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Abstract
This article discusses a numerical iterative scheme for the solution of a class of nonlinear
singular boundary value problems. It introduces a recent approach, based onGreen’s functions
and Picard’s and Mann’s fixed-point iterations procedures, to tackle such problems. The
convergence analysis of the proposedmethod is presented to verify its efficiency. A number of
examples are given to demonstrate the applicability of themethod.The numerical experiments
show that this approach is better than many other existing techniques and that it is reliable,
accurate and less time consuming.

Keywords Nonlinear singular boundary value problems · Green’s function · Picard’s and
Mann’s iterative scheme · Fixed point

Introduction

Nonlinear singular boundary value problems (SBVPs) have been studied by many mathe-
maticians, physicists and engineers. They used different methods in order to achieve the most
accurate numerical solutions and that require the least CPU time. In recent years, a wide spec-
trum of papers have been devoted to solve such problems. For instance, Motsa and Sibanda
[25] presented a novel approach to solve nonlinear SBVParising in physiology for the study of
tumour growth. They used successive linearizationmethod (SLM) and compared their numer-
ical results to those obtained by other methods such as ordinary cubic spline method [16],
finite differences (see Pandey and Singh [29] and the references therein), Adomian decompo-
sition method (ADM) [33], third degree B-spline [3], non-polynomial cubic splines [20], and
cubic B-spline collocation [16]. Moreover, other papers proposed alternate computational
methods based on Bernstein polynomials, via the transformation of the original problem to
an eigenvalue problem then applying an open domainMATLAB collocation code “bvpsuite”
to solve the nonlinear SBVPs [30]. In [33], Singh and Kumar used a new technique based
on Green’s function and the Adomian decomposition method (ADM) for solving nonlinear
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singular boundary value problems (SBVPs). In [27] Niu et al. used a simplified reproduc-
ing kernel method and least squares approach for solving nonlinear singular boundary value
problems. Other techniques include piecewise shooting reproducing kernel method [7,8],
mixed decomposition-spline approach [22], variational iteration method [15,34], topological
techniques [6], Padé approximation and collocation methods [1], a fourth order method [4],
and other novel numerical methods such as those in [2,5,10,11,17–20,23,24,31,32].

Some applications of nonlinear singular boundary value problems (SBVPs) for ordinary
differential equations arise in many branches of applied mathematics, engineering such as
chemical reactions, sciences such as nuclear physics and many others. For instance, it arises
in the theory of electro-hydrodynamics and in the radial stress on a rotationally symmetric
shallow membrane cap. In addition, it describes the equilibrium of the isothermal gas sphere
and finds the distribution of heat sources in the human head. Last but not least, it has appli-
cation for finding the steady-state oxygen diffusion in a spherical cell (see [9] and [33] and
the references therein).

In this paper, a recently introduced iterative method based on Green’s functions and
fixed-point iteration schemes, such as Picard’s and Mann’s procedures, is presented for the
approximate solution of a generalized class of nonlinear SBVPs (see [13,14,18,21,22] and the
references therein). Five examples are considered and the results are compared with other
numerical methods. The objective is to show that the iterative procedure yields relatively
highly accurate approximate solutions and converges rapidly. Proof of convergence as well
as rate of convergence are also included in our study.

An outline of the paper is as follows. To begin with, we will present the definition and
construction of the Green’s function and then designate the fixed-point iteration method.
A proof of convergence of the scheme as well as its rate of convergence will be included.
Moving on, we will investigate five different nonlinear SVBPs to show the efficiency and
high accuracy of the method. Finally, we will summarize our findings.

Description of the IterationMethod

Green’s Function

To construct theGreen’s function for certain SBVPs, consider first the following linear second
order equation:

L[u] = u′′(x) + p(x)u′(x) + q(x)u(x) = f (x), (1)

for a < x < b with boundary conditions

Ba[u] = a0u(a) + a1u
′(a) = α,

Bb[u] = b0u(b) + b1u
′(b) = β.

