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Abstract
Recently, Zhang and Padrino in (Int J Multiph Flow 92:70–81, 2017) derived an equation
for diffusion in random networks consisting of junction pockets and connecting channels
by applying the ensemble average method to the mass conservation principle. The resulting
integro-differential equation was solved numerically using the finite volume method for
the test case of one-dimensional diffusion in the half-line. For early time, they found that
the numerical predictions of pocket mass density depend on the similarity variable xt−1/4,
describing sub-diffusion, instead of xt−1/2 as in ordinary diffusion. They argue that the sub-
diffusive trend is the result of the time required to establish a linear concentration profile inside
a channel. By theoretical analysis of the diffusion equation for small time, they confirmed
this finding. Nevertheless, they did not present an exact solution for the small-time limit to
compare with. Here, starting with their small-time leading order diffusion equation in (x, t)
space, we use elements of fractional calculus to cast it into a form for which an analytical
solution has been given in the literature for the same boundary and initial conditions in terms
of the Wright function (Gorenflo et al. in J Comput Appl Math 118(1):175–191, 2000). This
solution, in turn, iswritten in terms of generalized hypergeometric functions, readily available
in calculus software packages. Comparing predictions from the exact solution with Zhang
and Padrino’s numerical results leads to excellent agreement, serving as validation of their
numerical approach.
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Introduction

Normal or ordinary diffusion is an essentially well understood transport process. It is charac-
terized by the linear evolution with time of the mean squared displacement of the transported
agent.Amore intriguing, complex phenomenon is that of anomalous diffusion. Such a process
is classified as either sub-diffusive or super-diffusive, depending onwhether themean squared
displacement evolution with time is slower or faster than ordinary diffusion, respectively
[1–3]. Rather than being exceptional, observations of anomalous diffusion are frequently
reported [4]. Examples include charge carriers transport in amorphous semiconductors [5];
bacterial motion [6]; transport in micelle systems [7], in fractal geometries [8,9], in porous
media [10,11], and in random fractured networks [12]; bead dynamics in polymeric networks
[13,14], and single-file particle diffusion [15–19], among others.

In a recent work, Zhang and Padrino [20] (hereinafter ZP) applied the ensemble averaging
method to model mass diffusion in random networks consisting of tortuous channels and
junctionpockets. In this configuration, pockets havevolumebut their typical size is considered
to be small in comparison with the length of the channels. Quantities of interest, such as mass
density, are thus assumed spatially uniform inside pockets. Startingwith the statement ofmass
conservation, they derived an averaged transport equation for the pocket mass density. To
attain closure, mass transport inside a channel was considered a one-dimensional diffusion
process. The resulting macroscopic expression is an integro-differential equation accounting
for statistical properties of the network, such as pocket distribution, connectivity, channel
length, and cross-sectional area. Compared to the classical diffusion equation, the closed
averaged equation contains two additional terms that include time integrals representing
history effects of mass diffusion inside the channels. They noted that the so-called dual-
porosity model [21] is equivalent to the leading order approximation of the integration kernel
in their new model when the diffusion time scale inside the channels is small compared to
the macroscopic time scale.

ZP then applied the averaged transport equation to the case of one-dimensional diffusion
in an ensemble of random networks in the semi-infinite space. They solved the governing
equation numerically finding that the pocket mass density at early times is a function of the
similarity variable xt−1/4 instead of xt−1/2 corresponding to ordinary diffusion, regime to
which the mass diffusion evolves after the initial sub-diffusive behavior. They explained that
the initial sub-diffusion, which for certain cases can be even slower before its transition to
classical diffusion, persists until the concentration profile inside a channel becomes linear. By
using random walk theory, they recovered this trend. They also confirmed the sub-diffusive
behavior of their numerical results by carrying out an asymptotic analysis for small time.
Nevertheless, they did not pursue further the analytical work and did not present an exact
solution of the chosen initial-boundary value problem in the limit of small time.

