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Abstract
In this article, a delayed reaction-diffusion model of hepatitis B virus (HBV) infection with
HBV DNA-containing capsids and cytotoxic T lymphocyte (CTL) immune response is pre-
sented and investigated by incorporating the spatialmobility of both capsids and virions.Also,
the discrete time delays in the production of productively infected hepatocytes and matured
capsids are taken into account in this model. First, the well-posedness of the concerned
model is established in terms of existence, uniqueness, non-negativity and boundedness of
solutions. The threshold conditions in terms of basic reproduction number R0 and immune
response reproduction number RCT L for global stability of the three spatially homogeneous
steady states are established by constructing appropriate Lyapunov functions and by using
linearization technique.We show that disease-free steady state, immune-free steady state and
interior steady state with CTL immune response are globally asymptotically stable if R0 ≤ 1,
RCT L ≤ 1 < R0 and RCT L > 1, respectively. Finally, several numerical simulations are
carried out in order to illustrate the theoretical results obtained.

Keywords HBV infection · Diffusion · Delay · Global stability · Lyapunov function ·
Numerical simulation

Introduction

Hepatitis B virus (HBV) infection has emerged as a critical global health problem. The
infection is caused from infection of liver cells (hepatocytes) by HBV which is a member of
Hepadnaviridae family of viruses [1]. The infection can be acute or chronic in nature. While
acute illness lasts for several weeks and resolves in the majority of cases with predominant
immune responses, the chronic illness can eventually lead to spectrum of severe diseases such
as liver cirrhosis, membranous glomerulonephritis and hepatocellular carcinoma (HCC) [2].
As one of the key factors, immune responses play an important role for determining whether
the infection is acute or chronic [1]. During the infection of hepatocytes, HBV gets converted
into covalently closed circular DNA (cccDNA) inside the nucleus of the infected hepatocyte
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[2,3]. The several copies of cccDNA produce the pre-genomic and sub-genomic mRNAs and
pre-genomic mRNA then follows reverse transcription procedure to become DNA which
leads to the production of HBV DNA-containing capsid [2,3]. These HBV DNA-containing
capsids are then transmitted to plasma to get converted into virus particles [2,3].

For the past few decades, several mathematical models have been proposed and investi-
gated to understand the mechanisms and dynamics of within-host viral infections by using
ordinary differential equations (ODEs), delay differential equations (DDEs) and partial differ-
ential equations (PDEs). Nowak et al. [4] introduced a basicHBV infectionmodel comprising
a system of three ODEs. Nowak and Bangham extended this basic viral infection model by
incorporating cytotoxic T lymphocyte (CTL) immune responses in [5]. By incorporating a
standard incidence function in place of the mass action term for the infection process, Min et
al. [6] amended the basic model in [4]. Wang et al. [7] further extended this model by taking
into account the cytokine-mediated cure of infected hepatocytes and performed a global sta-
bility analysis. In [8], Hews et al. extended the basic model by replacing the constant infusion
of uninfected hepatocytes with a logistic growth term and the mass action term for infection
process by a standard incidence function. Li et al. [9] showed the presence of Hopf bifurca-
tion for an HBV infection model with logistic hepatocyte growth. Manna and Chakrabarty
presented and investigated an HBV infection model with intracellular HBVDNA-containing
capsids in [10]. Herz et al. [11] introduced a delayed viral infection model by incorporating
intracellular delay for virus production from an infected cell. Gourley et al. [12] proposed and
analyzed a delay-induced HBV infection model with a standard incidence function. Eiken-
berry et al. [13] presented and analyzed a delay-induced HBV infection model with logistic
hepatocyte growth and a standard incidence function. Manna and Chakrabarty proposed and
studied global properties of an HBV infection model with two discrete delays and capsids
in [14]. Pang et al. investigated the role of cytolytic and non-cytolytic mechanisms of CTL
cells for HBV infection in [15]. Global stability of a delay-induced HBV infection model
with a standard incidence function and CTL immune responses has been discussed in [16].
Recently,Manna [17] discussed the global properties of anHBV infectionmodelwith capsids
and CTL immune responses.

