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Abstract
In the present paper the exact solution of quasilinear hyperbolic systemof equations governing
the propagation of weak shock waves in a one dimensional non-ideal adiabatic gas flow with
generalized geometries is derived. Here the density ahead of the shock front is assumed to
vary according to a power law of the distance. The effect of van der Waals parameter on the
radius of weak shock wave is analyzed. An analytical expression for the total energy carried
by weak shock wave in non-ideal gas is also derived.
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Indroduction

Ideal gas is considered under the assumption that the volume occupied by the gas molecules
and the forces between the constituent molecules are negligible but real gases do not follow
these assumptions. van der Waals derived the equation of state as:

(
p + a�2

)
(1− b�) =

�RT , for real gases, where p, � stands for the pressure and density of the gas, T is the
absolute temperature, R is the universal gas constant and a and b are the material dependent
characteristic parameters. The constants a and b respectively measure the attraction between
the gas molecules and volume occupied by each molecule. The van der Waals model is very
near to the behavior of real gases for wide range of temperature and pressure. In case of
compressible flows, the pressure of gas is taken to be very high consequently the term a�2

may be negligible as compared to the gas pressure p, this results in equation of state for
non-ideal gas as p (1− b�) = �RT . It is noticed that non-ideal gas possesses more general
thermodynamic properties than ideal gas, so dealing the system of equations governing the
propagation of weak waves supplemented with equation of state p (1− b�) = �RT , is more
complex and applicable than the ordinary gasdynamics case.

The study of nonlinear hyperbolic system of partial differential equations governing the
propagation of weak shock waves in real situations has always been an interesting research
field due to its important applications. In treatment for kidney stone disease, weak converging
shock waves are focused on the stone to break it into enough small pieces that can be
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eliminated naturally. It is also used in orthopedics and cancer treatment.Whenhigh speed train
enters into a long train tunnel then weak shock waves are formed in front of it. Due to various
important applications of weak shock waves in real situations, a continuous improvement
in the subject is desirable. In past decades, many attempts have been made to study the
propagation of weak and strong shock waves in different material media. The major break-
through in the study of shock wave was made by Courant and Friedrichs [1] and Whitham
[2]. They have analyzed the problem of propagation of weak and strong shock waves in
ordinary gas dynamics. Sharma and Shyam [3] have studied the growth and decay of weak
discontinuities in radiating gas dynamics. Anile [4] proposed the generalized wave front
expansion method for the solution of the problem of weak shock waves and the results
obtained were in close agreement to many experimental results. Murata [5] has presented
a closed form solution of the blast wave problem for ordinary gasdynamics case. Singh et
al. [6] gave the exact solution of planar and non planar weak shock wave problem in gas
dynamics with generalized geometries. Bira and Sekhar [7] obtained the exact solution of
the problem of weak shock wave in isentropic magnetogasdynamics using the method of Lie
group transformation. Chadha and Jena [8] discussed the steepening of shock wave in dusty
gas. Arora and Siddiqui [9] investigated the behavior of weak shocks in a non-ideal gas.
Vishwakarma and Nath [10] have used the similarity method to discuss the propagation of
shock wave in non-ideal dusty gas. Wu and Roberts [11] discussed the problem of structure
and stability of a spherical shock wave in van der Waals gas. Some authors [12,13] obtained
the solution of weak shock wave in different material media by using the Lie group of
transformations. Arora et. al [14] investigated the behaviour of strong shock wave in non -
ideal gas using similarity transformation technique. Siddiqui and Arora [15] used similarity
transformation to obtain the exact solution of spherical shock wave problem in relaxing gas.
Recently Bira et al. [16], Kuila and Sekhar [17] and Ambika and Radha [18] have studied
the propagation of shock wave and elementary wave interaction in different material media.
To find the closed form solution for the problem associated to the propagation of weak
shock wave in non-ideal gas is a challenging problem for researchers and scientist today. In
the present paper, an attempt has been made to obtain the exact solution of the problem of
propagation of weak shock wave and an analytical expression for the density, velocity and
pressure are obtained in terms of position and time. The energy carried by weak shock wave
in non-ideal gas is also derived.