The aim of this article is to report on the exact solution in the limit of small time and to
compare its predictions with the numerical results given in ZP. To write the exact solution,
we present the model equation within the framework of fractional calculus. Recently, the
author [22] used this tool to present a solution to the same problem for small-time by writing
the governing equation as a fractional integral equation with known analytical solution from
the literature given in terms of the Fox H -function. For ease of computation, it was re-
written in terms of theMeijerG-function, available in computer calculus programs. Excellent
agreement with the numerical results in ZP was attained. In contrast, in the present work, by
casting the small-time governing equation as a fractional differential equation instead of a
fractional integral equation, an alternative, more convenient form of the solution is written—
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also extracted from the literature—this time in terms of theWright function. This function is
defined as a relatively simple series, easy to program (see below). For the interval considered
here for its argument, the series exhibits fast convergence.

Although the fractional calculus has been known for more than two centuries [23,24],
its application to modeling anomalous diffusion seems to be rather recent [25–29]. The
differential equations of fractional order have proven to be well suited to the theoretical
analysis of anomalous diffusion [29], in which case they give rise to the so-called fractional
diffusion equation [28,30]. This equation has been obtained from a rigorous application of
the theory of continuous time random walks [29,31–33]. For discussions on the fundamental
and applications of fractional calculus, the reader is referred to some of the comprehensive
monographs written on the subject (e.g., [24,34–41]).

One-Dimensional Diffusion in a RandomNetwork

After introducing in the ensemble-averagedmass balance the one-dimensional ordinary diffu-
sion model for the mass flux in individual channels, ZP obtained a linear, integro-differential
equation for the pocket mass density evolution in random networks at the macroscale, valid
in the three-dimensional space. An important feature of the approach proposed by ZP in
the application of the ensemble-averaging formalism is that processes other than diffusion
can be adopted to model mass transport in a channel and attain closure. Depending on the
chosen model, a non-linear averaged equation may result. Another essential element of the
ensemble averagemethod applied in ZP is the introduction of the probability density function
P(x, y, �) of having a pocket at x connected to another pocket at y by a channel of length
�. In the model derivation, the networks are assumed to be statistically isotropic so that they
write P(x, y, �) = P̂(x, r , �)/(4πr2), with distance r = |y− x|. For a particular application
of the model, the functional form of P̂ must be specified.

Considering as a test problem the one-dimensional diffusion in a random network occupy-
ing the half-line, they wrote the governing averaged equation for the evolution of the pocket
mass density ρp(x, t) in dimensionless form as

∂ρp

∂t
+ 4

θc

θp

∫ t

0
[K (t − τ) − K (4t − 4τ)]

∂ρp

∂τ
dτ = ∂2ρp

∂x2
+ ∂2

∂x2

∫ t

0
K (4t − 4τ)

∂ρp

∂τ
dτ,

(1)
for x > 0 and t > 0, and subjected to the initial and boundary conditions

ρp(x, 0
+) = 0, x > 0, (2)

ρp(0
+, t) = 1, ρp(+∞, t) = 0, t > 0. (3)

The problem was non-dimensionalized using �0
√

κ0θc/θp , �20/D̃, and ρ0 as the length, time,
and mass density scales, respectively. Here, �0 denotes the typical channel length; ρ0, the
pocket mass density on x = 0+; D̃, the cross-sectional-area-weighted average diffusion
coefficient inside the channel; θc and θp , the channel and pocket volume fractions, respec-
tively, and κ0 = π/(8T 2

0 ), where T0 is a reference tortuosity. Parameter κ0 results from the
additional assumptions, introduced for this particular test problem, namely, that the density
function P̂ is also homogeneous andmodeled with theMaxwell-Boltzmann distribution with
its mean given by �0/T0, and that all connecting channels have the fixed length �0. The kernel
K in the memory integrals of (1) is given by the series
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K (u) = 2
∞∑
j=1

e− j2π2u = 1√
πu

⎛
⎝1 + 2

∞∑
j=1

e− j2/u

⎞
⎠ − 1, (4)

which arises from the Fourier Series solution of ordinary diffusion in a single channel. ZP
proposed a numerical approach consisting in casting the general linear integro-differential
mass balance equation from which (1) is obtained into a system of linear partial differential
equations. To this system, they applied the finite volumemethod and explicit time integration.
After employing this numerical approach to solve (1), they found that, for small time and
for different values of the channel-to-pocket volume fraction ratio θc/θp , the pocket mass
density behaves as a function of the one variable xt−1/4, thereby showing self-similarity.
They show that a point of constant pocket density changes its position according to x ∝ t1/4,
corresponding to an anomalous, sub-diffusive process [4]. After the early-time sub-diffusion,
the transport process transitions to the ordinary diffusion similarity law. Their analytical
investigation of the leading order balance in the diffusion equation in the limit of small time
(see Appendix A.6 in their paper) confirmed this result. This leading order balance is given
by the first and last terms in (1), i.e.

