j−αi

− f

⎛

⎝y, ET ψ( y) +
n1−1∑

j=0

c j y
j

⎞

⎠ .

(35)

We choose the equidistant collocation points yi = i
M+2 , i = 1, 2, . . . , M+1. As a result

of collocation method, the following system of equations can be obtained as

R(yi ) = 0, i = 1, 2, . . . , M + 1. (36)

Equation should be Eq. (36) form a nonlinear equations in the expansion coefficients ei . They
may be solved with the aid of the well-known Newton’s iterative method by using the initial
guess {ei = 10−i , i = 0, 1, . . . , M}.
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Illustrative Examples

In this section, we apply the generalized Fibonacci collocation method (GFCM) which is
presented in “A New Matrix Algorithm for Solving Multi-term FDE” section. Numerical
results show that GFCM is applicable and effective.

Example 1 As given by Abd-Elhameed and Youssri [7], consider the nonlinear fractional
initial value problem:

D0.5u(y) + eu(y) = 9 + y +
2 cosh−1

(
3√
y

)

√
π

√
9 + y

, u(0) = ln(9), y ∈ [0, 1], (37)

where the exact solution of Eq. (37) is u(y) = ln(9 + y).
By applying GFCM to Eq. (37). The maximum absolute error (MAE) for different values
of M are shown in Table 1. Also, Table 2 compares our results with this obtained in [7].
Moreover, Fig. 1 shows the absolute error for the case M = 6 and a = b = 1.

Example 2 As given by Doha et al. [19], consider the initial value problem:

D
5
2 u(y) − 3D

2
3 u(y) = f (y), u(0) = 1, u′(0) = γ, u′′(0) = γ 2, y ∈ [0, 1], (38)

whose exact solution is given by u(y) = eγ y and f (y) =
eγ y γ

2
3

[(

−3+γ
11
6 er f (

√
γ y)

)

�( 13 )+3�( 13 ,γ y)

]

�( 13 )
.

Table 1 MAE of Example 1 M 2 4 6 8

MAE 6 × 10−7 2.5 × 10−10 2 × 10−13 1 × 10−15

Table 2 Comparison between
best errors of Example 1 GFCM (M = 8) 1 × 10−15

method in [7] (M = 14) 2.73 × 10−15

Fig. 1 The error of Example 1 when M=6
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Table 3 MAE of Example 2 M γ MAE γ MAE

8 1 2 × 10−12 6 4 × 10−2

16 4 × 10−14 1 × 10−8

32 2 × 10−11 2 × 10−8

Table 4 Comparison between
best errors of Example 2

γ 1 6

GFCM (M = 16) 4 × 10−14 1 × 10−8

Method in [19] (M = 64) 1.6 × 10−5 6.5 × 10−5

Fig. 2 The error of Example 2 when M = 20 at γ = 1

�(.) and �(., .) are called gamma and incomplete gamma functions respectively [20] and
erf(y) is defined as:

erf(y) = 2√
π

∫ y

0
e−x2dx . (39)

We apply GFCM. In Table 3 we list the MAE of Eq. (38) for the case a = b = 1. Table 4
compares our results with those obtained in [19]. Figure 2 shows the absolute error for the
case M = 20 at γ = 1 and a = b = 1.

Example 3 As given by Doha et al. [4], consider the initial value problem:

D
3
2 u(y) + 7D

1
4 u(y) = g(y), u(0) = 1, u′(0) = 0 y ∈ [0, 1], (40)

where g(y) is chosen such that the exact solution is u(y) = cos(αy).
In Table 5, we introduce the MAE resulted from the application of GFCM for the case
a = b = 1 and M = 4, 8, 12.

Example 4 As given by Keshavarz et al. [21], in this example we consider the following
Riccati fractional differential equation:

Dβu(y) + (u(y))2 = 1, u(0) = 0, y ∈ [0, 1]. (41)
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Table 5 MAE of Example 3 M α MAE α MAE

4 1 8 × 10−8 π 7 × 10−4

8 2.5 × 10−13 1.5 × 10−7

12 1 × 10−15 1 × 10−11

Table 6 Comparison between different errors of Example 4 for the case M = 5

y β = 0.7 β = 0.8 β = 0.9 Exact

Method in [21] GFCM Method in [21] GFCM Method in [21] GFCM

0.1 0.209216 0.189275 0.165498 0.153159 0.129138 0.123529 0.099668

0.3 0.429549 0.414148 0.383197 0.37245 0.336448 0.330914 0.291313

0.5 0.556331 0.549152 0.530743 0.524602 0.498915 0.495197 0.462117

0.7 0.643854 0.639002 0.637215 0.632829 0.624307 0.621421 0.604368

0.9 0.707567 0.701628 0.714519 0.710277 0.717972 0.715542 0.716298

Fig. 3 Different solutions of Example 4

For β = 1, the exact solution is u(y) = e2y−1
e2y+1

.
In Table 6 we compare our results with those obtained in [21]. Figure 3 shows that the
approximate solutions have smaller variations for values of β near the value 1.

Concluding Remarks

The current work derived a general operational matrix of fractional derivatives of the GFPs
together with the appropriate recruitment spectral collocation method. The results given in
“IllustrativeExamples” sectiondemonstrated a good accuracyof this algorithm.Theproposed
algorithm can be applied to treat different kinds of FDEs. Therefore, the algorithm is powerful
and propitious.
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