Basic Equations and Jump Conditions

The governing equations describing an unsteady inviscid adiabatic one dimensional flow in
non-ideal gas with generalized geometries is given by Singh et al. [6] as

∂�

∂t
+ ϑ

∂�

∂x
+ �

(
∂ϑ

∂x
+ j

x
ϑ

)
= 0, (1)

∂ϑ

∂t
+ ϑ

∂ϑ

∂x
+ 1

�

∂ p

∂x
= 0, (2)

∂ p

∂t
+ ϑ

∂ p

∂x
+ a2�

(
∂ϑ

∂x
+ j

x
ϑ

)
= 0, (3)

where �, ϑ and p are density, flow velocity and pressure of the non-ideal gas respectively and
t , x stand for time and spatial coordinates respectively. The entity a = (γ p/ (� (1− b�)))1/2

is the equilibrium speed of sound in non-ideal gas. j = 0 , 1 and 2 respectively correspond to
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the planar, cylindrically symmetric and spherically symmetric flows. The entity γ = cp/cυ

is the ratio of specific heat at constant pressure and specific heat of gas at constant volume.
Let R be the position of the shock front from the centre of disturbance at time t , then the

propagation velocity of shock front, s, is given by

s = dR

dt
. (4)

If �0 denotes undisturbed gas density and �, ϑ and p denote the density, velocity and pressure
of non-ideal gas just behind the shock respectively. Then the following Rankine-Hugoniot
conditions [5,6] across the shock front are satisfied.

� = γ + 1

γ − 1

[
1+ 2b�0

γ − 1
+ 2 (1− b�0)

γ − 1

1

M2

]−1

�0, (5)

ϑ = 2

γ + 1

[
1− b�0 − (1− b�0)

M2

]
s, (6)

p = 2 (1− b�0)

γ + 1

[
1− (γ − 1)

2γ

1

M2

]
�0s

2, (7)

where M = s
a , called mach number.

In the present problem, the undisturbed density �0 is taken to vary according to the power
law of the radius of the shock front R after the disturbance and is given as

�0 = �a R
κ , (8)

where �a and κ are constants. The constant κ is to be determined later.

Exact Solution of theWeak ShockWave problem

The expression for the pressure behind the shock front satisfying the RH conditions (5)–(7)
is given as

p = (1− b�0)
[
M2 − (γ − 1) / (2γ )

] [
M2 (γ − 1) /2+ b�0

(
M2 − 1

) + 1
]

[
M2 − b�0M2 − (1− b�0)

]2 �u2. (9)

By Eq. (9), Eqs. (2) and (3), can we written as

∂ϑ

∂t
+ ϑ

∂ϑ

∂x
+ K1

(
ϑ2

�

∂�
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+ 2ϑ
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)
= 0, (10)

∂ϑ
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+ ϑ
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+ K2

(
∂ϑ

∂x
+ j

x
ϑ

)
ϑ = 0, (11)

where K1 and K2 are given as

K1 = (1− b�0)
[
M2 − (γ − 1) / (2γ )

] [
M2 (γ − 1) /2+ b�0

(
M2 − 1

) + 1
]

[
M2 − b�0M2 − (1− b�0)

]2 , (12)

K2 = (γ − 1)
[
(γ − 1) M2 + 2

] + b�0
[
(3γ − 1) M2 − 2 (γ − 1)

]

2
[
(γ − 1) M2 + 2− b�0

(
(γ − 1) M2 + 2

)] . (13)

Combining (10) and (11) and after integration we have the resulting equation as,

f (t) = �ϑψ x− jχ , (14)
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where f (t) is function of time only and ψ and χ are given as

ψ = (2K1 − K2) /K1, (15)

χ = K2/K1. (16)

By Eqs. (12) and (1), we have
ψ

ϑ

∂ϑ

∂t
− (1− ψ)

∂ϑ

∂x
− j (χ + 1)

x
ϑ − 1

f

d f

dt
= 0. (17)

Solving Eqs. (11) and (13), we have

ϑ = −η
x

f

d f

dt
, (18)

where η is a constant given as

η = 1

(ψK2 + χ + 1) j + (1+ ψK2)
, (19)

also

f (t) = f0t
−τ , (20)

where f0 is arbitarary constant and τ is given as

τ = ψ

(ψ − 1) η − j (χ + 1) η + 1
. (21)