(2)

The general solution is given by u = uh + u p where uh is the solution to L[u] = 0
subject to the boundary conditions (2), and u p is the solution to L[u] = f (x) satisfying the
corresponding homogeneous boundary conditions

Ba[u] = Bb[u] = 0. (3)

To find u p , we first seek a solution for

L[u] = δ(x − s), (4)
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subject to the conditions (3); this solution is referred to as the Green’s function G(x |s). Then

u p =
∫ b

a
G(x |s) f (s) ds. (5)

Let u1, u2 be two linearly independent solutions of L[u] = 0. The Green’s function satisfies
the homogeneous equation for x �= s and hence will be a linear combination of the solutions
u1, u2 :

G(x |s) =
{
c1u1(x) + c2u2(x), a < x < s
d1u1(x) + d2u2(x), s < x < b

.

The constants c1, c2, d1, d2 are determined using the following conditions:

(i) Homogeneous BCs:

Ba[G(x |s)] = Bb[G(x |s)] = 0.

(ii) Continuity of G at x = s :
c1u1(s) + c2u2(s) = d1u1(s) + d2u2(s).

(iii) Jump discontinuity of G ′ at x = s:

d1u
′
1(s) + d2u

′
2(s) − c1u

′
1(s) − c2u

′
2(s) = 1.

For nonlinear SBVPs

u′′(x) + p(x)u′(x) + q(x)u(x) = f (x, u(x), u′(x)), (6)

the particular solution satisfies

u p =
∫ b

a
G(x |s) f (s, u p(s), u

′
p(s)) ds, (7)

where G is the Green’s function corresponding to (6).

Picard’s Green’s Scheme (PGS)

In this section, we will describe and detail our proposed method. Let’s consider a class of
SVBPs of the form:

L[u] = u′′ + p

x
u′ = f (x, u, u′), (8)

with the boundary conditions (2). LetG be the Green’s function for the linear term and define
the integral operator

K [u p] =
∫ b

a
G(x |s) L[u p] ds. (9)

Using (7), we can rewrite the latter equation as:

K [u p] =
∫ b

a
G(x |s) [

L[u p] − f (s, u(s), u′(s))
]
ds + u p. (10)

For convenience, let’s drop u p and denote it by u. It follows that

K [u] =
∫ b

a
G(x |s) [

L[u] − f (s, u(s), u′(s))
]
ds + u. (11)
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Applying Picard’s iteration on K [u], namely

un+1 = K [un], n ≥ 0,

yields the following iterative procedure:

un+1 = un +
∫ b

a
G(x |s) [

L[un] − f (s, un(s), u
′
n(s))

]
ds, (12)

where L[un] is the linear term for the second order differential equation. The initial iterate
u0 is chosen to satisfy the corresponding homogenous equation in (8), L[u] = 0, and the
specified boundary conditions.

Mann’s Green’s EmbeddedMethod (MGS)

Next,we apply the followingMann’s iterative algorithm for the approximation of fixed points,
using the operator defined in (9):

un+1 = (1 − αn)un + αnK [un], n ≥ 0.

Following the very similar steps as in the previous subsection, this results in the iterative
scheme (MGS):

un+1 = un + αn

∫ b

a
G(x |s) [

L[un] − f (s, un(s), u
′
n(s))

]
ds, (13)

where {αn} is a sequence of numbers that control the stability and speed up the convergence
of the scheme. The starting function u0 is chosen to be the solution for the corresponding
homogenous equation L[u] = 0 subject to the specified boundary conditions (2).

The optimal values of the sequence {αn} is found by minimizing the L2-norm of the
residual error, Rn(x;αn), of the nth iteration un , namely

‖Rn(x;αn)‖2L2 = 1

b − a

∫ b

a
R2
n(x;αn) dx, (14)

where for each n, Rn(x;αn) is given by

Rn(x;αn) = L[un] − f (x, un(x), u
′
n(x)). (15)

It is worth mentioning that with the proper choice of the parameters αn’s, the stability of the
scheme can be controlled. For more details on the stability see [11].

