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Abstract
In this paper, some new relative perturbation bounds for the eigenvalues of diagonalizable
matrices are derived. A relative perturbation bound for singular values is also obtained. The
present results improve some existing results.
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Introduction

Many problems in science and engineering deal with eigenvalues and singular values of
matrices. Here our main concern is perturbation bounds for matrix eigenvalues and singular
values. In general, eigenvalue perturbation problems comprise the method to estimate the
error when the eigenvalues of a perturbed matrix are approximated by the eigenvalues of an
unperturbed matrix. Earlier, the authors working on perturbation theory have concentrated
mainly on the bounds on the absolute differences between the approximate eigenvalue and
true eigenvalue. However, there are practical situations when small eigenvalues should be
determined to high relative accuracy. In this case, bounds on relative error are required. The
main theme of this work is to obtain some relative perturbation bounds for eigenvalues of
diagonalizable matrices. A result on relative perturbation bounds for singular value is also
derived. Some techniques used in this work can be found in [1–4].

The following notations are used in this paper. Mn denotes the set of all matrices of order
n × n with complex entries and Sn is the set of all n! permutations of {1, 2, . . . , n}. At

indicates the transpose of the matrix A. For a matrix A = (ai j ) ∈ Mn we use the following
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notations (see [5,6]),

‖A‖p =
⎛
⎝

n∑
i, j=1

|ai j |p
⎞
⎠

1
p

for p ≥ 1, (1)

and

‖A‖q,p =
⎛
⎝

n∑
j=1

(
n∑

i=1

|ai j |q
) p

q
⎞
⎠

1
p

for p ≥ 1,
1

p
+ 1

q
= 1. (2)

For p = 2, Eq. (1) gives the norm ‖.‖2 which is known as Frobenius norm. The operator
norm is denoted by ‖.‖.

One of the well-known theorem in the direction of absolute perturbation bound for matrix
eigenvalues is the Hoffman–Weildant Theorem [7], which states that, if A and B are normal
n × n matrices and {λ1, λ2, . . . , λn} and {μ1, μ2, . . . , μn} are their eigenvalues respectively
then there exist a permutation π ∈ Sn such that,

(
n∑

i=1

∣∣∣λi − μπ(i)

∣∣∣2
) 1

2

≤ ‖A − B‖2. (3)

In 1998, Eisenstat and Ipsen [8] proved that a Hoffman–Weildant type absolute perturbation
bound implies a relative bound for diagonalizable matrices. They proved that, if A and B both
are diagonalizable matrices of order n and if A is non-singular then there exists a permutation
π ∈ Sn such that,

(
n∑

i=1

∣∣∣λi − μπ(i)

λi

∣∣∣2
) 1

2

≤ κ(X)κ(X̃)‖A−1(A − B)‖2 (4)

where X and X̃ are the invertible matrices which diagonalize the matrices A and B respec-
tively and κ(X) = ‖X‖‖X−1‖ is the condition number of the matrix X . Furthermore, Li and
Sun [9] obtained bounds by taking the matrix A as normal and non-singular and the matrix
B arbitrary. Later Li and Chen [10] generalized the result obtained by Li and Sun [9] for
diagonalizable matrices. Recently Chen [11] has proved a relative perturbation bound for
singular values of n × n matrices. If s1 ≥ s2 ≥ · · · ≥ sn and s̃1 ≥ s̃2 ≥ · · · ≥ s̃n are singular
values of n × n complex matrices A and B respectively, where A is non-singular, then he
proved that, there exists a permutation τ ∈ Sn such that,

√√√√
n∑

i=1

(
si − s̃τ(i)

si

)2

≤
√∥∥A−1E

∥∥2
2 + ∥∥E A−1

∥∥2
2

2
, (5)

where E = B − A.