It is observed that biological motions of populations play an important role in many bio-
logical processes [18]. But the models discussed above ignore such spatial mobility of related
populations by considering that the populations are well mixed [19]. In recent years, several
PDE driven mathematical models of viral infection have been proposed and investigated.
Wang and Wang [20] proposed and analyzed a diffusive HBV infection model by taking
into account the free movement of viruses in liver and neglecting the spatial mobility for
susceptible and infected hepatocytes. Wang et al. [21] further extended the model by incor-
porating a time delay in the production of productively infected hepatocytes and investigated
the dynamics. The existence of travelingwave solutions to this extendedmodel was discussed
in [22]. Xu and Ma [23] proposed and analyzed a similar delayed diffusive HBV infection
model with saturation response term for the infection process. Chí et al. also studied the
dynamics of a similar type of HBV infection model in [24]. Zhang and Xu [25] investigated
the dynamics of a diffusion-driven HBV infection model with Beddington-DeAngelis func-
tional response and delay. Similar analysis was carried out in [26] for a delayed diffusive
viral infection model with a specific nonlinear functional response. In [27], Hattaf and Yousfi
considered a generalized diffusive HBV infection model with two delays and analyzed it.
In [28], they showed how Lyapunov functions obtained from ODE-driven viral infection
models can be used to prove the global stability of the corresponding reaction-diffusion
systems. Shaoli et al. [29] investigated the global properties of a diffusive HBV infection
model with CTL immune response and a nonlinear incidence function. By considering the
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spatial mobility of both capsids and virions, Manna and Chakrabarty [30] analyzed the global
properties of a diffusive HBV infection model and further, presented a suitable non-standard
finite difference (NSFD) scheme for it. Manna [31] studied the dynamical behaviors of a
delayed version of the model presented in [30]. Recently, Xu et al. [32] studied the global
stability of a delayed diffusive viral infection model with a general nonlinear incidence rate
and developed a dynamically consistent NSFD scheme for the model. Wang et al. [33] inves-
tigated the role of density-dependent diffusion in the viral infection process. They analyzed
both single-strain and multi-strain viral infection models. Kang et al. presented and analyzed
a delayed diffusive viral infection model with Crowley-Martin incidence function and CTL
immune response in [34]. Miao et al. [35] investigated global dynamics of a delayed diffusive
viral infection model with general incidence function and adaptive immune response. Geng
et al. showed the global stability of a delayed diffusive viral infection model with nonlinear
incidence rate and the dynamic consistency of the corresponding discrete model in [36].

Takingmotivation from the above discussion, we propose the following reaction-diffusion
system for HBV infection with CTL immune response:

∂ H

∂t
= s − μH(x, t) − k H(x, t)V (x, t),

∂ I

∂t
= k H(x, t − τ1)V (x, t − τ1) − δ I (x, t) − pI (x, t)Z(x, t),

∂ D

∂t
= dD�D + aI (x, t − τ2) − (β + δ)D(x, t), (1)

∂V

∂t
= dV �V + β D(x, t) − cV (x, t),

∂ Z

∂t
= q I (x, t)Z(x, t) − σ Z(x, t),

where H(x, t), I (x, t), D(x, t),V (x, t) and Z(x, t)denote the densities of uninfected hepato-
cytes, infected hepatocytes, HBVDNA-containing capsids, virions and CTL cells at position
x and at time t , respectively. The uninfected hepatocytes are produced from a source at a
constant rate s with a natural death rate μ and become infected at a rate k. The parameter δ is
the death rate for infected hepatocytes and capsids. Capsids are produced from infected hep-
atocytes at a rate a while β denotes the rate of viral replication from capsids and c represents
the removal rate of virions. Infected hepatocytes are killed at a rate p while q and σ represent
CTL responsiveness rate and decay rate of CTLs in absence of antigenic stimulation, respec-
tively. Two delays τ1 and τ2 represent the delays in the production of productively infected
hepatocytes and in the production of matured capsids, respectively. Here, the parameters dD

and dV represent the diffusion coefficients of capsids and virions, respectively. The symbol�
is the Laplacian operator and � is a connected, bounded spatial domain in Rn with a smooth
boundary ∂�. For the model (1), the initial conditions are given by

H(x, θ) = φ1(x, θ), I (x, θ) = φ2(x, θ), D(x, θ) = φ3(x, θ),

V (x, θ) = φ4(x, θ), and Z(x, θ) = φ5(x, θ), ∀ (x, θ) ∈ �̄ × [−τ, 0], (2)

and the homogeneous Neumann boundary conditions are given by

∂ D

∂ν
= 0,

∂V

∂ν
= 0, on ∂� × (0,+∞), (3)

where τ = max{τ1, τ2}, φi (x, θ) (i = 1, 2, 3, 4, 5) are non-negative Hölder continuous
functions in �̄×[−τ, 0] and ∂

∂ν
denotes the outward normal derivative on the boundary ∂�.

123



116 Page 4 of 16 Int. J. Appl. Comput. Math (2018) 4 :116

For the sake of convenience, a real-valued functionφ is said to be aHölder continuous function
in �̄×[−τ, 0] if there exist non-negative real constants K and κ such that ‖φ(x1)−φ(x2)‖ ≤
K‖x1 − x2‖κ , for all x1 = (x1, θ1), x2 = (x2, θ2) ∈ �̄ × [−τ, 0] [37].