∂ρp

∂t
= 1

2
√

π

∫ t

0
(t − τ)−

1
2

∂

∂τ

(
∂2ρp

∂x2

)
dτ, (5)

subjected to the initial and boundary conditions (2) and (3). In writing (5), the fact that,
according to (4), K (u) becomes (πu)−1/2 for small u was used. In the next section, we
write the exact solution to this problem in two different but equivalent forms with the aid of
elementary concepts from fractional calculus.

Analysis by Fractional Calculus

We begin the analysis by introducing some useful definitions and identities from fractional
calculus. These are taken from the works of Gorenflo and Mainardi [23] and Mainardi,
Pagnini, andGorenflo [42] unless otherwise noted. TheRiemann–Liouville fractional integral
of order β > 0 is defined as

t J
α = 1

�(α)

∫ t

0
(t − τ)α−1 f (τ )dτ, α > 0, (6)

where �() denotes the Gamma function. Conventionally, t J 0 = I . This operator satisfies

t J
α
t J

β = t J
β
t J

α = t J
α+β, α � 0, β � 0. (7)

In terms of this integral operator, we now introduce the fractional derivative of order α in the
Caputo sense, denoted as t Dα∗ , and defined by

t D
α∗ f (t) = t J

m−α
t D

m f (t), (8)

respectively, with m − 1 < α � m, where m is a positive integer. Here, the operator
t Dm ≡ dm/dtm . In the particular case of m = 1, this definition may be written in explicit
form as

t D
α∗ f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

�(1 − α)

∫ t

0
(t − τ)−α d f

dτ
(τ )dτ, 0 < α < 1,

d f

dτ
, α = 1,

(9)
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Letting Dα = �(α)/(2
√

π), we can now write (5) as

∂ρp

∂t
= Dα t D

1−α∗
∂2ρp

∂x2
, (10)

with α = 1/2. For the sake of the discussion, in what follows we will consider the general
case 0 < α < 1, except where noted otherwise.

To find a solution of (10), let us apply the integral operator t J 1−α to both sides of this
equation and use t Dα∗ = t J 1−α

t D1. This yields

t J
1−α ∂ρp

∂t
= Dα t J

1−α
t J

α
t D

1 ∂2ρp

∂x2
,

t D
α∗ ρp = Dα t J

1
t D

1 ∂2ρp

∂x2
,

t D
α∗ ρp = Dα

∂2ρp

∂x2
− Dα

∂2ρpo

∂x2
, (11)

where we have used the fact that t J 1t D1 f (t) = f (t) − f (0+) and ρpo(x) = ρp(x, 0+) is
the initial condition. In the particular case treated here, ρpo(x) = 0, and (11) reduces to the
fractional diffusion equation

t D
α∗ ρp = Dα

∂2ρp

∂x2
. (12)

Green’s functions for this equation for the entire and half lines have been obtained byMainardi
[43] (see also [44]). By applying the Laplace transform, Gorenflo, Luchko, andMainardi [45]
obtained the solution of (12) with constant initial and boundary conditions, a particular case
of the so-called “signalling” problem, in terms of the Wright function (see their Theorem 6).
By specializing their result to conditions (2) and (3), with α = 1/2, we have the solution

ρp(x, t) = W−1/4,1 (−η) , η = x t−1/4/
√
Dα = √

2 x t−1/4. (13)

The Wright function is defined by [46]

Wν,μ(z) =
∞∑
k=0

zk

k!�(νk + μ)
, (14)

where ν > −1 and μ are real numbers; z is a complex number. Expression (13) not only
confirms that the pocket mass density is self-similar with similarity variable xt−1/4, as shown
originally by ZP, but also gives a functional form of the dependency.