The results mentioned earlier involve only Frobenius norm. Ikramov [12] partially gen-
eralized the the Hoffman–Weildant theorem with the norm ‖.‖p and obtained the following
result. If A and B are hermitian matrices, then for 1 < p ≤ 2

dp(λ(A), λ(B)) ≤ ‖A − B‖p (6)
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where dp(λ(A), λ(B)) is the “Holder distance” between the eigenvalues of A and B and it
is given by

dp(λ(A), λ(B)) = min
π∈Sn

(
n∑

i=1

∣∣∣λi − μπ(i)

∣∣∣p
) 1

p

. (7)

Recently Zhou et al. [4] generalized the above result for diagonalizable matrices.
Similar as Holder distance dp(λ(A), λ(B)) we define d̃p(λ(A), λ(B)) for relative pertur-

bation as,

d̃p(λ(A), λ(B)) = min
π∈Sn

(
n∑

i=1

∣∣∣λi − μπ(i)

λi

∣∣∣p
) 1

p

, p ≥ 1, (8)

where the matrix A is non-singular. A similar quantity d̃p(s(A), s(B)) can be defined for the
singular values s(A) = {s1, . . . , sn} of a non-singular matrix A and s(B) = {s̃1, . . . , s̃n}
of a matrix B. In this paper we investigated whether a bound similar as (6) holds for
d̃p(λ(A), λ(B)) and d̃p(s(A), s(B)). In “Relative PerturbationBounds” sectionwewill prove
some upper and lower bounds for d̃p(λ(A), λ(B)) of diagonalizable matrices A and B. In
“Relative Perturbation Bound for Singular Values” section we will derive an upper bound
for d̃p(s(A), s(B)).

Relative Perturbation Bounds

Before going to the main results we mention some basic relations which are useful. Let
A = (ai j ) and B = (bi j ) are in Mn and let p ≥ 1 and q be such that 1

p + 1
q = 1, then we

have the following relations (see [6])

‖AB‖p ≤ ‖A‖p‖B‖q,p, (9)

‖AB‖p ≤ ‖At‖q,p‖B‖p. (10)

If B is non-singular, then

‖A‖p

‖B−1‖q,p
≤ ‖AB‖p. (11)

If A is non-singular, then

‖B‖p

‖(A−1)t‖q,p
≤ ‖AB‖p. (12)

For 0 < p ≤ 2

‖AB‖p ≤ ‖A‖p‖B‖p. (13)

A square matrix of non-negative real numbers is called a doubly stochastic matrix if each
row sum and each column sum is 1. A permutation matrix is a square matrix that has exactly
one entry is 1 in each row and each column and 0 elsewhere. The Hadamard Product of
two matrices with same dimension is defined by entrywise multiplication. If A = (ai j ) and
B = (bi j ) are two matrices with same dimension then the Hadamard Product of A and B
denoted by A ◦ B and defined by

A ◦ B = (ai j bi j ).
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For any two n×n real matrices A and B, A ≤e B means (B− A) is entrywise non-negative.
Also if A = (ai j ) be a n × n matrix then we denote A|◦|p = (|ai j |p) for a real p > 0. We
denote the singular values of A as s1(A) ≥ s2(A) ≥ · · · ≥ sn(A). The next lemma involves
entry wise inequality between two matrices.

Lemma 1 [13, Theorem 3.36] Let A ∈ Mn and let p, q be real numbers with 0 < p ≤ 2
and q ≥ 2. Then there exist two doubly stochastic matrices B, C ∈ Mn such that,

s pn (A)B ≤e A|◦|p

and

A|◦|q ≤e s
q
1 (A)C .

We prove the following lemma which is useful in this section.

Lemma 2 Let Y = (yi j ) be n × n doubly stochastic matrix and M = (mi j ) ∈ Mn . Then
there exist permutations τ and τ̄ in Sn such that for p > 0,

n∑
i=1

|mi,τ (i)|p ≤
n∑

i, j=1

|mi j |p yi j ≤
n∑

i=1

|mi,τ̄ (i)|p.