Convergence Analysis of the PGS

This section includes the convergence analysis of the Picard’s scheme. The analysis is based
on the contraction principle [28]. Without loss of generality, we prove convergence of the
PGS that applies to the following boundary value problem:

u′′(x) + p

x
u′(x) = f (x, u(x), u′(x), (16)

where p ≥ 2, and complimented with the boundary conditions:

u′(0) = α, u(1) = β. (17)
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First, we construct the Green’s function for (16) using the properties detailed in Sect. 2.1.
Solving the corresponding homogeneous equation of (16), which is aCauchy–Euler equation,
we have

G(x |s) =
{
A + B x1−p, 0 < x < s
C + D x1−p, s < x < 1

. (18)

Applying the corresponding homogenous BCs of (17), that is u′(0) = u(1) = 0, we get the
two equations

B = 0, C + D = 0. (19)

The continuity of the Green’s function gives the equation

A + B s1−p = C + D s1−p. (20)

The unit jump discontinuity of the first derivative of the Green’s function results in the
equation

D(1 − p)s−p − B(1 − p)s−p = 1. (21)

Solving the system of equations in (19)–(21), we get the Green’s function

G(x |s) =
{

1
p−1 (s p − s) , 0 < x < s
s p
p−1

(
1 − x1−p

)
, s < x < 1

. (22)

Substituting this latter Green’s function in the PGS iterative procedure given in (12), we get
the following PGS procedure that corresponds to the BVP in (16), (17):

un+1 = un +
∫ x

0

s p

p − 1

(
x1−p − 1

) [
u′′
n(s) + p

s
u′
n(s) − f

(
s, un(s), u

′
n(s)

)]
ds

+
∫ 1

x

1

p − 1

(
s − s p

) [
u′′
n(s) + p

s
u′
n(s) − f

(
s, un(s), u

′
n(s)

)]
ds. (23)

The next theorem gives convergence of the scheme.

Theorem 1 Assume that f
(
x, u, u′) is a continuous function whose derivative is bounded

with respect to u. Assume that

K := 1

2(p − 1)
Lc < 1,

where

Lc = max
[0,1]×R2

∣∣∣∣∂ f

∂u

∣∣∣∣.

Then, the iterative sequence {un(x)}∞n=1, given by (23), where x ∈ [0, 1] and using any
bounded starting function on [0, 1], converges uniformly to the exact solution, u(x), of prob-
lem (16)–(17).

Proof In order to prove the convergence, we will use the function space C[0, 1] equipped
with the maximum norm defined by ‖u‖ = max

0≤x≤1
|u(x)|.
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Direct integration leads to
∫ x

0

s p

1 − p

(
x1−p−1

) [
u′′
n(s) + p

s
u′
n(s)

]
ds = x1−p − 1

1 − p

∫ x

0

[
s pu′′

n(s) + ps p−1 u′
n(s)

]
ds

= x1−p − 1

1 − p

∫ x

0

(
s p u′

n(x)
)′
ds

= x − x p

1 − p
u′
n(x).

(24)
Integrating twice by parts we get

∫ 1

x

1

p − 1

(
s p − s

)
u′′
n(s) ds

= 1

p − 1

[
(1 − p)un(1) + (

px p−1 − 1
)
un(x) + (

x − x p) u′
n(x)

+ p(p − 1)
∫ 1

x
s p−2 un(s) ds

]
. (25)

Integrating once by parts we get
∫ 1

x

1

p − 1

(
s p − s

) p

s
u′
n(s) ds

= p

p − 1

[(
1 − x p−1) un(x) − (p − 1)

∫ 1

x
s p−2 un(s) ds

]
.