Our main goal in this article is to investigate the dynamical behaviors of solutions for
the model (1). The rest of this article is organized as follows. In the next section, we prove
the existence, uniqueness, non-negativity and boundedness of the solutions of the model and
discuss the existence of the spatially homogeneous steady states. In Sect. 3, we investigate
the threshold conditions for global asymptotic stability of the corresponding steady states
by constructing appropriate Lyapunov functions and by implementing linearization method.
Further, Sect. 4 presents the illustrative numerical simulations. Finally, we end this article
with concluding remarks in Sect. 5.

Well-Posedness and Steady States

In this section, our main purpose is to establish the existence, uniqueness, non-negativity and
boundedness of solutions of system (1)–(3) since they represent the densities of uninfected
hepatocytes, infected hepatocytes, HBV DNA-containing capsids, virions and CTL cells.
Further, we discuss the existence of spatially homogeneous steady states of the model (1).

We first introduce some notations in order to show the non-negativity and boundedness of
solutions of system (1)–(3). Let X = C(�̄,R5) be a Banach space of continuous functions
from �̄ to R

5 and C = C([−τ, 0],X ) be the Banach space of continuous functions from
[−τ, 0] toX equippedwith the usual supremumnorm.For the sakeof convenience, an element
φ ∈ C is a function from �̄×[−τ, 0] intoR5 and is defined by φ(x, θ) = φ(θ)(x). We define
ωt ∈ C by ωt (θ) = ω(t + θ), θ ∈ [−τ, 0] for any continuous function ω : [−τ, b) → X
where b > 0.

Theorem 2.1 For any given initial data φ ∈ C satisfying the condition (2), there exists a
unique solution of the system (1)–(3) defined on [0,+∞) and this solution remains nonneg-
ative and bounded for all t ≥ 0.

Proof For any initial data φ = (φ1, φ2, φ3, φ4, φ5)
T ∈ C and x ∈ �̄, let us define F =

(F1, F2, F3, F4, F5) : C → X by

F1(φ)(x) = s − μφ1(x, 0) − kφ1(x, 0)φ4(x, 0),

F2(φ)(x) = kφ1(x,−τ1)φ4(x,−τ1) − δφ2(x, 0) − pφ2(x, 0)φ5(x, 0),

F3(φ)(x) = aφ2(x,−τ2) − (β + δ)φ3(x, 0),

F4(φ)(x) = βφ3(x, 0) − cφ4(x, 0),

F5(φ)(x) = qφ2(x, 0)φ5(x, 0) − σφ5(x, 0).

Then we can rewrite the system (1)-(3) in terms of the following abstract functional differ-
ential equation :

ω′(t) = Aω + F(ωt ), t > 0,

ω(0) = φ ∈ X , (4)

whereω=(H , I , D, V , Z)T ,φ=(φ1, φ2, φ3, φ4, φ5)
T and Aω=(0, 0, dD�D, dV �V , 0)T .

Also, note that F is locally Lipschitz inX . We deduce that there exists a unique local solution
of the system (4) on the interval [0, Tmax ), where Tmax denotes the maximal existence time
for solution of the system (4) [27,31,32].
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It is easy to obtain that H(x, t) ≥ 0, I (x, t) ≥ 0, D(x, t) ≥ 0, V (x, t) ≥ 0 and
Z(x, t) ≥ 0, since 0 = (0, 0, 0, 0, 0) represents a lower-solution of the model (1).

In order to prove the boundedness of solutions, let us take W (x, t) = H(x, t − τ1) +
I (x, t) + p

q Z(x, t). This implies

∂W

∂t
= s − μH(x, t − τ1) − δ I (x, t) − pσ

q
Z(x, t)

≤ s − γ W (x, t),

where γ = min{μ, δ, σ }. Hence,

W (x, t) ≤ max

{
s

γ
,max

x∈�̄
{φ1(x,−τ1) + φ2(x, 0) + p

q
φ5(x, 0)}

}
.

This implies that H , I and Z are bounded. Furthermore, from the bound for I and the system
(1)-(3), it follows that D satisfies the following system

∂ D

∂t
− dD�D ≤ aγ1 − (β + δ)D,

∂ D

∂ν
= 0,

D(x, 0) = φ3(x, 0) ≥ 0,

where γ1 = max
{

s
γ
,maxx∈�̄{φ1(x,−τ1) + φ2(x, 0) + p

q φ5(x, 0)}
}
.

Let D̃(t) be a solution to the following ODE

d D̃

dt
= aγ1 − (β + δ)D̃,

D̃(0) = max
x∈�̄

φ3(x, 0).