Rankine–Hugoniot condition (6) yields the radius of the shock front given as

R = t

γ+1

2

(
1−2b�0− (1−b�0)

M2

) ητ

. (22)

Rankine–Hugoniot condition (5) yields the following value of κ which is given as

κ = 2 ( j + 1)
(
(1− b�0) /M2 + b�0 − 1

)

γ + 1
. (23)

The effect of van der Waals parameter on the radius of weak shock wave is shown in
Figs. 1, 2 and 3. The effect of van der Waals parameter of the gas on the radius of the weak
shock wave in planar, cylindrically symmetric and spherically symmetric flows is shown in
Figs. 1, 2 and 3 respectively. The values of the constants appearing in the computations are
taken as: �0 = 3.0 and γ = 1.4, M = 1.02, 1.04, 1.06 and b = 0.0, 0.02, 0.04. Here, b = 0.0
corresponds to the ordinary gas dynamics case. It is observed that an increase in the value of
van der Waals excluded volume and Mach number causes to increase the radius of the weak
shock wave.

The solution of weak shock wave problem in non-ideal gas is given by

� = f0t−τ+ψ x jχ−ψ

χψτψ
, (24)

ϑ = ητ
x

t
, (25)

p = (1− b�0)
[
M2 − (γ − 1) / (2γ )

] [
M2 (γ − 1) /2+ b�0

(
M2 − 1

) + 1
]

[
M2 − b�0M2 − (1− b�0)

]2

× 1

(ητ)ψ−2 f0x
( jχ−ψ+2)t (χ−τ−2). (26)
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Fig. 1 Behavior of radius of weak shock wave for j = 0

Fig. 2 Behavior of radius of weak shock wave for j = 1

Fig. 3 Behavior of radius of weak shock wave for j = 2
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Distribution of flow parameters, density, velocity and pressure in non-ideal gas are pre-
sented in the Figs. 4, 5 and 6 respectively. It is observed that the effect of increasing value of
van der Walls parameter is to increase the density and to decrease the velocity and pressure
in the disturbed region which is in close agreement with the results obtained by Arora et. al
[14].

After determining the physical variables, density, velocity and pressure behind the shock
front, we can also calculate the total energy carried by the weak shock wave in a non-ideal
gas at any time as [6]

E = 4π

R∫

0

{
1

2
�ϑ2 + (1− b�)

γ − 1
p

}
x j dx . (27)

Putting the value of the density, velocity and pressure from Eqs. (24), (25) and (26) in (27),
we have

E = gt
(γ+1)( j(χ+1)−ψ+3)ητ+2(ψ−τ−2)(1−b�0−(1−b�0)/M

2)
2(1−b�0−(1−b�0)/M

2) ,

Fig. 4 Density profile of weak shock wave for j = 2

Fig. 5 Velocity profile of weak shock wave for j = 2
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Fig. 6 Pressure profile of weak shock wave for j = 2

Fig. 7 Behavior of energy of weak shock wave for j = 0

where

g = (γ − 1) + 2
((

(γ − 1) − (γ − 1) b�0 + 2 (1− b�0) /M2
)
/ (γ − 1)

)

2 ( j (χ + 1) − ψ + 3)
(
(γ − 1) + 2b�0 + 2 (1− b�0) /M2

)
(ητ)ψ−2 .

The effect of Mach number on the energy carried by weak shock wave in non-ideal gas
for spherically symmetric, cylindrically symmetric and planar flows is shown in Figs. 7, 8
and 9 respectively. The values of the constants appearing in the computations are taken as:
�0 = 1.0 and γ = 1.4, M = 1.02, 1.04, 1.06, 1.08 and b = 0.02. Here, it is observed that an
increase in the value of Mach number causes to increase the energy of the weak shock wave
in spherically symmetric, cylindrically symmetric and planar flows. The variation in energy
carried by weak shock wave in planar, cylindrically symmetric and spherically symmetric
flows have similar trend but energy carried by weak shock wave is more in planar case as
compared to cylindrically symmetric and spherically symmetric flows. The energy carried out
by weak shock wave in cylindrically symmetric flow is more than as compared to spherically
symmetric flow.
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Fig. 8 Behavior of energy of weak shock wave for j = 1