(26)

Substituting the results of (24)–(26) into the iterative scheme (PGS) given in (23), we have

un+1 = un(1) +
∫ x

0

s p

1 − p

(
x1−p − 1

)
f
(
s, un(s), u

′
n(s)

)
ds

+
∫ 1

x

1

p − 1

(
s p − s

)
f
(
s, un(s), u

′
n(s)

)
ds. (27)

Equivalently, we have

un+1 = β +
∫ 1

0
G(x |s) f

(
s, un(s), u

′
n(s)

)
ds, (28)

where β = un(1), from (17), and

G(x |s) =

⎧⎪⎨
⎪⎩

s p

1 − p

(
x1−p − 1

)
, 0 < s < x

1

p − 1

(
s p − s

)
, x < s < 1

. (29)

Define TG : C[0, 1] → C[0, 1] to be the right side of Eq. (28):

TG(u) ≡ β +
∫ 1

0
G(x |s) f

(
s, u(s), u′(s)

)
ds. (30)

According to Banach-Picard fixed point theorem, to prove convergence it suffices to show
that TG is a contractive mapping. Therefore, we have

|TG(u) − TG(v)| =
∣∣∣∣
∫ 1

0
G(x |s) [

f (s, u, u′) − f (s, v, v′)
]
ds

∣∣∣∣ . (31)
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Simple integration gives
∫ 1

0
G(x |s) ds = 1

2(p + 1)
(x2 − 1) ≡ g(x). (32)

Themaximum value of the absolute value of the function g(x) on the interval [0, 1] occurs
either at the critical points or endpoints.

|g(x)| ≤ 1

2(p + 1)
. (33)

Using (32) and (33), we have from (31)

|TG(u) − TG(v)| ≤ 1

2(p + 1)

∫ 1

0

∣∣ f (s, u, u′) − f (s, v, v′)
∣∣ ds. (34)

Applying the Mean Value Theorem for f , we obtain

|TG(u) − TG(v)| ≤ 1

2(p + 1)
max
0≤x≤1

∣∣ f (x, u(x), u′(x)) − f (x, v(x), v′(x))
∣∣

≤ 1

2(p + 1)
Lc ‖u − v‖

(35)

where ‖u − v‖ = max
0≤x≤1

|u(x) − v(x)| and Lc = max
[0,1]×R3

∣∣∣∣ ∂

∂u
f (x, u, u′)

∣∣∣∣. From the

hypothesis of the theorem, namely that K := 1

2(p + 1)
Lc < 1, it follows that

‖TG(u) − TG(v)‖ ≤ K ‖u − v‖, (36)

with 0 < K < 1. This proves that TG is a contraction mapping.
In regard to the rate of convergence, we have

‖un+1 − un‖ = ‖TG(un) − TG(un−1)‖
≤ K ‖un − un−1‖
≤ Kn ‖u1 − u0‖.

(37)

If m > n > 0, then

‖um − un‖ = ‖um − um−1‖ + ... + ‖un+1 − un‖
≤ (

Km−1 + ... + Kn) ‖u1 − u0‖
≤ Kn (

1 + K + K 2 + ...
) ‖u1 − u0‖

= Kn

1 − K
‖u1 − u0‖.

(38)

If we let m → ∞, we get the error estimate:

∥∥u� − un
∥∥ ≤ Kn

1 − K
‖u1 − u0‖. (39)

��

Numerical Examples

In this section, we will implement the Picard’s Green’s scheme for the solution of a nonlinear
secondorder SBVPs.Wewill compare our numerical resultswith existing numerical solutions
to confirm the validity and high accuracy of the strategy.
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Table 1 Maximum absolute errors for Example 1 using PGS, compared with the methods in [8,27,33]

Method E3 V3 [33] E5 V5 [33] E10 V10 [33] E15 W16 [8] Z16 [27] E20

Max. Err. 9.1(−3) 1.4(−2) 5.03(−3) 1.7(−3) 2.3(−5) 4.9(−5) 3.5(−7) 3.6(−4) 1.5(−5) 5.0(−9)

Table 2 Maximum absolute errors for Example 1 using MGS with α = 1.43, compared with the methods in
[8,27,33]

Method E3 V3 [33] E5 V5 [33] E10 V10 [33] W16 [8] Z16 [27] E20

Max. Err. 6.8(−4) 1.4(−2) 2.8(−5) 1.7(−3) 2.3(−7) 4.9(−5) 3.6(−4) 1.5(−5) 2.4(−11)

Example 1 Consider the following nonlinear SBVP describing the equilibrium of isothermal
gas sphere [4], which is taken from Singh and Kumar [33]:

u′′(x) = − 2

x
u′(x) + u5(x), (40)

where 0 < x < 1 and subject to

u′(0) = 0, u(1) =
√
3

4
. (41)

The exact solution is given by u(x) =
√

3
3+x2

.