Thus, we obtain D̃(t) ≤ max
{

aγ1
β+δ

,maxx∈�̄ φ3(x, 0)
}
for all t ∈ [0, Tmax ). From the

comparison principle [38], it follows that D(x, t) ≤ D̃(t). Therefore,

D(x, t) ≤ max

{
aγ1

β + δ
,max

x∈�̄
φ3(x, 0)

}
, ∀ (x, t) ∈ �̄ × [0, Tmax ).

In a similar manner, we can show that

V (x, t) ≤ max

{
βγ2

c
,max

x∈�̄
φ4(x, 0)

}
, ∀ (x, t) ∈ �̄ × [0, Tmax ),

where γ2 = max
{

aγ1
β+δ

,maxx∈�̄ φ3(x, 0)
}
.

Till now from the above discussion, we can observe that H(x, t), I (x, t), D(x, t), V (x, t)
and Z(x, t) are bounded on �̄ × [0, Tmax ). Now, from the standard theory of semi-linear
parabolic systems [39], we deduce that Tmax = +∞. This completes the proof. 
�

The basic reproduction number of the virus is given by R0 = aβsk
cδμ(β+δ)

and the immune

response reproduction number is given by RCT L = aβskq
δ{cqμ(β+δ)+aβσk} [17]. In terms of

biology, R0 represents the average number of newly infected hepatocytes from one infected
hepatocyte at the beginning of the infection process whereas RCT L represents the same in
presence ofCTL immune response [17]. From the expressions for R0 and RCT L , it is observed
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that the inequality R0 > RCT L holds always and this is a biologically realistic relationship
between R0 and RCT L . The model (1) admits three spatially homogeneous steady states:

1. The disease-free steady state, E0 = (H0, I0, D0, V0, Z0) =
(

s
μ
, 0, 0, 0, 0

)
, which exists

always.
2. The immune-free steady state, E1 = (H1, I1, D1, V1, Z1), where H1 = cδ(β+δ)

aβk , V1 =[
aβs

cδ(β+δ)
− μ

k

]
, D1 = c

β
V1, I1 = (β+δ)

a D1 and Z1 = 0. The immune-free steady state,

E1, exists when the basic reproduction number R0 > 1.
3. The interior steady state with CTL immune response, E2 = (H2, I2, D2, V2, Z2),

where H2 = scq(β+δ)
cqμ(β+δ)+aβσk , I2 = σ

q , D2 = a
(β+δ)

I2, V2 = β
c D2, Z2 =

δ
p

[
aβskq

δ{cqμ(β+δ)+aβσk} − 1
]
. The interior steady state with CTL immune response, E2,

exists when the immune response reproduction number RCT L > 1.

Stability Analysis

In this section, we investigate the global asymptotic stability of the corresponding steady
states of the model (1) by constructing appropriate Lyapunov functions. For this purpose,
we introduce the function G(u) = u − 1 − ln u for u > 0 which will be used in Lyapunov
functions. Note that G(u) = 0 if and only if u = 1. Also, let us assume that 0 = λ1 <

λ2 < · · · < λn < . . . be the eigenvalues of the operator −� on � with the no-flux boundary
conditions and E(λi ) be the eigenfunction space corresponding toλi inC1(�). Let {ψi j : j =
1, 2, . . . , dim E(λi )} represent an orthonormal basis of E(λi ), Xi j = {dψi j : d ∈ R

5} and
X = [C1(�)]5. Then we have

X =
∞⊕

i=1

Xi and Xi =
dim E(λi )⊕

j=1

Xi j .

Let E∗ (H∗, I∗, D∗, V∗, Z∗) denote an arbitrary steady state of the system (1)-(3) and consider
the following perturbation about the steady state variables:

U1(x, t) = H(x, t) − H∗, U2(x, t) = I (x, t) − I∗,
U3(x, t) = D(x, t) − D∗, U4(x, t) = V (x, t) − V∗,
U5(x, t) = Z(x, t) − Z∗.

Linearizing the system (1) about E∗, we arrive at the following linearized system

∂U

∂t
= D�U + J1U (x, t) + J2U (x, t − τ1) + J3U (x, t − τ2),

where

J1 =

⎡
⎢⎢⎢⎢⎣

−μ − kV∗ 0 0 −k H∗ 0
0 −δ − pZ∗ 0 0 −pI∗
0 0 −β − δ 0 0
0 0 β −c 0
0 q Z∗ 0 0 q I∗ − σ

⎤
⎥⎥⎥⎥⎦ ,
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J2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
kV∗ 0 0 k H∗ 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

J3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 a 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

D = diag(0, 0, dD, dV , 0) and U = (U1, U2, U3, U4, U5)
T .

We define LU = D�U + J1U (x, t)+ J2U (x, t − τ1)+ J3U (x, t − τ2). Now,Xi is invariant
under the operator L for all i ≥ 1. Also, ξ is an eigenvalue of L if and only if it is a root of
the equation det(−λiD + J1 + J2e−ξτ1 + J3e−ξτ2 − ξI5) = 0 for some i ≥ 1 and in this
case, there exists an eigenvector in Xi .