Expressions (5), (10), or (12) represent the small-time asymptotics arising from the general
mass transport equation (1), valid at any time, which, in turn, resulted from ensemble-
averaging the statement of mass conservation written for a collection of channels connected
by junction pockets. On the other hand, fractional time derivatives acting on the pressure
gradient have been introduced, on a somewhat heuristic basis, to describe transport in porous
media with significant disorder or heterogeneities or with time-dependent permeability [47–
51]. Other alike forms of memory effects in the flux, based on the theory of continuum time
random walks, have been used to model flow to fracture wells or in reservoirs showing both
obstacles and preferential passages [52,53].

It is convenient to write the solution (13) in terms of generalized hypergeometric functions
which can be directly computed using well-known computer algebra and calculus software.
The analysis by Luchko [54] for the Wright function with ν = −1/2 is extended here to the
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somewhat more involved case with ν = −1/4. The generalized hypergeometric function is
defined as

pFq
(
a1, . . . , ap; b1, . . . , bq ; z

) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n! , (15)

when this series converges. Here (a)n denotes the Pochhammer’s symbol defined as

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) = � (a + n) /� (a) with a �= 0,−1,−2, . . . .
(16)

To write (13) in terms of generalized hypergeometric functions, the recurrence, reflection,
and duplication relations for the Gamma function, namely,

�(z + 1) = z�(z), (17)

�(z)�(z − 1) = π/ sin(π z), (18)

and

�(2z) = π−1/222z−1�(z)�

(
z + 1

2

)
for 2z �= 0,−1,−2, . . . , (19)

respectively, will prove to be useful. Here, z is a complex number. In addition, relation
�(n + 1) = n!, for integer n � 0, will also be needed.

We begin by splitting the defining series of (13) into a series summing only over even
indexes plus a series summing only over odd indexes, i.e.

W−1/4,1(x) =
∞∑
k=0

xk

k!� (
1 − 1

4k
) =

∞∑
�=0

x2�

(2�)! �
(
1 − 1

2�
) +

∞∑
�=0

x2�+1

(2� + 1)! �
(
1 − 1

2� − 1
4

) ,

(20)
and repeating the procedure for each of these series yields

W−1/4,1(x) =
∞∑
n=0

x4n

(4n)! � (1 − n)
+

∞∑
n=0

x4n+2

(4n + 2)! �
(
1 − n − 1

2

)

+
∞∑
n=0

x4n+1

(4n + 1)! �
(
1 − n − 1

4

) +
∞∑
n=0

x4n+3

(4n + 3)! �
(
1 − n − 3

4

) . (21)

For the first series in the right-hand side of (21) we have

∞∑
n=0

x4n

(4n)! � (1 − n)
= 1, (22)

because, by the reflection property (18), 1/�(1− n) = 0 for n � 1. Calculations for each of
the last three series in the right-hand side of (21) are very similar. It thus suffices to present
in some detail the calculations for one of them. For instance, for the third series we can write
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∞∑
n=0

x4n+1

(4n + 1)! �
(
1 − n − 1

4

) = x

π

∞∑
n=0

�
(
n + 1

4

)
sin π

(
n + 1

4

)
(4n + 1)! x4n

= x
√

π

2
√
2

∞∑
n=0

�
(
n + 1

4

)
sin π

(
n + 1

4

)
�

(
n + 1

2

)
�

(
n + 3

4

)
�

(
n + 5

4

)
n!

( x
4

)4n

= x
√

π

4

�
( 1
4

)
�

( 1
2

)
�

( 3
4

)
�

(
5
4

)
∞∑
n=0

( 1
4

)
n( 1

2

)
n

( 3
4

)
n

(
5
4

)
n
n!

(
− x4

256

)n

= x�
( 1
4

)
√
2π

1F3

(
1

4
; 1
2
,
3

4
,
5

4
;− x4

256

)
, (23)

where the first equality results from using the reflection relation (18) for �(1 − n − 1/4);
the second equality is found by computing (4n + 1)! = �(4n + 2), applying the duplication
formula (19), and the identity �(n + 1) = n!; the third equality comes from expanding the
sine function in the numerator of the second equality and using Prochhammer’s symbol (16),
and, finally, the last equality is obtained from the definition of the generalized hypergeometric
function (15) and by applying duplication relation (19) to compute �(5/4).