Constructing the Green’s function for the linear equation L[u] = u′′ = 0 and compli-
mented with the homogeneous BCs u′(0) = 0 and u(1) = 0, results in the subsequent form
of the PGS (12).

un+1 = un −
∫ x

0
s2

(
1 − 1

x

) [
u′′
n(s) + 2

s
u′
n(s) − u5n(s)

]
ds

−
∫ 1

x
s(s − 1)

[
u′′
n(s) + 2

s
u′
n(s) − u5n(s)

]
ds. (42)

The initial iterate is the solution of L[u] = 0 subject to the BCs (41), which is found to

be u0 =
√

3
4 .

For quantitative comparison, we now define En as the results obtained via the Picard
Green’s function approach (PGS), while Vn[19], Wn[6], and Zn[23] are those obtained by
the techniques proposed by Singh and Kumar [33], Geng [8], and Niu et al. [27] respectively.
Numerical results of this SBVP, as reported in Table 1 below, confirm that our strategy is
more accurate than the latter three methods combined.

It can be shown that the contraction constant for the corresponding PGS is K = Lc

2(p + 1)
which is equal to 5/6. This yield slow convergence since K is close to 1. Thus, the results
by the PGS may be improved if we use the MGS (23). The best choice for the value of α to
minimize the absolute error in E3 is found to be α∗ = 1.43; for simplicity this value is kept
constant for the other iterations. The results are displayed in Table 2.

Example 2 Consider the following nonlinear SBVP, which is taken from Singh and Kumar
[33]:

u′′(x) = − 2

x
u′(x) − e−u(x), (43)

123



Int. J. Appl. Comput. Math (2018) 4 :134 Page 9 of 13 134

Table 3 Residual errors for Example 2 using our scheme and methods in [27,33]

t E5 V6 V8 E10 V10 E15 Z10

0.1 4.3973(−4) 7.4909(−3) 2.3987(−3) 1.3290(−7) 8.2261(−4) 4.0165(−11) 1.1755(−5)

0.2 4.3290(−4) 7.1398(−3) 2.2757(−3) 1.3083(−7) 7.7789(−4) 3.9541(−11) 5.5947(−6)

0.3 4.2159(−4) 6.7221(−3) 2.1306(−3) 1.2741(−7) 7.2546(−4) 3.8507(−11) 1.7789(−6)

0.4 4.0586(−4) 6.1745(−3) 1.9426(−3) 1.2266(−7) 6.5808(−4) 3.7070(−11) 7.1507(−7)

0.5 3.8584(−4) 5.5303(−3) 1.7246(−3) 1.1661(−7) 5.8074(−4) 3.5242(−11) 4.0110(−7)

0.6 3.6169(−4) 4.8262(−3) 1.4905(−3) 1.0931(−7) 4.9869(−4) 3.3036(−11) 1.3760(−6)

0.7 3.3362(−4) 4.0999(−3) 1.2536(−3) 1.0082(−7) 4.1676(−4) 3.0472(−11) 2.7037(−6)

0.8 3.0187(−4) 3.3860(−3) 1.0257(−3) 9.1231(−8) 3.3896(−4) 2.7572(−11) 6.8831(−6)

0.9 2.6677(−4) 2.7139(−3) 8.1549(−4) 8.0622(−8) 2.6816(−4) 2.4366(−11) 1.8340(−5)

1.0 2.2868(−4) 2.1054(−3) 6.2888(−4) 6.9111(−8) 2.0607(−4) 2.0887(−11) 2.5312(−5)

where 0 < x ≤ 1 and subject to

u′(0) = 0, 2u(1) + u′(1) = 0. (44)

This problem is known as the Emden-Fowler equation of the second kind and arises in the
study of distribution of heat sources in the human head [9]. The exact solution is not known
explicitly.