Proof SinceY is doubly stochastic, so bywell-knownBirkhoff’s Theorem it can be expressed
as

Y =
n!∑
k=1

αk Pk,

where Pk are the permutation matrices and
n!∑
k=1

αk = 1, αk ≥ 0. Let τk are the corresponding

permutations of the permutation matrices Pk . For M = (mij) ∈ Mn

M |◦|p ◦ Y = (|mi j |p yi j
)
.

Let e denotes the n × 1 column vector whose components are all 1. Then

n∑
i, j=1

|mi j |p yi j = et (M |◦|p ◦ Y )e.

Let

et (M |◦|p ◦ P)e = min{et (M |◦|p ◦ Pk)e : 1 ≤ k ≤ n!}
and et (M |◦|p ◦ P̄)e = max{et (M |◦|p ◦ Pk)e : 1 ≤ k ≤ n!}.

Also let τ and τ̄ are the permutations corresponding P and P̄ respectively. Therefore we
have,

n∑
i, j=1

|mi j |p yi j = et (M |◦|p ◦ Y )e = et
(
M |◦|p ◦

(
n!∑
k=1

αk Pk

))
e

= et
(

n!∑
k=1

αk

(
M |◦|p ◦ Pk

))
e
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=
n!∑
k=1

αk

(
et (M |◦|p ◦ Pk)e

)

≥
(

min
1≤k≤n!

et (M |◦|p ◦ Pk)e

) n!∑
k=1

αk

= et (M |◦|p ◦ P)e.

Since P is a permutation matrix and τ be the corresponding permutation, so from above
relation

n∑
i, j=1

|mi j |p yi j ≥ et (M |◦|p ◦ P)e =
n∑

i=1

|miτ(i)|p.

Similarly for other part we have

n∑
i, j=1

|mi j |p yi j = et (M |◦|p ◦ Y )e = et
(
M |◦|p ◦

(
n!∑
k=1

αk Pk

))
e

=
n!∑
k=1

αk

(
et (M |◦|p ◦ Pk)e

)

≤
(

max
1≤k≤n! e

t (M |◦|p ◦ Pk)e

) n!∑
k=1

αk

= et (M |◦|p ◦ P̄)e =
n∑

i=1

|mi τ̄ (i)|p.

��
Let us consider the matrices A and B in Mn with eigenvalues {α1, α2, . . . , αn} and

{β1, β2, . . . , βn} respectively and E = A − B . Then there are invertible matrices P , Q
and diagonal matrices D1, D2 such that,

A = PD1P
−1 (14)

B = QD2Q
−1 (15)

where D1, D2 are diagonal matrices containing the eigenvalues of A, B respectively.

Theorem 1 If A, B are diagonalizable matrices and follow the above mentioned decompo-
sitions then there exists permutation π in Sn such that

[
n∑

i=1

∣∣∣αi − βπ(i)

αi

∣∣∣p
] 1

p

≤ ‖Q−1‖‖P‖‖(P−1)t‖q,p‖Q‖q,p‖A−1E‖p

and
[

n∑
i=1

∣∣∣αi − βπ(i)

αi

∣∣∣p
] 1

p

≤ ‖Q−1‖‖P‖‖P−1‖p‖Q‖p‖A−1E‖p,

where 1 < p ≤ 2.
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Proof From Eqs. (14) and (15) we have

−A−1E = A−1B − I = (PD−1
1 P−1)(QD2Q

−1) − I .

Multiplying P−1 from left and Q from right in the above relation we get,

−P−1A−1EQ = D−1
1 P−1QD2 − P−1Q.

Let P−1Q = Z = (zij). Then

− P−1A−1EQ = D−1
1 ZD2 − Z . (16)

Taking the norm ‖.‖p on both sides of the above equation where 1 ≤ p < 2, we get

‖P−1A−1EQ‖p
p =

n∑
i, j=1

|zi j |p|α−1
i β j − 1|p.