Theorem 3.1 The disease-free steady state E0 is globally asymptotically stable when R0 ≤ 1
and it becomes unstable when R0 > 1.

Proof In order to prove the first part of this theorem, we define the following Lyapunov
function

L1(t) =
∫

�

[
H0G

(
H(x, t)

H0

)
+ I (x, t) + δ

a
D(x, t) + δ(β + δ)

aβ
V (x, t) + p

q
Z(x, t)

+k
∫ t

t−τ1

H(x, η)V (x, η)dη + δ

∫ t

t−τ2

I (x, η)dη

]
dx,

where H0 = s/μ. Differentiating L1 with respect to t along the solutions of the model (1),
we obtain

d L1

dt
=

∫
�

[(
1 − H0

H(x, t)

)
(s − k H(x, t)V (x, t) − μH(x, t))

+(k H(x, t − τ1)V (x, t − τ1)

−δ I (x, t) − pI (x, t)Z(x, t)) + δ

a
(dD�D(x, t)

+aI (x, t − τ2) − (β + δ)D(x, t))

+δ(β + δ)

aβ
(dV �V (x, t) + β D(x, t) − cV (x, t))

+ p

q
(q I (x, t)Z(x, t) − σ Z(x, t))

+k(H(x, t)V (x, t) − H(x, t − τ1)V (x, t − τ1)) + δ(I (x, t) − I (x, t − τ2))

]
dx

=
∫

�

[
s

(
2 − H(x, t)

H0
− H0

H(x, t)

)

+cδ(β + δ)

aβ
(R0 − 1)V (x, t) − pσ

q
Z(x, t)

]
dx

+δdD

a

∫
�

�D(x, t)dx + δ(β + δ)dV

aβ

∫
�

�V (x, t)dx .
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Using the divergence theorem and homogeneous Neumann boundary conditions (3), we have∫
�

�D(x, t)dx = 0 and
∫
�

�V (x, t)dx = 0 [34]. Therefore,

d L1

dt
=

∫
�

[
− s

H0H(x, t)
(H(x, t) − H0)

2 + cδ(β + δ)

aβ
(R0 − 1)V (x, t) − pσ

q
Z(x, t)

]
dx .

Hence, d L1
dt ≤ 0 if R0 ≤ 1. Observe that d L1

dt = 0 if and only if H = H0 = s
μ
, I = 0,

D = 0, V = 0, and Z = 0. It follows that if M represents the largest compact invariant set
in {(H , I , D, V , Z)| d L1

dt = 0}, then M = {E0} = {( s
μ
, 0, 0, 0, 0)}. Thus, by the LaSalle’s

invariance principle [27,31], E0 is globally asymptotically stable when R0 ≤ 1.
In order to prove the remaining part, we determine the characteristic equation about the

disease-free steady state E0. The characteristic equation of the corresponding linearized
system of model (1) about E0 is given by

(ξ + μ)(ξ + σ)[ξ3 + (c + β + 2δ + λi dD + λi dV )ξ2

+{(β + δ + λi dD)(c + δ + λi dV ) + δ(c + λi dV )}ξ
+δ(β + δ + λi dD)(c + λi dV ) − aβsk

μ
e−ξ(τ1+τ2)] = 0. (5)

From the equation (5), clearly we can see that ξ = −μ(< 0) and ξ = −σ(< 0) are two
roots of the characteristic equation (5). Let us consider

f1(ξ) = ξ3 + (c + β + 2δ + λi dD + λi dV )ξ2

+{(β + δ + λi dD)(c + δ + λi dV ) + δ(c + λi dV )}ξ
+δ(β + δ + λi dD)(c + λi dV ) − aβsk

μ
e−ξ(τ1+τ2).

Other roots of the characteristic equation (5) are given by the solutions of f1(ξ) = 0. Now,
we have

lim
ξ→+∞ f1(ξ) = +∞.

Further, we obtain f1(0) |i=1= cδ(β + δ)(1 − R0) < 0 when R0 > 1 and λ1 = 0.
Consequently, there exists a positive real root of the characteristic equation (5) and hence,
the disease-free steady state E0 is unstable whenever R0 > 1. This completes the proof. 
�
Theorem 3.2 The immune-free steady state E1 is globally asymptotically stable when
RCT L ≤ 1 < R0 and it becomes unstable when RCT L > 1.