Computing the remaining two series in (21) results in

ρp(x, t) = W−1/4,1 (−η) = 1 − η�
( 1
4

)
√
2π

1F3

(
1

4
; 1
2
,
3

4
,
5

4
;− η4

256

)

+ η2

2
√

π
1F3

(
1

2
; 3
4
,
5

4
,
3

2
;− η4

256

)

− η3�
( 3
4

)
6
√
2π

1F3

(
3

4
; 5
4
,
3

2
,
7

4
;− η4

256

)
. (24)

Next, the two forms of the solution for pocket mass density ρp written in this section are
evaluated for a meaningful interval of the similarity variable and their predictions plotted
against the numerical results of ZP.

Comparison with Numerical Results

We now proceed to evaluate the exact solutions (13) and (24) to compare with the numerical
solution obtained by ZP using the finite volume method. We computed these expressions
for the interval 0 � x t−1/4 � 4, determined from the numerical data in ZP. Expression
(24) is directly evaluated using the corresponding method available in well-known computer
calculus software. The results are shown in Fig. 1. Note that ρp falls from one to practically
zero within this interval.

ZP considered model equation (1) subjected to conditions (2) and (3) and computed the
pocket mass density ρp as a function of the position x for various times t and for three values
of the channel-to-pocket volume fraction ratio, namely, θc/θp = 0.005, 0.05, and 5. They
plotted ρp versus variable xt−1/4 for each time and the last two values of θc/θp and found
that, for times smaller than certain threshold, all the curves fall onto each other, indicating
that ρp is self-similar with similarity variable xt−1/4 in agreement with their theoretical result
in the limit of small time—for θc/θp = 0.005, their figure 3 shows that the same early-time
self-similarity holds. For our purpose, we picked three sets of data from their results, one for
each θc/θp , making sure that each set corresponds to a time where ρp is self-similar with
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Fig. 1 Pocket mass density as a
function of xt−1/4. The solid line
represents the numerical results
obtained in ZP using three values
of the channel-to-pocket volume
fraction ratio θc/θp , whereas
symbols and correspond to
results from (13) and (24),
respectively

0 1 2 3 4
x t-1/4

0

0.2

0.4

0.6

0.8

1

ρp

Numerical results
Wright function
Hypergeometric
function

respect to xt−1/4. In Fig. 1, we plotted the pocket density ρp versus xt−1/4 for the three data
sets, showing that each set of numerical results falls onto the exact solution; hence, excellent
agreement exists between the exact and numerical results. This serves as validation of the
numerical approach presented by ZP.

It should be said that a path to convert the representations (13) and (24) to the forms of
the solution given in [22] is not evident. We realized they are equivalent by plotting them
against the numerical results.

The transition from the initial sub-diffusion similarity described by xt−1/4 to the ordinary
diffusion similarity depending on xt−1/2 is affected by the channel-to-pocket volume fraction
ratio. This is explained in detail in ZP. If the channel-to-pocket volume fraction ratio is greater
than one, the channel storage capacity change is significant. The loss of the sub-diffusive
similarity xt−1/4 is caused by the emergence of the second term on the left-hand side of (1) as
a function of time. The transition between the early sub-diffusive similarity and the terminal
ordinary diffusion then passes through an intermediate stage of even slower sub-diffusion
because of the increase in channel capacity. On the other hand, if the channel-to-pocket
volume fraction ratio is much smaller than one, the second term in the left-hand side of (1) is
negligible, and the transition occurs very rapidly. In both cases, ordinary diffusion becomes
dominant at about a single-channel diffusion timewhen the density profile inside the channels
approaches linearity.

Summary and Conclusion

We studied early-time mass diffusion in random networks made of pockets and connecting
channels. In the case of diffusion in the half-line, the leading order balance for mass diffusion
in the limit of small time was given by ZP from their ensemble averaged diffusion equation,
valid for any time. By using concepts from fractional calculus, we recast this small-time
equation in the form of a fractional diffusion equation for which an exact solution has been
obtained in the literature in terms of the Wright function. We re-wrote this solution as a
sum of generalized hypergeometric functions. In both cases, the solution shows that the
average pocket mass density is a function of the similarity variable xt−1/4, corresponding to
sub-diffusive transport. Predictions from these two equivalent expressions match very well
numerical results obtained by ZP using the finite volume method.
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