From Lemma 1 there exists a doubly stochastic matrix B = (bi j ) such that for 1 < p ≤ 2

s pn (Z)bi j ≤ |zi j |p ∀i, j .
Therefore,

n∑
i, j=1

bi j |α−1
i β j − 1|p ≤ ‖Z−1‖p‖P−1A−1EQ‖p

p.

Again by Lemma 2 there exists a permutation π ∈ Sn such that,

n∑
i=1

|α−1
i βπ(i) − 1|p ≤ ‖Z−1‖p‖P−1A−1EQ‖p

p.

i.e.,

[
n∑

i=1

|α−1
i βπ(i) − 1|p

] 1
p

≤ ‖Q−1P‖‖P−1A−1EQ‖p. (17)

Using (9) and (10) we have

[
n∑

i=1

∣∣∣∣
αi − βπ(i)

αi

∣∣∣∣
p
] 1

p

≤ ‖Q−1‖‖P‖‖(P−1)t‖q,p‖Q‖q,p‖A−1E‖p.

Also from (17) using (13) we have

[
n∑

i=1

∣∣∣∣
αi − βπ(i)

αi

∣∣∣∣
p
] 1

p

≤ ‖Q−1‖‖P‖‖P−1‖p‖Q‖p‖A−1E‖p.

��
Theorem 2 Under the same assumption of Theorem 1 there is permutation σ in Sn such that

[
n∑

i=1

∣∣∣∣
αi − βσ(i)

αi

∣∣∣∣
q
] 1

q

≥ ‖A−1E‖q
‖P−1‖‖Q‖‖Pt‖p,q‖Q−1‖p,q

.

where q ≥ 2.
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Proof For 2 ≤ q, taking norm ‖.‖q on both sides of (16) we have,

‖P−1A−1EQ‖qq =
n∑

i, j=1

|zi j |q |α−1
i β j − 1|q .

From Lemma 1 there exists a doubly stochastic matrix C = (ci j ) such that

|zi j |q ≤ sq1 (Z)ci j ∀i, j,
where Z = P−1Q. Therefore,

n∑
i, j=1

ci j |α−1
i β j − 1|q ≥ (‖Z‖q)−1 ‖P−1A−1EQ‖qq .

By Lemma 2 there exists a permutation σ ∈ Sn such that,

n∑
i, j=1

|α−1
i βσ(i) − 1|q ≥ ‖P−1A−1EQ‖qq

‖Z‖q .

Using (11) and (12) we get

[
n∑

i=1

∣∣∣∣
αi − βσ(i)

αi

∣∣∣∣
q
] 1

q

≥ ‖P−1A−1EQ‖q
‖P−1Q‖

≥ ‖A−1E‖q
‖P−1‖‖Q‖‖Pt‖p,q‖Q−1‖p,q

.

��

Relative Perturbation Bound for Singular Values

Let A, B ∈ Mn where A is non-singular, the singular value decompositions (SVD)

A = UΣV ∗ and B = U1Σ̃V ∗
1

respectively, where U , V ∗,U1, V ∗
1 are n × n unitary matrices, and

Σ = diag(s1, . . . , sn) and Σ̃ = diag(s̃1, . . . , s̃n),

and s1 ≥ s2 ≥ · · · ≥ sn and s̃1 ≥ s̃2 ≥ · · · ≥ s̃n are singular values of A and B respectively.
In the next Theorem we use the following relation,

(a p + bp) ≥ 21−p(a + b)p, a, b ≥ 0, p ≥ 1.

Theorem 3 Let A, B ∈ Mn with A is non-singular, follow the above mentioned singular
value decomposition. Then there exists permutation π of Sn such that for p > 1,

[
n∑

i=1

∣∣∣ si − s̃π(i)

si

∣∣∣p
] 1

p

≤ [
2p−1(‖V ∗A−1EV1‖p

p + ‖U∗(E A−1)∗U1‖p
p)

] 1
p ,

where E = B − A.
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Proof Given A = UΣV ∗ and B = U1Σ̃V ∗
1 ,whereU , V ,U1, V1 are n×n unitary matrices.