Proof In order to prove the first part of this theorem, we define the following Lyapunov
function

L2(t) =
∫

�

[
H1G

(
H(x, t)

H1

)
+ I1G

(
I (x, t)

I1

)

+ δ

a
D1G

(
D(x, t)

D1

)
+ δ(β + δ)

aβ
V1G

(
V (x, t)

V1

)
+

p

q
Z(x, t) + k H1V1

∫ t

t−τ1

G

(
H(x, η)V (x, η)

H1V1

)
dη + δ I1

∫ t

t−τ2

G

(
I (x, η)

I1

)
dη

]
dx,

where (H1, I1, D1, V1, Z1) denotes the immune-free steady state. Differentiating L2 with
respect to t along the solutions of the model (1), we obtain

d L2

dt
=

∫
�

[(
1 − H1

H(x, t)

)
(s − k H(x, t)V (x, t) − μH(x, t))
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+
(
1 − I1

I (x, t)

)
(k H(x, t − τ1)V (x, t − τ1)

−δ I (x, t) − pI (x, t)Z(x, t)) + δ

a

(
1 − D1

D(x, t)

)

(dD�D(x, t) + aI (x, t − τ2) − (β + δ)D(x, t))

+δ(β + δ)

aβ

(
1 − V1

V (x, t)

)
(dV �V (x, t) + β D(x, t) − cV (x, t))

+ p

q
(q I (x, t)Z(x, t) − σ Z(x, t))

+k H1V1

{
H(x, t)V (x, t)

H1V1
− H(x, t − τ1)V (x, t − τ1)

H1V1

+ ln
H(x, t − τ1)V (x, t − τ1)

H(x, t)V (x, t)

}

+δ I1

{
I (x, t)

I1
− I (x, t − τ2)

I1
+ ln

I (x, t − τ2)

I (x, t)

}]
dx

=
∫

�

[
μH1

{
2 − H(x, t)

H1
− H1

H(x, t)

}

+δ I1

{
4 − H1

H(x, t)
− H(x, t − τ1)V (x, t − τ1)I1

H1V1 I (x, t)
−

I (x, t − τ2)D1

I1D(x, t)
− D(x, t)V1

D1V (x, t)
+ ln

H(x, t − τ1)V (x, t − τ1)I (x, t − τ2)

H(x, t)V (x, t)I (x, t)

}
+

ps

δRCT L
(RCT L − 1)Z(x, t)

]
dx + δ

a

∫
�

(
1 − D1

D(x, t)

)
dD�D(x, t)dx

+δ(β + δ)

aβ

∫
�

(
1 − V1

V (x, t)

)
dV �V (x, t)dx .

Note that
∫
�

�D(x, t)dx = 0,
∫
�

�V (x, t)dx = 0,
∫
�

�D(x,t)
D(x,t) dx = ∫

�
‖∇ D(x,t)‖2

D2(x,t)
dx and∫

�
�V (x,t)
V (x,t) dx = ∫

�
‖∇V (x,t)‖2

V 2(x,t)
dx [28,34]. Therefore, we have

d L2

dt
=

∫
�

[
− μ

H(x, t)
(H(x, t) − H1)

2 − δ I1

{
G

(
H1

H(x, t)

)

+G

(
H(x, t − τ1)V (x, t − τ1)I1

H1V1 I (x, t)

)

+G

(
I (x, t − τ2)D1

I1D(x, t)

)
+ G

(
D(x, t)V1

D1V (x, t)

)}
+ ps

δRCT L
(RCT L − 1)Z(x, t)

]
dx

−δD1dD

a

∫
�

‖∇ D(x, t)‖2
D2(x, t)

dx − δ(β + δ)V1dV

aβ

∫
�

‖∇V (x, t)‖2
V 2(x, t)

dx .

Hence, we have d L2
dt ≤ 0 if RCT L ≤ 1. Observe that d L2

dt = 0 if and only if H = H1,
I = I1, D = D1, V = V1 and Z = Z1 = 0. Therefore, if M represents the largest compact

invariant set in
{
(H , I , D, V , Z)| d L2

dt = 0
}
thenM = {E1}. Also since E1 exists whenever

R0 > 1, then by the LaSalle’s invariance principle [27,31] we deduce that E1 is globally
asymptotically stable whenever RCT L ≤ 1 < R0.
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In order to prove the remaining part, we determine the characteristic equation about the
immune-free steady state E1. The characteristic equation of the corresponding linearized
system of model (1) about E1 is given by

(ξ + σ − q I1){ξ4 + A3ξ
3 + A2ξ

2 + A1ξ + A0 + (B1ξ + B0)e
−ξ(τ1+τ2)} = 0, (6)

where

A3 = c + β + 2δ + μ + kV1 + λi dD + λi dV ,

A2 = δ(μ + kV1) + (β + δ + λi dD)(c + λi dV )

+(δ + μ + kV1)(c + β + δ + λi dD + λi dV ),

A1 = δ(μ + kV1)(c + β + δ + λi dD + λi dV )

+(δ + μ + kV1)(β + δ + λi dD)(c + λi dV ),

A0 = δ(μ + kV1)(β + δ + λi dD)(c + λi dV ),

B1 = −aβk H1,

B0 = −aβμk H1.