The Green’s function for the linear equation L[u] = u′′ = 0 subject to homogeneous
BCs, results in the subsequent form of the PGS (12).

un+1 = un −
∫ x

0
s2

(
1

2
− 1

x

)[
u′′(s) + 2

s
u′(s) + e−u(s)

]
ds

−
∫ 1

x
s
( s
2

− 1
) [

u′′(s) + 2

s
u′(s) + e−u(s)

]
ds, (45)

where the initial iterate is found to be u0 = 0. Table 3 confirms that the PGS strategy is
more accurate, when comparing the numerical results En of this SBVP using our introduced
procedure and the numerical results Vn obtained by Singh and Kumar [33] method and Z10

obtained by Niu et al. approach [27].

Example 3 Consider the following nonlinear SBVP, which is taken from Khuri and Sayfy
[18]:

u′′(x) = − 1

x
u′(x) − eu(x), (46)

where 0 < x < 1 and subject to

u′(0) = 0, u(1) = 0. (47)

The exact solution is given by u(x) = 2 ln
(

A+1
Ax2+1

)
, where A = 3 − 2

√
2.

Similar to the previous example, the problem is also known as the Emden-Fowler equation
of the second kind. The Green’s function for the linear equation L[u] = u′′ = 0, results in
the subsequent form of the PGS (12).
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Table 4 Maximum errors for Example 3 using our scheme and methods in [3,8,27,33]

t E5 T5 E10 T10 V60 [3] W64 [8] Z64 [27]

Max Err 1.9707(−5) 2.5395(−5) 1.0445(−8) 2.1007(−6) 3.5011(−6) 1.2800(−5) 5.0(−6)

un+1 = un −
∫ x

0
s ln x

[
u′′(s) + 1

s
u′(s) + eu(s)

]
ds

−
∫ 1

x
s ln s

[
u′′(s) + 1

s
u′(s) + eu(s)

]
ds, (48)

where the initial iterate is found to be u0 = 0.
Again En is defined as the results of our PGSapproach,while Tn ,Vn[3],Wn[6] and Z64[23]

are the results obtained by the techniques proposed by Singh and Kumar [33], Caglar and
Caglar and Ozer [3], Geng [8], and Niu et al. [27] respectively. A comparison is summarized
in Table 4.

Example 4 Consider the following nonlinear SBVParising in the study of steady-state oxygen
diffusion in spherical cell [34], which is taken from Singh and Kumar [33]:

u′′(x) = −α

x
u′(x) + nu(x)

u(x) + k
, (49)

subject to
u′(0) = 0, 5u(1) + u′(1) = 5, (50)

where n = 0.76129 is the reaction rate and k = 0.03119 is the Michaelis constant (see
[16,18,34]).

This above nonlinear SBVP arises in the study of steady-state oxygen diffusion in a
spherical cell. The exact solution is not known explicitly. The Green’s function for the linear
equation L[u] = u′′ = 0 subject to homogeneous BCs, results in the subsequent form of the
PGS (12):

un+1 = un −
∫ x

0
s2

(
4

5
− 1

x

)[
u′′(s) + α

s
u′(s) − nu(s)

u(s) + k

]
ds

−
∫ 1

x
s

(
4

5
s − 1

) [
u′′(s) + α

s
u′(s) − nu(s)

u(s) + k

]
ds, (51)

where initial iterate u0 = 1, and α = 1. En is defined as the maximum absolute error of our
PGS approach while Vn is the maximum absolute error obtained by the technique proposed
by Singh and Kumar [33]. The results in Table 5 below confirm that the Green’s function
approach is more accurate than the other existing method.