Since A is non-singular so,

A−1E = A−1(A + E) − I

= (VΣ−1U∗)(U1Σ̃V ∗
1 ) − I ,

⇒ V ∗A−1EV1 = Σ−1U∗U1Σ̃ − V ∗V1
= Σ−1PΣ̃ − Q,

where U∗U1 = P = (pi j ) and V ∗V1 = Q = (qi j ). Therefore,

‖V ∗A−1EV1‖p
p =

n∑
i, j=1

∣∣∣ s̃ j
si

pi j − qi j
∣∣∣p. (18)

Also

E A−1 = (A + E)A−1 − I

= (U1Σ̃V ∗
1 )(VΣ−1U∗) − I .

In addition

(E A−1)∗ = UΣ−1V ∗V1Σ̃U∗
1 − I

⇒ U∗(E A−1)∗U1 = Σ−1QΣ̃ − P.

Therefore

‖U∗(E A−1)∗U1‖p
p =

n∑
i, j=1

∣∣∣ s̃ j
si
qi j − pi j

∣∣∣p. (19)

Adding the equations (18) and (19) we get,

‖V ∗A−1EV1‖p
p + ‖U∗(E A−1)∗U1‖p

p =
n∑

i, j=1

[∣∣∣ s̃ j
si

pi j − qi j
∣∣∣p +

∣∣∣ s̃ j
si
qi j − pi j

∣∣∣p
]

≥ 21−p
n∑

i, j=1

[∣∣∣ s̃ j
si

pi j − qi j
∣∣∣ +

∣∣∣ s̃ j
si
qi j − pi j

∣∣∣
]p

≥ 21−p
n∑

i, j=1

[∣∣∣ s̃ j
si

|pi j | − |qi j |
∣∣∣ +

∣∣∣ s̃ j
si

|qi j | − |pi j |
∣∣∣
]p

≥ 21−p
n∑

i, j=1

[∣∣∣ s̃ j
si

|pi j | − |qi j | + s̃ j
si

|qi j | − |pi j |
∣∣∣
]p

= 21−p
n∑

i, j=1

[∣∣∣ s̃ j
si

(|pi j | + |qi j |) − (|pi j | + |qi j |)
∣∣∣
]p

= 21−p
n∑

i, j=1

[∣∣∣ s̃ j
si

− 1
∣∣∣p(|pi j | + |qi j |)p

]

≥ 21−p
n∑

i, j=1

[∣∣∣ s̃ j
si

− 1
∣∣∣p|pi j |p

]

From Lemma 1 there exists double stochastic matrix B = (bi j ) such that,

‖V ∗A−1EV1‖p
p + ‖U∗(E A−1)∗U1‖p

p ≥ 21−ps pn (P)

n∑
i, j=1

[∣∣∣ s̃ j
si

− 1
∣∣∣pbi j

]
.
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Again from Lemma 2 there exists a permutation π of Sn such that,

‖V ∗A−1EV1‖p
p + ‖U∗(E A−1)∗U1‖p

p ≥ 21−p
n∑

i=1

[∣∣∣ s̃π(i)

si
− 1

∣∣∣p
]

,

which yields the desired result. ��
Remark 1 The results on relative perturbation bounds obtained in “Relative Perturbation
Bounds” section generalize Corollary 5.2 of [8] and the result for singular values, proved in
“Relative Perturbation Bound for Singular Values” section generalize Theorem 2.2 of [11].

As we have mentioned previously, relative error bounds are required when there are
eigenvalues of small magnitude. There are practical situations where small eigenvalues have
physicalmeaning and such situations include computingmodes of vibration in a finite element
context, and computing energy levels in quantum mechanical systems [14]. Also, relative
perturbation bounds for eigenvalues and singular values have an applications in developing
high accuracy numerical methods for eigenvalues and singular value problems [15,16].
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