From the equation (6), clearly we can see that ξ = q I1 − σ = sq
δRCT L

(RCT L − 1) is a root
of the characteristic equation (6). If RCT L > 1, then ξ = q I1 − σ > 0 and hence, the
characteristic equation (6) has a positive real root. Therefore, the immune-free steady state
E1 is unstable whenever RCT L > 1. This completes the proof. 
�
Theorem 3.3 The interior steady state with CTL immune response E2 is globally asymptot-
ically stable when RCT L > 1.

Proof We define the following Lyapunov function

L3(t) =
∫

�

[
H2G

(
H(x, t)

H2

)
+ I2G

(
I (x, t)

I2

)
+ (δ + pZ2)

a
D2G

(
D(x, t)

D2

)

+ (δ + pZ2)(β + δ)

aβ
V2G

(
V (x, t)

V2

)
+ p

q
Z2G

(
Z(x, t)

Z2

)
+

k H2V2

∫ t

t−τ1

G

(
H(x, η)V (x, η)

H2V2

)
dη

+(δ I2 + pI2Z2)

∫ t

t−τ2

G

(
I (x, η)

I2

)
dη

]
dx,

where (H2, I2, D2, V2, Z2) denotes the interior steady state with CTL immune response.
Differentiating L3 with respect to t along the solutions of the model (1), we obtain

d L3

dt
=

∫
�

[(
1 − H2

H(x, t)

)
(s − k H(x, t)V (x, t) − μH(x, t))

+
(
1 − I2

I (x, t)

)
(k H(x, t − τ1)V (x, t − τ1)

−δ I (x, t) − pI (x, t)Z(x, t))

+ (δ + pZ2)

a

(
1 − D2

D(x, t)

)
(dD�D(x, t) + aI (x, t − τ2)

−(β + δ)D(x, t)) + (δ + pZ2)(β + δ)

aβ
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(
1 − V2

V (x, t)

)
(dV �V (x, t) + β D(x, t) − cV (x, t))

+ p

q

(
1 − Z2

Z(x, t)

)
(q I (x, t)Z(x, t) − σ Z(x, t))

+k H2V2

{
H(x, t)V (x, t)

H2V2
− H(x, t − τ1)V (x, t − τ1)

H2V2

+ ln
H(x, t − τ1)V (x, t − τ1)

H(x, t)V (x, t)

}

+(δ I2 + pI2Z2)

{
I (x, t)

I2
− I (x, t − τ2)

I2
+ ln

I (x, t − τ2)

I (x, t)

}]
dx

=
∫

�

[
μH2

{
2 − H(x, t)

H2
− H2

H(x, t)

}

+(δ I2 + pI2Z2)

{
4 − H2

H(x, t)
− H(x, t − τ1)V (x, t − τ1)I2

H2V2 I (x, t)

− I (x, t − τ2)D2

I2D(x, t)
− D(x, t)V2

D2V (x, t)
+ ln

H(x, t − τ1)V (x, t − τ1)I (x, t − τ2)

H(x, t)V (x, t)I (x, t)

}]
dx

+ (δ + pZ2)

a

∫
�

(
1 − D2

D(x, t)

)
dD�D(x, t)dx

+ (δ + pZ2)(β + δ)

aβ

∫
�

(
1 − V2

V (x, t)

)
dV �V (x, t)dx

=
∫

�

[
− μ

H(x, t)
(H(x, t) − H2)

2 − (δ I2 + pI2Z2)

{
G

(
H2

H(x, t)

)
+ G

(
H(x, t − τ1)V (x, t − τ1)I2

H2V2 I (x, t)

)

+G

(
I (x, t − τ2)D2

I2D(x, t)

)
+ G

(
D(x, t)V2

D2V (x, t)

)}]
dx

− (δ + pZ2)D2dD

a

∫
�

‖∇ D(x, t)‖2
D2(x, t)

dx

− (δ + pZ2)(β + δ)V2dV

aβ

∫
�

‖∇V (x, t)‖2
V 2(x, t)

dx .