Example 5 Finallywe consider the following nonlinear SBVP,which is also taken fromSingh
and Kumar [33]:

u′′(x) = − 3

x
u′(x) + 1

2
− 1

8u2(x)
, (52)

where 0 < x ≤ 1 and subject to

u′(0) = 0, u(1) = 1. (53)
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Table 5 Residual errors for Example 4 using our scheme and method in [33]

t E2 V2 V4 V6 E4 E10

0.2 2.2818(−5) 7.0398(−4) 1.6620(−5) 3.6849(−7) 4.5829(−10) 3.2336(−24)

0.4 1.9366(−5) 5.7469(−4) 1.1146(−5) 1.9897(−7) 3.8118(−10) 2.6859(−24)

0.6 1.4433(−5) 3.9211(−4) 5.1923(−6) 5.9014(−8) 2.7586(−10) 1.9404(−24)

0.8 8.9991(−6) 2.0025(−4) 1.2866(−6) 4.1663(−9) 1.6676(−10) 1.1731(−24)

1.0 4.0391(−6) 5.1477(−5) 2.7901(−8) 1.1166(−9) 7.3579(−11) 9.3710(−23)

Table 6 Residual errors for Example 5 using our scheme and the method in [33]

t E2 V2 V4 V6 E6 E9 E12

0.1 2.9218(−4) 5.8369(−4) 1.1407(−6) 1.5209(−9) 3.9886(−11) 2.6148(−16) 1.7125(−21)

0.2 2.7762(−4) 5.4431(−4) 1.0645(−6) 1.0287(−9) 3.7464(−11) 2.4557(−16) 1.6084(−21)

0.3 2.5426(−4) 4.8182(−4) 9.4177(−7) 3.9594(−10) 3.3672(−11) 2.2067(−16) 1.4452(−21)

0.4 2.2341(−4) 4.0091(−4) 7.8006(−7) 1.7401(−10) 2.8843(−11) 1.8898(−16) 1.2377(−21)

0.5 1.8685(−4) 3.0800(−4) 5.9227(−7) 5.2101(−10) 2.3383(−11) 1.5316(−16) 1.0031(−21)

0.6 1.4670(−4) 2.1125(−4) 3.9735(−7) 5.8980(−10) 1.7720(−11) 1.1604(−16) 7.5996(−22)

0.7 1.0536(−4) 1.2033(−4) 2.1960(−7) 4.4440(−10) 1.2259(−11) 8.0257(−17) 5.2563(−22)

0.8 6.5391(−5) 4.6368(−5) 8.4986(−8) 2.2468(−10) 7.3396(−12) 4.8040(−17) 3.1463(−22)

0.9 2.9413(−5) 1.7565(−6) 1.2708(−8) 6.1702(−11) 3.2067(−12) 2.0986(−17) 1.3744(−22)

1.0 6.7102(−33) 0.0000(00) 0.0000(00) 0.0000(00) 1.3699(−31) 1.3703(−31) 1.3703(−31)

This nonlinear SBVP arises in the radial stress on a rotationally symmetric shallowmembrane
cap [15]. The exact solution is not known explicitly. The Green’s function for the linear
equation L[u] = u′′ = 0 subject to homogeneous BCs, results in the subsequent form of the
PGS (12).

un+1 = un −
∫ x

0
s3

(
1

2
− 1

2x2

)[
u′′(s) + 3

s
u′(s) + 1

8u2
− 1

2

]
ds

−
∫ 1

x
s

(
s2

2
− 1

2

) [
u′′(s) + 3

s
u′(s) + 1

8u2
− 1

2

]
ds, (54)

where the initial iterate is u0 = 1. En is defined as the maximum absolute error of Green’s
function approach while Rn is the maximum absolute error obtained by the proposed tech-
nique in Singh and Kumar [33]. After comparing the results in the Table 6, we assure that
the PGS strategy is more accurate.

Conclusion

In this paper, a recent approach based on embedding Green’s function into fixed-point iter-
ation, is used to solve an extended class of second order nonlinear singular boundary value
problems. Five test problems have been considered that demonstrate the efficiency of the
scheme. The results confirmed the convergence of the scheme numerically. This claim has
been justified by proving convergence of the proposed scheme as well as its rate of conver-
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gence. Moreover, the scheme seems to be computationally highly accurate for solving the
given class of nonlinear SBVPs, when it compared with other existing methods. In future
work, we plan to apply the proposed approach to optimal control problems (see [12,26]).
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