Fig. 9 Behavior of energy of weak shock wave for j = 2

Conclusion

In the present article the exact analytical solution for the problem of weak shock wave in a
non-ideal gas has been derived. The solution of Euler equations in a non-ideal gas obtained
here is a new one. The behavior of variations of the radius and energy of weak shock wave
in a non-ideal gas are similar to that as in an ideal. Here, it is observed that the solution of
weak shock wave problem for adiabatic non-ideal gas given by Eqs. (18–20) reduces to the
solution presented by Singh et al. [6] for b = 0.0.

Acknowledgements J. P. Chaudhary acknowledges the financial support from the CSIR, New Delhi, India,
under the SRF scheme.

References

1. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Wiley-Interscience, New York (1948)
2. Whitham, B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

123



Int. J. Appl. Comput. Math (2018) 4 :136 Page 9 of 9 136

3. Sharma, V.D., Shyam, R.: Growth and decay of weak discontinuities in radiating gas dynamics. Acta
Astronaut. 8, 31–45 (1981)

4. Anile, A.M.: Propagation of weak shock waves. Wave Motion 6, 571–578 (1984)
5. Murata, S.: New exact solution of the blast wave problem in gas dynamics. Chaos Solitons Fractals 28,

327–330 (2006)
6. Singh, L.P., Ram, S.D., Singh, D.B.: Exact solution of planar and no planar weak shock wave problem in

gas dynamics. Chaos Solitons Fractals 44, 964–967 (2011)
7. Bira, B., Sekhar, T.R.: Symmetry group analysis and exact solution of isentropic magnetogasdynamics.

Indian J. Pure Appl. Math. 44(2), 153–165 (2013)
8. Chadha, M., Jena, J.: Singular surface and steepening of waves in a non-ideal gas with dust particles.

Comput. Appl. Math. 34(2), 729–739 (2015)
9. Arora, R., Siddiqui, J.: Evolutionary behavior of weak shocks in a non-ideal gas. J. Theor. Appl. Phys.

(Open Access) 7, 1–6 (2013)
10. Vishwakarma, J.P., Nath, G.: A self-similar solution of a shock propagation in a mixture of a non-ideal

gas and small solid particles. Meccanica 44, 239–254 (2009)
11. Wu, C.C., Roberts, P.H.: Structure and stability of a spherical shock wave in a van der Waals gas. Q. J.

Mech. Appl. Math. 49(4), 501–543 (1996)
12. Jena, J.: Lie-group transformations for self-similar shocks in a gas with dust particles. Math. Methods

Appl. Sci. 32, 2035–2049 (2009)
13. Oliveri, F., Speciale, M.P.: Exact solutions to the unsteady equations of perfect gases through Lie group

analysis and substitution principles. Int. J. Non-Linear Mech. 37, 257–274 (2002)
14. Arora, R., Tomar, A., Singh, V.P.: Similarity solutions for strong shocks in a non-ideal gas. Math. Model.

Anal. 17, 351–365 (2012)
15. Siddiqui, M.J., Arora, R.: An exact similarity solution for spherical shocks in a relaxing gas. Natl. Acad.

Sci. Lett. 38, 433–35 (2015)
16. Bira, B., Sekhar, T.R., Sekhar, G.P.R.: Collision of characteristic shock with weak discontinuity in non-

ideal magnetogasdynamics. Comput. Math. Appl. 75(11), 3873–3883 (2018)
17. Kuila, S., Sekhar, T.R.: Wave interactions in non-ideal isentropic magnetogasdynamics. Int. J. Appl.

Comput. Math 3(3), 1809–1831 (2017)
18. Ambika, K., Radha, R.: Riemann problem in non-ideal gasdynamics. Indian J. Pure Appl. Math. 47(3),

501–521 (2016)

123


	Exact Solution of the Weak Shock Wave in Non-ideal Gas
	Abstract
	Indroduction
	Basic Equations and Jump Conditions
	Exact Solution of the Weak Shock Wave problem
	Conclusion
	Acknowledgements
	References