Hence, the inequality d L3
dt ≤ 0 holds always. Observe that d L3

dt = 0 if and only if H = H2,
I = I2, D = D2, V = V2 and Z = Z2. Therefore, M = {E2} where M represents the

largest compact invariant set in
{
(H , I , D, V , Z)| d L3

dt = 0
}
. Thus by using the LaSalle’s

invariance principle [27,31] we deduce that E2 is globally asymptotically stable whenever
RCT L > 1 as the steady state E2 exists whenever RCT L > 1. This completes the proof. 
�

Numerical Simulation

In this section, we carry out some numerical simulations to illustrate the theoretical results
obtained in the previous section. For this purpose, we consider three sets of parameter values
corresponding to the cases R0 < 1, RCT L < 1 < R0 and RCT L > 1. For the sake of

123



116 Page 12 of 16 Int. J. Appl. Comput. Math (2018) 4 :116

Fig. 1 Dynamics of the populations of the system (1)-(3) when R0 < 1 for the disease-free case with sub-
figures for the spatiotemporal variables a uninfected hepatocytes, b infected hepatocytes, c capsids, d virions
and e CTL cells

simplicity of numerical simulations, we take one-dimensional spatial domain � = [0, 50]
and the values of the diffusion coefficients asdD = 0.1mm2 day−1 anddV = 0.1mm2 day−1.
Also,we consider the grid sizes as�x = 0.1,�t = 0.1 anddelays as τ1 = 1day, τ2 = 2 days.
First we choose the following parameter values: s = 2.6 × 107 cells ml−1 day−1, μ =
0.01 day−1, k = 3×10−13 ml virion−1 day−1, δ = 0.053 day−1, p = 0.95 ml cell−1 day−1,
a = 150 capsids cell−1 day−1, β = 0.87 day−1, c = 3.8 day−1, q = 0.12 ml cell−1 day−1

and σ = 0.05 day−1 [17]. In this case, R0 = 0.5476 < 1 and it can be observed from Fig. 1
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Fig. 2 Dynamics of the populations of the system (1)-(3) when RCT L < 1 < R0 for the immune-free case
with sub-figures for the spatiotemporal variables a uninfected hepatocytes, b infected hepatocytes, c capsids,
d virions and e CTL cells

that all the corresponding populations converge towards the disease-free steady state (2.6 ×
109, 0, 0, 0, 0)which eventually supports the Theorem 3.1. Biologically, this set of parameter
values indicates that the diseasewill eventually die out and the infected individualwill become
completely cured. Next, we choose parameter values as k = 1.67×10−12 ml virion−1 day−1

[17], q = 2×10−10 ml cell−1 day−1, σ = 0.45 day−1 and all other parameters are taken same
as in the previous case. In this case, RCT L = 0.2035 < 1 and R0 = 3.0482 > 1. For this set of
parameter values, we can expect that all the populationswill approach the immune-free steady
state (8.53× 108, 3.3× 108, 5.36× 1010, 1.23× 1010, 0) and this is evident from Fig. 2. In
this case, the CTL immune response would not be triggered and the infection will eventually
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Fig. 3 Dynamics of the populations of the system (1)-(3) when RCT L > 1 for the coexistence case with
sub-figures for the spatiotemporal variables a uninfected hepatocytes, b infected hepatocytes, c capsids, d
virions and e CTL cells

becomechronicwith associated severe consequences. Finally,we choose the parameter values
as k = 1.67×10−12 ml virion−1 day−1, p = 0.2 ml cell−1 day−1, q = 0.2 ml cell−1 day−1,
σ = 0.45 day−1 and all other parameters are taken same as in the case R0 < 1. In this
case, we have RCT L = 3.0482 > 1 and we can expect that all the populations will approach
the interior steady state with CTL immune response (2.6 × 109, 2.25, 365.66, 83.72, 0.54).
This can be seen in Fig. 3. This set of parameter values demonstrates the scenario when the
infection will activate the CTL immune response which in turn will diminish the viral load
by blocking the infection process.
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Conclusion

In this article, we proposed and investigated a delayed spatiotemporal HBV infection model
with capsids and CTL immune response. We proved the existence and global asymptotic
stability of the three spatially homogeneous steady states, namely, disease-free steady state
E0, immune-free steady state E1 and endemic steady state E2. By using the direct Lyapunov
method, we showed that the disease-free steady state E0 is globally asymptotically stable
when R0 ≤ 1, which indicates that the virions are cleared and eventually the disease dies out.
When RCT L ≤ 1 < R0, the immune-free steady state E1 is globally asymptotically stable,
which points out that immune response would not be activated and the infection becomes
chronic. Further, the interior steady statewithCTL immune response E2 is globally asymptot-
ically stable when RCT L > 1 and this indicates that CTL immune response will be activated
only when the immune response reproduction number is greater than unity. Therefore, the
results obtained in this article indicate that the delays and diffusions together does not have
any effect on the global dynamical behaviors of the HBV infection model presented in [17].
Finally, several numerical illustrations are provided to validate our theoretical findings.

However, how to present a dynamically consistent non-standard finite difference scheme
for this continuous model is our future work. Also, we want to extend this model by incor-
porating antibody immune response and examine it for the dynamical behaviors in near
future.
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